HIVE3.1.3+ZK+Kerberos+Ranger2.4.0高可用集群部署

news2025/1/12 6:50:37

目录

一、集群规划

二、介质下载        

三、基础环境准备

1、解压文件

2、配置环境变量

四、配置zookeeper

1、创建主体

2、修改zoo.cfg

3、新增jaas.conf

4、新增java.env

5、重启ZK

6、验证ZK

五、配置元数据库

六、安装HIVE

1、创建Hiver的kerberso主体

2、新增hive-site.xml

3、初始化Hive元数据库

4、新增hive-default.xml

5、新增hive-env.sh

6、新增hive-log4j2.properties

7、启动Hive服务及验证

七、HIVE验证

1、检查zk注册情况

 2、使用beeline连接

八、安装hive-plugin

1、解压编译后的程序包

2、配置install.properties

3、页面配置


一、集群规划

        本次测试采用3台虚拟机,操作系统版本为centos7.6。

        Hadoop版本为3.3.4,其中Namenode采用HA高可用架构,开启kerberos和Ranger

        操作系统用户:hadoop   操作系统用户组:hadoop

IP地址主机名ZKHIVE
192.168.121.101node101.cc.localserver.1

HS2

HMS

192.168.121.102node102.cc.localserver.2

HS2

HMS

192.168.121.103node103.cc.localserver.3Mysql

  Hive从0.14开始,使用Zookeeper实现了HiveServer2的HA功能(ZooKeeper Service Discovery),Client端可以通过指定一个nameSpace来连接HiveServer2,而不是指定某一个host和port。

二、介质下载        

        官方下载地址:

Index of /hiveicon-default.png?t=N7T8https://dlcdn.apache.org/hive/

三、基础环境准备

1、解压文件

# tar -xzvf apache-hive-3.1.3-bin.tar.gz
# mv apache-hive-3.1.3-bin /opt/hadoop/hive-3.1.3
# chown -R hadoop:hadoop /opt/hadoop/hive-3.1.3

2、配置环境变量

编辑文件 /etc/profile,新增hive的环境变量

export HIVE_HOME=/opt/hadoop/hive-3.1.3
export PATH=$HIVE_HOME/bin:$PATH

生效新配置

# source /etc/profile

四、配置zookeeper

1、创建主体

  注意:hiveserver2的高可用需要使用zookeeper,而HiveZooKeeperClient默认使用SASL进行认证,所以需要创建zookeeper主体。

#node101
kadmin -p kws/admin -w kws\!101 -q"addprinc -randkey zookeeper/node101.cc.local"
kadmin -p kws/admin -wkws\!101 -q"xst -k /etc/security/keytab/zk.keytab zookeeper/node101.cc.local"
#node102
kadmin -p kws/admin -w kws\!101 -q"addprinc -randkey zookeeper/node102.cc.local"
kadmin -p kws/admin -wkws\!101 -q"xst -k /etc/security/keytab/zk.keytab zookeeper/node102.cc.local"
#node103
kadmin -p kws/admin -w kws\!101 -q"addprinc -randkey zookeeper/node103.cc.local"
kadmin -p kws/admin -wkws\!101 -q"xst -k /etc/security/keytab/zk.keytab zookeeper/node103.cc.local"

2、修改zoo.cfg

         配置conf/zoo.cfg,增加SASL配置

#zk SASL
authProvider.1=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
jaasLoginRenew=3600000
requireClientAuthScheme=sasl
zookeeper.sasl.client=true
kerberos.removeHostFromPrincipal=true
kerberos.removeRealmFromPrincipal=true
quorum.auth.enableSasl=true
quorum.auth.learner.saslLoginContext=Learner
quorum.auth.server.saslLoginContext=Server
quorum.auth.kerberos.servicePrincipal=zookeeper/_HOST@CC.LOCAL
4lw.commands.whitelist=mntr,conf,ruok,cons

3、新增jaas.conf

        在conf目录下新增jaas.conf文件,注意主体zookeeper/XXX根据每个节点配置。

Server {
  com.sun.security.auth.module.Krb5LoginModule required
  useKeyTab=true
  keyTab="/etc/security/keytab/zk.keytab"
  storeKey=true
  useTicketCache=false
  principal="zookeeper/node101.cc.local@CC.LOCAL";
};
Client {
  com.sun.security.auth.module.Krb5LoginModule required
  useKeyTab=true
  keyTab="/etc/security/keytab/zk.keytab"
  storeKey=true
  useTicketCache=false
  principal="zookeeper/node101.cc.local@CC.LOCAL";
};
Learner {
  com.sun.security.auth.module.Krb5LoginModule required
  useKeyTab=true
  keyTab="/etc/security/keytab/zk.keytab"
  storeKey=true
  useTicketCache=false
  principal="zookeeper/node101.cc.local@CC.LOCAL";
};

注意:如果jaas.conf文件内容格式有误,ZK启动时会报在jaas文件中找不到Server段的错误

4、新增java.env

        在conf目录下新增java.env文件

export JVMFLAGS="-Djava.security.auth.login.config=/opt/hadoop/apache-zookeeper-3.8.0-bin/conf/jaas.conf"

5、重启ZK

systemctl stop zookeeper
systemctl start zookeeper

6、验证ZK

        登录zk

# zkCli.sh -server node101.cc.local:2181,node102.cc.local:2181,node103.cc.local:2181
[zk: node101.cc.local:2181,node102.cc.local:2181,node103.cc.local:2181(CONNECTED) 0] ls /
[hadoop-ha, rmstore, yarn-leader-election, zookeeper]

五、配置元数据库

        在Mysql中创建名为metastore数据库

# mysql -uroot -p
Enter password: 

mysql> create database metastore;
Query OK, 1 row affected (0.01 sec)

        创建数据库用户hive并赋权        

GRANT ALL PRIVILEGES ON *.* TO 'hive'@'%' identified by 'Hive!102';
GRANT ALL PRIVILEGES ON *.* TO 'hive'@'192.168.121.101' identified by 'Hive!102';
GRANT ALL PRIVILEGES ON *.* TO 'hive'@'192.168.121.102' identified by 'Hive!102';
GRANT ALL PRIVILEGES ON *.* TO 'hive'@'node101.cc.local' identified by 'Hive!102';
GRANT ALL PRIVILEGES ON *.* TO 'hive'@'node102.cc.local' identified by 'Hive!102';

