【带你学AI】基于PP-OCR和ErnieBot的字幕提取和智能视频问答

news2024/11/19 2:31:35

前言

本次分享将带领大家从 0 到 1 完成一个基于 OCR 和 LLM 的视频字幕提取和智能视频问答项目,通过 OCR 实现视频字幕提取,采用 ErnieBot 完成对视频字幕内容的理解,并回答相关问题,最后采用 Gradio 搭建应用。本项目旨在帮助初学者快速搭建入门级 AI 应用,并分享开发过程中遇到的一些坑,希望对感兴趣的同学提供一点帮助。

项目背景和目标

背景:

光学字符识别(Optical Character Recognition,简称 OCR)是一种将图像中的文字转换为机器编码文本的过程。通常一个 OCR 任务的处理流程如下图所示:


PP-OCR 是百度面向产业应用提供的 OCR 解决方案,底层采用的是两阶段 OCR 算法,即检测模型+识别模型的组成方式,其处理流程包括如下几个步骤:

而视频字幕提取就是对视频中的每帧图像提取出其中的字幕文字。

大语言模型(LLM,Large Language Model)是一种先进的自然语言处理技术,当前主流的 LLM 包括 GPTs、百度文心一言、阿里通义千问、字节豆包等,而 ErnieBot 正是基于百度文心一言的智能体框架。基于提取的视频字幕,借助 LLM 强大的语义理解能力,我们可以完成很多有意思的任务,比如让 LLM 帮我们提取视频的关键信息,甚至是基于视频回答我们的问题,减轻当前大模型常见的“幻觉”-胡说八道,比如下面这张图:

目标:

  • 掌握如何用 paddlepaddle 深度学习框架搭建一个文本识别模型;
  • 掌握文本识别模型架构的设计原理以及构建流程;
  • 掌握如何利用已有框架快速搭建应用,满足实际应用需求;

百度 AI Studio 平台

本次实验将采用 AI Studio 实训平台中的免费 GPU 资源,在平台注册账号后,点击创建项目-选择 NoteBook 任务,然后添加数据集,如下图所示,完成项目创建。启动环境可以自行选择 CPU 资源 or GPU 资源,创建任务每天有 8 点免费算力,推荐大家使用 GPU 资源进行模型训练,这样会大幅减少模型训练时长。

创建项目的方式有两种:

  • 一是在 AI Studio 实训平台参考如下方式,新建项目。

  • 二是直接 fork 一个平台上的已有项目,比如本次实验,可以选择【飞桨 AI 实战】实验 6-基于 PP-OCR 和 ErnieBot 的智能视频问答的最新版本,然后点击 fork,成功后会在自己账户下新建一个项目副本,其中已经挂载了源项目自带的数据集和本次项目用到的核心代码。

为了快速跑通项目流程,建议直接 fork 源项目。

从零开始实战

1 基础:动手跑通 CRNN 文本识别任务

核心代码在:core/ 文件夹下

背景:CRNN 是较早被提出也是目前工业界应用较多的文本识别方法。本节将详细介绍如何基于 PaddleOCR 完成 CRNN 文本识别模型的搭建、训练、评估和预测。数据集采用 CaptchaDataset 中文本识别部分的 9453 张图像,其中前 8453 张图像在本案例中作为训练集,后 1000 张则作为测试集。

1.1 数据准备

step 1:解压缩数据

# 打开终端
# 解压子集  -d 指定解压缩的路径,会在data0文件夹下生成
unzip data/data57285/OCR_Dataset.zip -d data0/
# 查看文件夹中文件数量
ls data0/OCR_Dataset/|wc -l

step 2: 准备数据部分代码

# 数据读取类在 reader.py, 可以执行如下脚本查看训练数据
python reader.py

可视化结果如下:

1.2 模型构建

本次实验我们将采用最简单的网络架构来搭建 CRNN 网络 并构建损失函数 CTCLoss

step 1: 搭建 CRNN 网络

# 定义模型类
net.py

step 2: 定义损失函数 CTCLoss

# 定义 loss, 位于 net.py
class CTCLoss(paddle.nn.Layer):
    def __init__(self, batch_size):
        """
        定义CTCLoss
        """
        super().__init__()
        self.batch_size = batch_size

    def forward(self, ipt, label):
        input_lengths = paddle.full(shape=[self.batch_size],fill_value=LABEL_MAX_LEN + 4,dtype= "int64")
        label_lengths = paddle.full(shape=[self.batch_size],fill_value=LABEL_MAX_LEN,dtype= "int64")
        # 按文档要求进行转换dim顺序
        ipt = paddle.tensor.transpose(ipt, [1, 0, 2])
        # 计算loss
        loss = paddle.nn.functional.ctc_loss(ipt, label, input_lengths, label_lengths, blank=10)
        return loss