        拷贝MySQL的JDBC驱动拷贝到Hive的lib目录下

# cp mysql-connector-java.jar $HIVE_HOME/lib

六、安装HIVE

1、创建Hiver的kerberso主体

        hiveserver2和metastore服务都需要配置kerberos鉴权,因为hive可以配置服务所使用的kerberos主体,没有绑定固定主体名称,所以本次验证使用之前创建的hadoop主体,不再创建主体。

2、新增hive-site.xml

        新增$HIVE_HOME/conf/hive-site.xml配置文件

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
  <!-- 指定hiveserver2连接的host,每个节点使用自己的hostname-->
  <property>
      <name>hive.server2.thrift.bind.host</name>
      <value>node102.cc.local</value>
  </property>

  <!-- 指定hiveserver2连接的端口号 -->
  <property>
      <name>hive.server2.thrift.port</name>
      <value>10000</value>
  </property>
  
  <!-- 指定metastore服务的地址,默认链接第一个,失败时列表随机选取 -->
  <property>
    <name>hive.metastore.uris</name>
    <value>thrift://node102.cc.local:9083,thrift://node101.cc.local:9083</value>
  </property>
  
  <!--配置hiveserver2高可用-->
  <property>
    <name>hive.server2.support.dynamic.service.discovery</name>
    <value>true</value>
  </property>
  
  <property>
    <name>hive.server2.zookeeper.namespace</name>
    <value>hiveserver2_zk</value>
  </property>
  
  <property>
    <name>hive.zookeeper.quorum</name>
    <value>node101.cc.local:2181,node102.cc.local:2181,node103.cc.local:2181</value>
  </property>
  
  <property>
    <name>hive.zookeeper.client.port</name>
    <value>2181</value>
  </property>
  
  <!-- jdbc连接的URL -->
  <property>
    <name>javax.jdo.option.ConnectionURL</name>
    <value>jdbc:mysql://192.168.121.103:3306/metastore?useSSL=false</value>
  </property>
  
  <!-- jdbc连接的Driver-->
  <property>
    <name>javax.jdo.option.ConnectionDriverName</name>
    <value>com.mysql.jdbc.Driver</value>
  </property>
  
    <!-- jdbc连接的username-->
  <property>
    <name>javax.jdo.option.ConnectionUserName</name>
    <value>hive</value>
  </property>

  <!-- jdbc连接的password -->
  <property>
    <name>javax.jdo.option.ConnectionPassword</name>
    <value>Hive!102</value>
  </property>

  <!-- Hive默认在HDFS的工作目录 -->
  <property>
    <name>hive.metastore.warehouse.dir</name>
    <value>/user/hive/warehouse</value>
  </property>
  
    <!-- hiveserver2 支持kerberos认证 -->
  <property>
    <name>hive.server2.authentication</name>
    <value>kerberos</value>
  </property>
 
  <!--  hiveserver2 kerberos主体 -->
  <property>
    <name>hive.server2.authentication.kerberos.principal</name>
    <value>hadoop/_HOST@CC.LOCAL</value>
  </property>
  
  <!-- hiveserver2 keytab密钥文件路径 -->
  <property>
    <name>hive.server2.authentication.kerberos.keytab</name>
    <value>/etc/security/keytab/hadoop.keytab</value>
  </property>
 
  <!-- hivemetastore 开启kerberos认证 -->
  <property>
    <name>hive.metastore.sasl.enabled</name>
    <value>true</value>
  </property>
 
  <!-- metastore kerberos主体 -->
  <property>
    <name>hive.metastore.kerberos.principal</name>
    <value>hadoop/_HOST@CC.LOCAL</value>
  </property>
 
  <!-- metastore keytab密钥文件路径 -->
  <property>
    <name>hive.metastore.kerberos.keytab.file</name>
    <value>/etc/security/keytab/hadoop.keytab</value>
  </property>
</configuration>

3、初始化Hive元数据库

$ ./schematool -dbType mysql -initSchema -verbose

4、新增hive-default.xml

        新增$HIVE_HOME/conf/hive-default.xml参数配置文件

cp hive-default.xml.template hive-default.xml

注意:默认配置文件:hive-default.xml,用户自定义配置文件:hive-site.xml,用户自定义配置会覆盖默认配置。

支持命令行参数方式
①启动Hive时,可以在命令行添加-hiveconf param=value来设定参数。例如:
hive -hiveconf mapreduce.job.reduces=10;
注意:仅对本次Hive启动有效。
②查看参数设置
hive (default)> set mapreduce.job.reduces;

参数声明方式
①在HQL中使用SET关键字设定参数,例如:
hive(default)> set mapreduce.job.reduces=10;
注意:仅对本次Hive启动有效。
②查看参数设置:
hive(default)> set mapreduce.job.reduces;

注意:上述三种设定方式的优先级依次递增,即配置文件 < 命令行参数 < 参数声明。

5、新增hive-env.sh

        新增$HIVE_HOME/conf/hive-env.sh环境配置文件

cp hive-env.sh.template hive-default.xml

6、新增hive-log4j2.properties

        新增$HIVE_HOME/conf/hive-log4j2.properties日志配置文件

# cp hive-log4j2.properties.template hive-log4j2.properties

        修改hive日志路径,默认在/tmp

#property.hive.log.dir = ${sys:java.io.tmpdir}/${sys:user.name}
property.hive.log.dir = /opt/hadoop/hive-3.1.3/logs

注意:log4j属于系统级配置,必须用前参数或者参数设定方式。 

7、启动Hive服务及验证

nohup hive --service metastore >> /opt/hadoop/hive-3.1.3/logs/metastore.log 2>&1 &
nohup hive --service hiveserver2 >> /opt/hadoop/hive-3.1.3/logs/hiveserver.log 2>&1 &

七、HIVE验证

1、检查zk注册情况

[zk: node101.cc.local:2181,node102.cc.local:2181,node103.cc.local:2181(CONNECTED) 2] ls /hiveserver2
[serverUri=node101.cc.local:10000;version=3.1.3;sequence=0000000003, serverUri=node102.cc.local:10000;version=3.1.3;sequence=0000000004]

 2、使用beeline连接

$ kinit test -kt test.keytab 

$ klist
Ticket cache: FILE:/tmp/krb5cc_1000
Default principal: test@CC.LOCAL

Valid starting       Expires              Service principal
05/13/2024 16:18:33  05/14/2024 16:18:33  krbtgt/CC.LOCAL@CC.LOCAL
        renew until 05/20/2024 16:18:33

$ beeline -u "jdbc:hive2://node101.cc.local:2181,node102.cc.local:2181,node103.cc.local:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2"
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/opt/hadoop/hive-3.1.3/lib/log4j-slf4j-impl-2.17.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/opt/hadoop/hadoop-3.3.4/share/hadoop/common/lib/slf4j-reload4j-1.7.36.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Connecting to jdbc:hive2://node101.cc.local:2181,node102.cc.local:2181,node103.cc.local:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2
24/05/13 16:18:55 [main]: INFO jdbc.HiveConnection: Connected to node102.cc.local:10000
Connected to: Apache Hive (version 3.1.3)
Driver: Hive JDBC (version 3.1.3)
Transaction isolation: TRANSACTION_REPEATABLE_READ
Beeline version 3.1.3 by Apache Hive

0: jdbc:hive2://node101.cc.local:2181,node102> show databases;
INFO  : Compiling command(queryId=hadoop_20240513161906_820f0271-0309-4fd8-b636-3f01e9738de6): show databases
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:database_name, type:string, comment:from deserializer)], properties:null)
INFO  : Completed compiling command(queryId=hadoop_20240513161906_820f0271-0309-4fd8-b636-3f01e9738de6); Time taken: 1.819 seconds
INFO  : Executing command(queryId=hadoop_20240513161906_820f0271-0309-4fd8-b636-3f01e9738de6): show databases
INFO  : Starting task [Stage-0:DDL] in serial mode
INFO  : Completed executing command(queryId=hadoop_20240513161906_820f0271-0309-4fd8-b636-3f01e9738de6); Time taken: 0.145 seconds
INFO  : OK
+----------------+
| database_name  |
+----------------+
| default        |
+----------------+
1 row selected (3.147 seconds)

八、安装hive-plugin

1、解压编译后的程序包

tar -zxvf ranger-2.4.0-hive-plugin.tar.gz

2、配置install.properties

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#
# Location of Policy Manager URL  
#
# Example:
# POLICY_MGR_URL=http://policymanager.xasecure.net:6080
#
POLICY_MGR_URL=http://node103.cc.local:6080

#
# This is the repository name created within policy manager
#
# Example:
# REPOSITORY_NAME=hivedev
#
REPOSITORY_NAME=hive_repo

#
# Hive installation directory
#
# Example:
# COMPONENT_INSTALL_DIR_NAME=/var/local/apache-hive-2.1.0-bin
#
COMPONENT_INSTALL_DIR_NAME=/opt/hadoop/hive-3.1.3/

# AUDIT configuration with V3 properties

# Enable audit logs to Solr
#Example
#XAAUDIT.SOLR.ENABLE=true
#XAAUDIT.SOLR.URL=http://localhost:6083/solr/ranger_audits
#XAAUDIT.SOLR.ZOOKEEPER=
#XAAUDIT.SOLR.FILE_SPOOL_DIR=/var/log/hive/audit/solr/spool

XAAUDIT.SOLR.ENABLE=false
XAAUDIT.SOLR.URL=NONE
XAAUDIT.SOLR.USER=NONE
XAAUDIT.SOLR.PASSWORD=NONE
XAAUDIT.SOLR.ZOOKEEPER=NONE
XAAUDIT.SOLR.FILE_SPOOL_DIR=/var/log/hive/audit/solr/spool

# Enable audit logs to ElasticSearch
#Example
#XAAUDIT.ELASTICSEARCH.ENABLE=true
#XAAUDIT.ELASTICSEARCH.URL=localhost
#XAAUDIT.ELASTICSEARCH.INDEX=audit

XAAUDIT.ELASTICSEARCH.ENABLE=false
XAAUDIT.ELASTICSEARCH.URL=NONE
XAAUDIT.ELASTICSEARCH.USER=NONE
XAAUDIT.ELASTICSEARCH.PASSWORD=NONE
XAAUDIT.ELASTICSEARCH.INDEX=NONE
XAAUDIT.ELASTICSEARCH.PORT=NONE
XAAUDIT.ELASTICSEARCH.PROTOCOL=NONE

# Enable audit logs to HDFS
#Example
#XAAUDIT.HDFS.ENABLE=true
#XAAUDIT.HDFS.HDFS_DIR=hdfs://node-1.example.com:8020/ranger/audit
#  If using Azure Blob Storage
#XAAUDIT.HDFS.HDFS_DIR=wasb[s]://<containername>@<accountname>.blob.core.windows.net/<path>
#XAAUDIT.HDFS.HDFS_DIR=wasb://ranger_audit_container@my-azure-account.blob.core.windows.net/ranger/audit
#XAAUDIT.HDFS.FILE_SPOOL_DIR=/var/log/hive/audit/hdfs/spool

XAAUDIT.HDFS.ENABLE=false
XAAUDIT.HDFS.HDFS_DIR=hdfs://__REPLACE__NAME_NODE_HOST:8020/ranger/audit
XAAUDIT.HDFS.FILE_SPOOL_DIR=/var/log/hive/audit/hdfs/spool

# Following additional propertis are needed When auditing to Azure Blob Storage via HDFS
# Get these values from your /etc/hadoop/conf/core-site.xml
#XAAUDIT.HDFS.HDFS_DIR=wasb[s]://<containername>@<accountname>.blob.core.windows.net/<path>
XAAUDIT.HDFS.AZURE_ACCOUNTNAME=__REPLACE_AZURE_ACCOUNT_NAME
XAAUDIT.HDFS.AZURE_ACCOUNTKEY=__REPLACE_AZURE_ACCOUNT_KEY
XAAUDIT.HDFS.AZURE_SHELL_KEY_PROVIDER=__REPLACE_AZURE_SHELL_KEY_PROVIDER
XAAUDIT.HDFS.AZURE_ACCOUNTKEY_PROVIDER=__REPLACE_AZURE_ACCOUNT_KEY_PROVIDER