1.3 模型训练

编写训练脚本 train.py 如下,主要是定义好数据集、模型,配置训练相关参数:

# 运行训练脚本
python train.py

训练过程如下图所示:

1.4 模型预测

编写预测脚本 predict.py

# 运行预测脚本
python predict.py

调用模型预测函数:得到生成图像的可视化结果

2 进阶:基于PP-OCR和ErnieBot搭建应用

核心代码在:ocr-bot/ 文件夹下

2.1 环境准备

本项目主要用到了以下安装包,可以采用 pip install -r requirements.txt 一键安装。

paddlepaddle
paddleocr==2.7.0
erniebot
moviepy
gradio

2.2 需求分析

本项目主要需要完成两个功能:视频字幕提取智能视频问答

视频字幕提取

  • 中文视频能提取出其中的字幕
  • 英文视频能自动生成中文字幕
  • 生成 SRT 格式的字幕文件
  • 将字幕文件内嵌到视频中去

智能视频问答

  • 提取视频中的关键信息,完成视频摘要
  • 根据字幕信息,回答用户针对视频的提问
  • 根据字幕信息,定位关键信息对应的时间片段

2.2 核心功能实现

2.2.1 基于 PP-OCR 完成字幕提取

采用 opencv 读取视频中的图片,引入 paddleocr 包实现图片中的字幕提取,同时记录时间信息,为了快速完成 demo 展示,这里采用每秒抽取一帧图像,且只用图像底部包含字幕的部分进行文字识别,核心代码如下:

def get_video_ocr(vid_path='/home/aistudio/demo/trim.mp4'):
    ocr = PaddleOCR(use_angle_cls=True, debug=False)
    src_video = cv2.VideoCapture(vid_path)
    fps = int(src_video.get(cv2.CAP_PROP_FPS))
    total_frame = int(src_video.get(cv2.CAP_PROP_FRAME_COUNT)) # 计算视频总帧数
    save_text = []
    for i in tqdm(range(total_frame)):    
        success, frame = src_video.read()
        if i % (fps) == 0 and success:
            result = ocr.ocr(frame[-120:-30, :], cls=True)[0] # 只抽取下半部分图片
            if len(result)> 0: 
                res = result[0][1][0]
                start_time = i//fps
                save_text.append([start_time, res])
    # 将数据转换为字典,合并重复的字幕
    subtitles = {}
    for (time, text) in save_text:
        if text in subtitles:
            subtitles[text].append(time)
        else:
            subtitles[text] = [time]
    subtitle_path = vid_path.replace('.mp4', '.json')
    print(f"字幕提取完成,结果已保存至{subtitle_path}")
    with open(subtitle_path, 'w', encoding='utf-8') as f:
        json.dump(subtitles, f, ensure_ascii=False)
    return '\n'.join(list(subtitles.keys())), subtitle_path
2.2.2 基于 百度翻译API 完成字幕翻译

为了帮助大家对原版英文视频的理解,可以将原始的英文字幕翻译成中文,这里选择直接调用 百度翻译API,开发者每个月都有一定的免费额度。注意将其中的 API_KEY 和 SECRET_KEY 换成你自己的。

def get_access_token():
    API_KEY = "j5HodGgjG2iQ87MenXrw2hot"
    SECRET_KEY = "Ea1AYc1kjzv2MNExEZeMAEwzanDDlsdK"
    url = "https://aip.baidubce.com/oauth/2.0/token"
    params = {"grant_type": "client_credentials", "client_id": API_KEY, "client_secret": SECRET_KEY}
    return str(requests.post(url, params=params).json().get("access_token"))

def translation(content, from_lang="en", to_lang="zh"):
    url = "https://aip.baidubce.com/rpc/2.0/mt/texttrans/v1?access_token=" + get_access_token()
    payload = json.dumps({
        "from": from_lang,
        "to": to_lang,
        "q": content
    })
    headers = {
        'Content-Type': 'application/json',
        'Accept': 'application/json'
    }
    response = requests.request("POST", url, headers=headers, data=payload)
    i = response.text.find("dst")+6
    j = response.text.find("src")-3
    return response.text[i:j]
    