#Log4j Audit Provider
XAAUDIT.LOG4J.ENABLE=false
XAAUDIT.LOG4J.IS_ASYNC=false
XAAUDIT.LOG4J.ASYNC.MAX.QUEUE.SIZE=10240
XAAUDIT.LOG4J.ASYNC.MAX.FLUSH.INTERVAL.MS=30000
XAAUDIT.LOG4J.DESTINATION.LOG4J=true
XAAUDIT.LOG4J.DESTINATION.LOG4J.LOGGER=xaaudit

# Enable audit logs to Amazon CloudWatch Logs
#Example
#XAAUDIT.AMAZON_CLOUDWATCH.ENABLE=true
#XAAUDIT.AMAZON_CLOUDWATCH.LOG_GROUP=ranger_audits
#XAAUDIT.AMAZON_CLOUDWATCH.LOG_STREAM={instance_id}
#XAAUDIT.AMAZON_CLOUDWATCH.FILE_SPOOL_DIR=/var/log/hive/audit/amazon_cloudwatch/spool

XAAUDIT.AMAZON_CLOUDWATCH.ENABLE=false
XAAUDIT.AMAZON_CLOUDWATCH.LOG_GROUP=NONE
XAAUDIT.AMAZON_CLOUDWATCH.LOG_STREAM_PREFIX=NONE
XAAUDIT.AMAZON_CLOUDWATCH.FILE_SPOOL_DIR=NONE
XAAUDIT.AMAZON_CLOUDWATCH.REGION=NONE

# End of V3 properties


#
#  Audit to HDFS Configuration
#
# If XAAUDIT.HDFS.IS_ENABLED is set to true, please replace tokens
# that start with __REPLACE__ with appropriate values
#  XAAUDIT.HDFS.IS_ENABLED=true
#  XAAUDIT.HDFS.DESTINATION_DIRECTORY=hdfs://__REPLACE__NAME_NODE_HOST:8020/ranger/audit/%app-type%/%time:yyyyMMdd%
#  XAAUDIT.HDFS.LOCAL_BUFFER_DIRECTORY=__REPLACE__LOG_DIR/hive/audit/%app-type%
#  XAAUDIT.HDFS.LOCAL_ARCHIVE_DIRECTORY=__REPLACE__LOG_DIR/hive/audit/archive/%app-type%
#
# Example:
#  XAAUDIT.HDFS.IS_ENABLED=true
#  XAAUDIT.HDFS.DESTINATION_DIRECTORY=hdfs://namenode.example.com:8020/ranger/audit/%app-type%/%time:yyyyMMdd%
#  XAAUDIT.HDFS.LOCAL_BUFFER_DIRECTORY=/var/log/hive/audit/%app-type%
#  XAAUDIT.HDFS.LOCAL_ARCHIVE_DIRECTORY=/var/log/hive/audit/archive/%app-type%
#
XAAUDIT.HDFS.IS_ENABLED=false
XAAUDIT.HDFS.DESTINATION_DIRECTORY=hdfs://__REPLACE__NAME_NODE_HOST:8020/ranger/audit/%app-type%/%time:yyyyMMdd%
XAAUDIT.HDFS.LOCAL_BUFFER_DIRECTORY=__REPLACE__LOG_DIR/hive/audit/%app-type%
XAAUDIT.HDFS.LOCAL_ARCHIVE_DIRECTORY=__REPLACE__LOG_DIR/hive/audit/archive/%app-type%

XAAUDIT.HDFS.DESTINTATION_FILE=%hostname%-audit.log
XAAUDIT.HDFS.DESTINTATION_FLUSH_INTERVAL_SECONDS=900
XAAUDIT.HDFS.DESTINTATION_ROLLOVER_INTERVAL_SECONDS=86400
XAAUDIT.HDFS.DESTINTATION_OPEN_RETRY_INTERVAL_SECONDS=60
XAAUDIT.HDFS.LOCAL_BUFFER_FILE=%time:yyyyMMdd-HHmm.ss%.log
XAAUDIT.HDFS.LOCAL_BUFFER_FLUSH_INTERVAL_SECONDS=60
XAAUDIT.HDFS.LOCAL_BUFFER_ROLLOVER_INTERVAL_SECONDS=600
XAAUDIT.HDFS.LOCAL_ARCHIVE_MAX_FILE_COUNT=10

#Solr Audit Provider
XAAUDIT.SOLR.IS_ENABLED=false
XAAUDIT.SOLR.MAX_QUEUE_SIZE=1
XAAUDIT.SOLR.MAX_FLUSH_INTERVAL_MS=1000
XAAUDIT.SOLR.SOLR_URL=http://localhost:6083/solr/ranger_audits

# End of V2 properties

#
# SSL Client Certificate Information
#
# Example:
# SSL_KEYSTORE_FILE_PATH=/etc/hive/conf/ranger-plugin-keystore.jks
# SSL_KEYSTORE_PASSWORD=none
# SSL_TRUSTSTORE_FILE_PATH=/etc/hive/conf/ranger-plugin-truststore.jks
# SSL_TRUSTSTORE_PASSWORD=none
#
# You do not need use SSL between agent and security admin tool, please leave these sample value as it is.
#
SSL_KEYSTORE_FILE_PATH=/etc/hive/conf/ranger-plugin-keystore.jks
SSL_KEYSTORE_PASSWORD=myKeyFilePassword
SSL_TRUSTSTORE_FILE_PATH=/etc/hive/conf/ranger-plugin-truststore.jks
SSL_TRUSTSTORE_PASSWORD=changeit

#
# Should Hive GRANT/REVOKE update XA policies?
#
# Example:
#     UPDATE_XAPOLICIES_ON_GRANT_REVOKE=true
#     UPDATE_XAPOLICIES_ON_GRANT_REVOKE=false
#
UPDATE_XAPOLICIES_ON_GRANT_REVOKE=true

#
# Custom component user
# CUSTOM_COMPONENT_USER=<custom-user>
# keep blank if component user is default
CUSTOM_USER=hadoop


#
# Custom component group
# CUSTOM_COMPONENT_GROUP=<custom-group>
# keep blank if component group is default
CUSTOM_GROUP=hadoop

3、页面配置

Service Name    hive_repo
Display Name    hive_repo
Description    --
Active Status    Enabled
Tag Service    hive_tag
Config Properties :
Username    hadoop  //随便填
Password    *****  //随便填
jdbc.driverClassName    org.apache.hive.jdbc.HiveDriver
jdbc.url    jdbc:hive2://node101.cc.local:2181,node102.cc.local:2181,node103.cc.local:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2
Common Name for Certificate    --
Add New Configurations :
tag.download.auth.users    hadoop
policy.download.auth.users    hadoop

注意:
1、填写好配置后,与HDFS和YARN不同,需要先保存。然后再点击编辑进入页面,再点击test来验证,不然会报错说rangerlookup没有操作权限。

Caused by: org.apache.hive.service.cli.HiveSQLException: Error while compiling statement: FAILED: HiveAccessControlException Permission denied: user [rangerlookup] does not have [USE] privilege on [Unknown resource!!]
2、不管页面中用户怎么配置,ranger-admin都是使用rangerlookup用户去连接hive

九、策略配置

1、建库

        已有测试用户test:test,并创建test@CC.LOCAL的主体,并生成test.keytab文件。
注意:Hive建库会在HDFS的/user/hive/warehouse目录创建对于databasename.db目录。目前/user/hive/warehouse目录为<drwxr-xr-x   - hadoop hadoop>,test用户没有该目录的写权限,如果允许test用户建库,则需要在ranger上为test用户配置/user/hive/warehouse目录的w权限

# su - test
# kinit -kt test.keytab test
# beeline -u "jdbc:hive2://node101.cc.local:2181,node102.cc.local:2181,node103.cc.local:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2"

0: jdbc:hive2://node101.cc.local:2181,node102> select current_user();
INFO  : Compiling command(queryId=hadoop_20240523171916_e2f9f27d-2650-42d4-b5fe-3d2bf4844869): select current_user()
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:_c0, type:string, comment:null)], properties:null)
INFO  : Completed compiling command(queryId=hadoop_20240523171916_e2f9f27d-2650-42d4-b5fe-3d2bf4844869); Time taken: 18.908 seconds
INFO  : Executing command(queryId=hadoop_20240523171916_e2f9f27d-2650-42d4-b5fe-3d2bf4844869): select current_user()
INFO  : Completed executing command(queryId=hadoop_20240523171916_e2f9f27d-2650-42d4-b5fe-3d2bf4844869); Time taken: 0.008 seconds
INFO  : OK
+-------+
|  _c0  |
+-------+
| test  |
+-------+
1 row selected (20.42 seconds)
0: jdbc:hive2://node101.cc.local:2181,node102> show databases;
INFO  : Compiling command(queryId=hadoop_20240523171424_db29902a-5df0-497b-b69c-e294648fdb82): show databases
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:database_name, type:string, comment:from deserializer)], properties:null)
INFO  : Completed compiling command(queryId=hadoop_20240523171424_db29902a-5df0-497b-b69c-e294648fdb82); Time taken: 0.032 seconds
INFO  : Executing command(queryId=hadoop_20240523171424_db29902a-5df0-497b-b69c-e294648fdb82): show databases
INFO  : Starting task [Stage-0:DDL] in serial mode
INFO  : Completed executing command(queryId=hadoop_20240523171424_db29902a-5df0-497b-b69c-e294648fdb82); Time taken: 0.334 seconds
INFO  : OK
+----------------+
| database_name  |
+----------------+
| default        |
| hadoophive     |
| testhive       |
+----------------+
3 rows selected (0.533 seconds)
0: jdbc:hive2://node101.cc.local:2181,node102> create database if not exists testhivetmp;
INFO  : Compiling command(queryId=hadoop_20240523171954_b88ede55-f197-4a14-bd79-fdeba2d74f6c): create database if not exists testhivetmp
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Returning Hive schema: Schema(fieldSchemas:null, properties:null)
INFO  : Completed compiling command(queryId=hadoop_20240523171954_b88ede55-f197-4a14-bd79-fdeba2d74f6c); Time taken: 0.242 seconds
INFO  : Executing command(queryId=hadoop_20240523171954_b88ede55-f197-4a14-bd79-fdeba2d74f6c): create database if not exists testhivetmp
INFO  : Starting task [Stage-0:DDL] in serial mode
INFO  : Completed executing command(queryId=hadoop_20240523171954_b88ede55-f197-4a14-bd79-fdeba2d74f6c); Time taken: 4.935 seconds
INFO  : OK
No rows affected (5.263 seconds)
0: jdbc:hive2://node101.cc.local:2181,node102> showdatabases;
Error: Error while compiling statement: FAILED: ParseException line 1:0 cannot recognize input near 'showdatabases' '<EOF>' '<EOF>' (state=42000,code=40000)
0: jdbc:hive2://node101.cc.local:2181,node102> show databases;
INFO  : Compiling command(queryId=hadoop_20240523172013_392938e7-2e9e-4d10-8352-c33aed0aa8f7): show databases
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:database_name, type:string, comment:from deserializer)], properties:null)
INFO  : Completed compiling command(queryId=hadoop_20240523172013_392938e7-2e9e-4d10-8352-c33aed0aa8f7); Time taken: 0.081 seconds
INFO  : Executing command(queryId=hadoop_20240523172013_392938e7-2e9e-4d10-8352-c33aed0aa8f7): show databases
INFO  : Starting task [Stage-0:DDL] in serial mode
INFO  : Completed executing command(queryId=hadoop_20240523172013_392938e7-2e9e-4d10-8352-c33aed0aa8f7); Time taken: 0.547 seconds
INFO  : OK
+----------------+
| database_name  |
+----------------+
| default        |
| hadoophive     |
| testhive       |
| testhivetmp    |
+----------------+
4 rows selected (1.222 seconds)