def translate_subtitles(subtitle_path, from_lang="en", to_lang="zh"):
    new_subtitles = {}
    subtitles = json.load(open(subtitle_path, 'r'))
    for text, value in subtitles.items():
        trans_text = translation(text, from_lang, to_lang)
        new_subtitles[trans_text] = value
    subtitle_path = subtitle_path.replace('.json', f'_{to_lang}.json')
    print(f"字幕翻译完成,结果已保存至{subtitle_path}")
    with open(subtitle_path, 'w', encoding='utf-8') as f:
        json.dump(new_subtitles, f, ensure_ascii=False)
    return '\n'.join(list(new_subtitles.keys())), subtitle_path
2.2.3 生成 SRT 格式的字幕文件

视频文件中最简单、最常见的外挂字幕格式是SRT(SubRip Text)。SRT字幕通常以srt作为后缀,作为外挂字幕,多数主流播放器都支持直接加载并显示SRT字幕。通常每个字幕段有四部分构成:

  • 字幕序号:从 1 开始(而不是 0)
  • 字幕显示的起始时间
    • 格式为hour:minute:second,millisecond --> hour:minute:second,millisecond
  • 字幕内容(可多行)
  • 空白行(表示本字幕段的结束)

一个简单的例子如下:

1
0:00:00,000 --> 0:00:02,000
可能没有意识到。
2
0:00:02,000 --> 0:00:03,000
他们怎么会知道我们总有一天

让我们编写代码将提取的字幕改写成 SRT 格式的字幕文件:

def generate_subtitles(subtitle_path, save_path='./subtitles.srt'):
    srt_content = ''
    subtitles = json.load(open(subtitle_path, 'r'))
    for index, (text, times) in enumerate(subtitles.items()):
        # SRT文件的索引从1开始
        srt_index = index + 1
        # 格式化时间戳
        start_time = "%s,%03d" % (timedelta(seconds=times[0]), 0 * 100)
        end_time = "%s,%03d" % (timedelta(seconds=times[-1]+1), 0 * 100)
        time_str = f"{start_time} --> {end_time}"
        # 将字幕合并为一个字符串,并用逗号分隔
        # 构建SRT条目
        srt_entry = f"{srt_index}\n{time_str}\n{text}\n"
        srt_content += srt_entry
    # 写入SRT文件
    with open(save_path, 'w', encoding='utf-8') as file:
        file.write(srt_content)
    return srt_content
2.2.4 基于 moviepy 实现视频拼接

注意 moviepy 实现视频拼接需要安装 imagemagick。在 AIStudio 的 Linux 环境中没有 sudo 权限,因此无法安装 imagemagick,如果要实现视频拼接,需要大家移步到自己本地电脑运行。Linux 下一键安装 imagemagick:

sudo apt-get install imagemagick

如果 imagemagick 安装没问题,那么就可以实现将翻译后的中文字幕添加到视频中。这里给出示例代码实现:

def add_subtitles(video_path, subtitle_path, output_path='./video_with_subtitles.mp4'):
    # 加载视频文件
    video = VideoFileClip(video_path)
    width, height = video.w, video.h
    subtitles = json.load(open(subtitle_path, 'r'))
    trans_text = []
    for text, dura in subtitles.items():
        start_time = float(dura[0])
        end_time = float(dura[-1]+1)
        duration = end_time - start_time
        text = TextClip(text, fontsize=20, size=(width-20, 25),
                        align='center', color='white').set_position((10,height-40)).set_duration(duration).set_start(start_time)
        trans_text.append(text)
    video = CompositeVideoClip([video, *trans_text])
    video.write_videofile(output_path)
2.2.5 基于 ErnieBot 实现视频问答

ERNIE Bot 为开发者提供了便捷接口,可以轻松调用文心大模型的文本创作、通用对话、语义向量及AI作图等基础功能。

这里仅使用通用对话接口,你只需要将字幕文件(srt_content)提示词(prompt_content)你的问题(user_content)准备就可以了,示例代码如下:

import erniebot
erniebot.api_type = 'aistudio'
erniebot.access_token = '7d8bcc8494fb95e9059bae34856c3a40daaf8671' # 注意替换成自己的

def chat_with_bot(srt_content, prompt_content, user_content):
    if not srt_content:
        return "请先点击👂生成srt格式字幕"
    messages =[{'role': 'user', 'content': f'{srt_content} {prompt_content} {user_content}'}]
    response = erniebot.ChatCompletion.create(
        model='ernie-3.5',
        messages=messages,
    )
    res = response.get_result()
    # print(res)
    return res