2、建表

0: jdbc:hive2://node101.cc.local:2181,node102> use testhivetmp;
INFO  : Compiling command(queryId=hadoop_20240523173510_10a22758-39aa-4b15-9b8d-c9291f85ae41): use testhivetmp
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Returning Hive schema: Schema(fieldSchemas:null, properties:null)
INFO  : Completed compiling command(queryId=hadoop_20240523173510_10a22758-39aa-4b15-9b8d-c9291f85ae41); Time taken: 0.378 seconds
INFO  : Executing command(queryId=hadoop_20240523173510_10a22758-39aa-4b15-9b8d-c9291f85ae41): use testhivetmp
INFO  : Starting task [Stage-0:DDL] in serial mode
INFO  : Completed executing command(queryId=hadoop_20240523173510_10a22758-39aa-4b15-9b8d-c9291f85ae41); Time taken: 0.19 seconds
INFO  : OK
No rows affected (0.621 seconds)
0: jdbc:hive2://node101.cc.local:2181,node102> show tables;
INFO  : Compiling command(queryId=hadoop_20240523173521_e141106b-df8a-410c-90bd-5af756a86fa8): show tables
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:tab_name, type:string, comment:from deserializer)], properties:null)
INFO  : Completed compiling command(queryId=hadoop_20240523173521_e141106b-df8a-410c-90bd-5af756a86fa8); Time taken: 0.192 seconds
INFO  : Executing command(queryId=hadoop_20240523173521_e141106b-df8a-410c-90bd-5af756a86fa8): show tables
INFO  : Starting task [Stage-0:DDL] in serial mode
INFO  : Completed executing command(queryId=hadoop_20240523173521_e141106b-df8a-410c-90bd-5af756a86fa8); Time taken: 0.152 seconds
INFO  : OK
+-----------+
| tab_name  |
+-----------+
+-----------+
No rows selected (0.516 seconds)
0: jdbc:hive2://node101.cc.local:2181,node102> create table stutmp(id int, name string);
INFO  : Compiling command(queryId=hadoop_20240523173627_fbce607a-d41f-4c80-ab21-f8b25c2f630e): create table stutmp(id int, name string)
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Returning Hive schema: Schema(fieldSchemas:null, properties:null)
INFO  : Completed compiling command(queryId=hadoop_20240523173627_fbce607a-d41f-4c80-ab21-f8b25c2f630e); Time taken: 0.282 seconds
INFO  : Executing command(queryId=hadoop_20240523173627_fbce607a-d41f-4c80-ab21-f8b25c2f630e): create table stutmp(id int, name string)
INFO  : Starting task [Stage-0:DDL] in serial mode
INFO  : Completed executing command(queryId=hadoop_20240523173627_fbce607a-d41f-4c80-ab21-f8b25c2f630e); Time taken: 3.185 seconds
INFO  : OK
No rows affected (3.561 seconds)
0: jdbc:hive2://node101.cc.local:2181,node102> show tables;
INFO  : Compiling command(queryId=hadoop_20240523173634_fc2276ca-2af2-482a-874f-e30b06b8a80f): show tables
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:tab_name, type:string, comment:from deserializer)], properties:null)
INFO  : Completed compiling command(queryId=hadoop_20240523173634_fc2276ca-2af2-482a-874f-e30b06b8a80f); Time taken: 0.242 seconds
INFO  : Executing command(queryId=hadoop_20240523173634_fc2276ca-2af2-482a-874f-e30b06b8a80f): show tables
INFO  : Starting task [Stage-0:DDL] in serial mode
INFO  : Completed executing command(queryId=hadoop_20240523173634_fc2276ca-2af2-482a-874f-e30b06b8a80f); Time taken: 0.331 seconds
INFO  : OK
+-----------+
| tab_name  |
+-----------+
| stutmp    |
+-----------+
1 row selected (0.829 seconds)

 3、插入数据

注意:Hive在操作数据时会通过mapreduce的方式执行操作,操作时在HDFS上的/tmp/hadoop-yarn/staging/user目录下写入,但目前/tmp/hadoop-yarn目录为<drwxrwx---   - hadoop hadoop>,/tmp/hadoop-yarn/staging目录为<drwxrwx---   - hadoop hadoop>,test用户无法访问操作这两层目录,所以需要在ranger上为test用户配置/tmp/hadoop-yarn和/tmp/hadoop-yarn/staging目录的rwx权限

0: jdbc:hive2://node101.cc.local:2181,node102> insert into stutmp values(1,"sstmp");
INFO  : Compiling command(queryId=hadoop_20240523174330_52af1f7d-8ca3-41dc-b935-fa5b90677210): insert into stutmp values(1,"sstmp")
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:col1, type:int, comment:null), FieldSchema(name:col2, type:string, comment:null)], properties:null)
INFO  : Completed compiling command(queryId=hadoop_20240523174330_52af1f7d-8ca3-41dc-b935-fa5b90677210); Time taken: 4.544 seconds
INFO  : Executing command(queryId=hadoop_20240523174330_52af1f7d-8ca3-41dc-b935-fa5b90677210): insert into stutmp values(1,"sstmp")
WARN  : Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
INFO  : Query ID = hadoop_20240523174330_52af1f7d-8ca3-41dc-b935-fa5b90677210
INFO  : Total jobs = 3
INFO  : Launching Job 1 out of 3
INFO  : Starting task [Stage-1:MAPRED] in serial mode
INFO  : Number of reduce tasks determined at compile time: 1
INFO  : In order to change the average load for a reducer (in bytes):
INFO  :   set hive.exec.reducers.bytes.per.reducer=<number>
INFO  : In order to limit the maximum number of reducers:
INFO  :   set hive.exec.reducers.max=<number>
INFO  : In order to set a constant number of reducers:
INFO  :   set mapreduce.job.reduces=<number>
INFO  : number of splits:1
INFO  : Submitting tokens for job: job_1716428726877_0004
INFO  : Executing with tokens: [Kind: HDFS_DELEGATION_TOKEN, Service: ha-hdfs:ccns, Ident: (token for test: HDFS_DELEGATION_TOKEN owner=test, renewer=hadoop, realUser=hadoop/node102.cc.local@CC.LOCAL, issueDate=1716457418882, maxDate=1717062218882, sequenceNumber=9, masterKeyId=357), Kind: HIVE_DELEGATION_TOKEN, Service: HiveServer2ImpersonationToken, Ident: 00 04 74 65 73 74 04 74 65 73 74 20 68 61 64 6f 6f 70 2f 6e 6f 64 65 31 30 32 2e 63 63 2e 6c 6f 63 61 6c 40 43 43 2e 4c 4f 43 41 4c 8a 01 8f a4 bf 3a 4e 8a 01 8f c8 cb be 4e 01 01]
INFO  : The url to track the job: http://node101.cc.local:8088/proxy/application_1716428726877_0004/
INFO  : Starting Job = job_1716428726877_0004, Tracking URL = http://node101.cc.local:8088/proxy/application_1716428726877_0004/
INFO  : Kill Command = /opt/hadoop/hadoop-3.3.4/bin/mapred job  -kill job_1716428726877_0004
INFO  : Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
INFO  : 2024-05-23 17:44:34,802 Stage-1 map = 0%,  reduce = 0%
INFO  : 2024-05-23 17:45:14,175 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 4.13 sec
INFO  : 2024-05-23 17:45:40,414 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 7.86 sec
INFO  : MapReduce Total cumulative CPU time: 7 seconds 860 msec
INFO  : Ended Job = job_1716428726877_0004
INFO  : Starting task [Stage-7:CONDITIONAL] in serial mode
INFO  : Stage-4 is selected by condition resolver.
INFO  : Stage-3 is filtered out by condition resolver.
INFO  : Stage-5 is filtered out by condition resolver.
INFO  : Starting task [Stage-4:MOVE] in serial mode
INFO  : Moving data to directory hdfs://ccns/user/hive/warehouse/testhivetmp.db/stutmp/.hive-staging_hive_2024-05-23_17-43-30_901_2166959576750558632-1/-ext-10000 from hdfs://ccns/user/hive/warehouse/testhivetmp.db/stutmp/.hive-staging_hive_2024-05-23_17-43-30_901_2166959576750558632-1/-ext-10002
INFO  : Starting task [Stage-0:MOVE] in serial mode
INFO  : Loading data to table testhivetmp.stutmp from hdfs://ccns/user/hive/warehouse/testhivetmp.db/stutmp/.hive-staging_hive_2024-05-23_17-43-30_901_2166959576750558632-1/-ext-10000
INFO  : Starting task [Stage-2:STATS] in serial mode
INFO  : MapReduce Jobs Launched: 
INFO  : Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 7.86 sec   HDFS Read: 15232 HDFS Write: 245 SUCCESS
INFO  : Total MapReduce CPU Time Spent: 7 seconds 860 msec
INFO  : Completed executing command(queryId=hadoop_20240523174330_52af1f7d-8ca3-41dc-b935-fa5b90677210); Time taken: 134.102 seconds
INFO  : OK
No rows affected (138.997 seconds)
0: jdbc:hive2://node101.cc.local:2181,node102> select * from stutmp;
INFO  : Compiling command(queryId=hadoop_20240523175530_ace53296-91f5-4199-8d40-55a6197f3b7b): select * from stutmp
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:stutmp.id, type:int, comment:null), FieldSchema(name:stutmp.name, type:string, comment:null)], properties:null)
INFO  : Completed compiling command(queryId=hadoop_20240523175530_ace53296-91f5-4199-8d40-55a6197f3b7b); Time taken: 3.206 seconds
INFO  : Executing command(queryId=hadoop_20240523175530_ace53296-91f5-4199-8d40-55a6197f3b7b): select * from stutmp
INFO  : Completed executing command(queryId=hadoop_20240523175530_ace53296-91f5-4199-8d40-55a6197f3b7b); Time taken: 0.001 seconds
INFO  : OK
+------------+--------------+
| stutmp.id  | stutmp.name  |
+------------+--------------+
| 1          | sstmp        |
+------------+--------------+
1 row selected (3.624 seconds)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1696196.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

U盘引导盘制作Rufus v4.5.2180

软件介绍 Rufus小巧实用开源免费的U盘系统启动盘制作工具和格式化U盘的小工具&#xff0c;它可以快速将ISO镜像文件制作成可引导的USB启动安装盘&#xff0c;支持Windows或Linux启动&#xff0c;堪称写入镜像速度最快的U盘系统制作工具。 软件截图 更新日志 github.com/pbat…

Digital Image Processing System(DIPS)

数字图像处理系统 Digital Image Processing System&#xff08;DIPS&#xff09; 早前版本&#xff1a; ​​​​​​​DIPS_YTPC OCR-CSDN博客

(南京观海微电子)——TFT LCM的作用

VCOM介绍 VCOM是液晶分子偏转的参考电压 &#xff0c;要求要稳定&#xff0c;对液晶显示有直接影响&#xff0c;具体的屏不同的话 也是不同的。 电压的具体值是根据输入的数据以及Vcom电压大小来确定的&#xff0c;用来显示各种不同灰阶&#xff0c;也就是实现彩色显示GAMMA简…

【知识蒸馏】deeplabv3 logit-based 知识蒸馏实战,对剪枝的模型进行蒸馏训练

本文将对【模型剪枝】基于DepGraph(依赖图)完成复杂模型的一键剪枝 文章中剪枝的模型进行蒸馏训练 一、逻辑蒸馏步骤 加载教师模型定义蒸馏loss计算蒸馏loss正常训练 二、代码 1、加载教师模型 教师模型使用未进行剪枝&#xff0c;并且已经训练好的原始模型。 teacher_mod…

Strategy设计模式

Strategy设计模式举例。 看图&#xff1a; 代码实现&#xff1a; #include <iostream>using namespace std;class FlyBehavior { public:virtual void fly() 0; };class QuackBehavior { public:virtual void quack() 0; };class FlyWithWings :public FlyBehavior …

新人攻略:避开这3大坑,让老员工主动带你飞!

进入职场的新人们&#xff0c;常常会感到困惑和挑战。他们可能会发现自己在与老员工的交流中遇到难题&#xff0c;甚至发现老员工并不愿意花费时间和精力去指导他们。这背后的原因是什么呢&#xff1f;又该如何改善这一现象呢&#xff1f;本文将从新员工的角度出发&#xff0c;…

无人机飞手:ASFC无人机和航模爱好者证书详解

ASFC无人机和航模爱好者证书是由中国航空运动协会&#xff08;ASFC&#xff09;颁发的一种无人机操作资格认证。这种证书在无人机和航模爱好者群体中享有广泛的认可度&#xff0c;并被视为操作无人机的一种重要资质。 ASFC证书的定义和用途十分明确。它是民航局颁发的民用无人驾…

C++中的继承详解

1.继承的概念及定义 1.1继承的概念 继承(inheritance)机制是面向对象程序设计使代码可以复用的最重要的手段&#xff0c;它允许程序员在保 持原有类特性的基础上进行扩展&#xff0c;增加功能&#xff0c;这样产生新的类&#xff0c;称派生类。继承呈现了面向对象 程序设计的…

产品数据特性驱动设计

一、什么是数据特性 一个产品在宏观的视角下,是不同功能模块的有机组合;在微观的视角上,是千丝万缕的数据连接。 基于模块化设计思想,对产品进行业务化梳理,对业务进行模块化拆分出功能模块,功能模块就是产品的“逻辑”,而功能中的数据就是“特性”。 业务:比较固定…

马尔可夫和比奈梅-切比雪夫不等式

目录 一、说明 二、自然界的极限性 三、马尔可夫不等式 3.1 最早提出 3.2 马尔可夫不等式的证明 四、 Bienaym–Chebyshev 不等式 4.1 简要回顾Bienaym–Chebyshev 不等式的历史 4.2 Bienaym — Chebyshev 不等式的证明 五、弱大数定律&#xff08;及其证明&#xff09;…

C语言——⾼位优先与低位优先的不同之处是什么?

一、问题 C语⾔的最⼤特⾊就是可移植性好。根据机器类型的不同&#xff0c;⾼位优先与低位优先也不同。那么&#xff0c;最好的可移植的 C 程序应该同时适⽤这两种类型的计算机。下⾯了解⼀下⾼位优先与低位优先的不同之处。 二、解答 所谓的⾼位优先&#xff0c;就是最低的地…

实现排行榜之Mysql的 OrderBy方法

排行榜之Mysql OrderBy实现 1、排行榜系统的功能点 数据收集与计算 排名规则 实时性 可视化展示 周期性更新 2、排行榜系统基本功能要素 MySQL实现方案 数据量较小&#xff0c;业务场景比较简单。可直接使用 新建表 CREATE TABLE leaderboard( id BIGINT UNSIGNED NOT …

21.Happens-Before原则

文章目录 Happens-Before原则1.Happens-Before规则介绍2.规格介绍2.1.顺序性规则(as-if-serial)2.2.volatile规则2.3.传递性规则2.4.监视锁规则2.5.start规则2.6.join()规则 Happens-Before原则 JVM内存屏障指令对Java开发工程师是透明的&#xff0c;是JMM对JVM实现的一种规范和…

基于51单片机温度报警系统—数码管显示

基于51单片机温度报警系统 &#xff08;仿真&#xff0b;程序&#xff0b;原理图&#xff0b;设计报告&#xff09; 功能介绍 具体功能&#xff1a; 1.DS18B20采集温度&#xff0c;数码管显示温度&#xff1b; 2.温度测量范围&#xff1a;0-99度&#xff1b; 3.当温度低于…

Qt for android 获取USB设备列表(二)JNI方式 获取

简介 基于上篇 [Qt for android 获取USB设备列表&#xff08;一&#xff09;Java方式 获取]&#xff0c; 这篇就纯粹多了&#xff0c; 直接将上篇代码转换成JNI方式即可。即所有的设备连接与上篇一致。 (https://listentome.blog.csdn.net/article/details/139205850) 关键代码…

FPGA实现多路并行dds

目录 基本原理 verilog代码 仿真结果​ 基本原理 多路并行dds&#xff0c;传统DDS的局限性在于输出频率有限。根据奈奎斯特采样定理&#xff0c;单路DDS的输出频率应小于系统时钟频率的一半。但是在很多地方&#xff0c;要使采样率保持一致&#xff0c;所以&#xff0c;为了…

逻辑这回事(一)----FPGA安全编码规范

安全编码的背景、定义 FPGA攻击方式和攻击目的 安全编码价值 2020年4月&#xff0c;来自德国的研究者披露了一个名为“StarBleed”的漏洞&#xff0c;当时引起了业内一片轰动。这种漏洞存在于赛灵思的Virtex、Kintex、Artix、Spartan 等全部7系列FPGA中。通过这个漏洞&#…

【JavaWeb】Day83.Maven高级——分模块设计与开发

分模块设计与开发 介绍 所谓分模块设计&#xff0c;顾名思义指的就是我们在设计一个 Java 项目的时候&#xff0c;将一个 Java 项目拆分成多个模块进行开发。 1). 未分模块设计的问题 如果项目不分模块&#xff0c;也就意味着所有的业务代码是不是都写在这一个 Java 项目当中…

C语言—深入理解指针(4)

1.回调函数 回调函数就是一个通过函数指针调用的函数。 如果你把函数的指针&#xff08;地址&#xff09;作为参数传递给另一个函数&#xff0c;当这个指针被用来调用其所指向的函数时&#xff0c;被调用的函数就是回调函数。回调函数不是由该函数的实现方直接调用&#xff0…

[Algorithm][动态规划][简单多状态DP问题][按摩师][打家劫舍Ⅱ][删除并获得点数][粉刷房子]详细讲解

目录 1.按摩师1.题目链接2.算法思路详解3.代码实现 2.打家劫舍 II1.题目链接2.算法思路详解3.代码实现 3.删除并获得点数1.题目链接2.算法思路详解3.代码实现 4.粉刷房子1.题目链接2.算法思路详解3.代码实现 1.按摩师 1.题目链接 按摩师 2.算法思路详解 思路&#xff1a; 确…