注意这里的erniebot.access_token可以在 AIStudio 的个人中心获取(如下图所示),每个新用户都有免费额度。

2.3 Gradio前端界面实现

本次实验同样还是基于 Gradio 搭建一个简单的前端应用,将上述实现的功能集成进来。具体界面逻辑如下:

def launch():
    theme = gr.Theme.load("theme.json")
    with gr.Blocks(theme=theme) as demo:
        gr.Markdown(top_md)
        with gr.Row():
            with gr.Column():
                video_input = gr.Video(label="视频输入 | Video Input")
                with gr.Row():
                    gr.Examples(['zh.mp4'],
                                [video_input],
                                label='中文示例视频 | Chinese Demo Video')
                    gr.Examples(['en.mp4'],
                                [video_input],
                                label='英文示例视频 | English Demo Video')
                with gr.Row():
                    recog_button = gr.Button("👂 识别字幕", variant="primary")
                    recog_button2 = gr.Button("👂英文->中文")
                srt_button = gr.Button("👂生成srt格式字幕", variant="primary")
            with gr.Column():
                with gr.Tab("🤖 PP-OCR视频字幕"):
                    
                    with gr.Row():
                        video_text_ori = gr.Textbox(label="📖 原始字幕内容", lines=8)
                        video_text_tra = gr.Textbox(label="📖 翻译字幕内容", lines=8)
                    video_text_path = gr.Textbox(label="字幕地址", visible=False)
                    video_text_srt = gr.Textbox(label="✏️ SRT字幕内容", lines=8)
                with gr.Tab("🧠 ErnieBot视频智能问答"):
                    with gr.Column():
                        prompt_head = gr.Textbox(label="Prompt", value=("你是一个视频分析助手,基于输入视频的srt字幕,回答我的问题"))
                        prompt_user = gr.Textbox(label="User", value=("我的问题是:"))
                        llm_button =  gr.Button("Enrie bot推理", variant="primary")
                        llm_result = gr.Textbox(label="Enrie bot 回答", lines=8)
            recog_button.click(get_video_ocr,
                            inputs=video_input,
                            outputs=[video_text_ori, video_text_path])
            recog_button2.click(translate_subtitles,
                                inputs=video_text_path,
                                outputs=[video_text_tra, video_text_path])
            srt_button.click(generate_subtitles,
                            inputs=video_text_path,
                            outputs=video_text_srt)
            llm_button.click(chat_with_bot,
                            inputs=[video_text_srt, prompt_head, prompt_user],
                            outputs=llm_result)
    demo.launch(server_name='0.0.0.0', server_port=8080)

在 AIStudio 的云环境中启动应用:

python demo.py


如果你是在 AIStudio 的 CodeLab 中启动应用的话,本地浏览器中是无法访问这个地址的,那么如何访问这个应用呢?

下面介绍两种方式:

方式一:

参考 AIStudio 的项目服务部署官方文档,采用url拼接的方式:Codelab项目链接/api_serving/<user_port>/

举个例子:比如我的Codelab地址是:

https://aistudio.baidu.com/bd-cpu-01/user/226606/7892508/home#vscode

那么在浏览器中打开如下链接即可访问你启动的 Gradio 应用:

https://aistudio.baidu.com/bd-cpu-01/user/226606/7892508/api_serving/8080/

如果你打开后的界面如下图所示,和本文前面展示的界面相比,不符合预期。什么原因? F12 打开 Chrome 开发者工具,发现是因为加载本地文件失败了(比如这里的前端样式和示例视频),目前还没找到很好的解决方案。

方式二:

为此,我们选择在 Codelab 的 Notebook 界面中进行前端展示。在Notebook 界面中进行前端展示,需要xx.gradio.py格式的文件,为此可以将demo.py复制一份命名为demo.gradio.py,如下图所示:

这里有几点坑,大家注意避开:

  • 在 demo.launch()中不要指定 8080 端口
  • 如果依然出现上述 css 文件加载不出来,导致界面显示有问题,换一台开发机试试吧,笔者亲测有效。
  • 需要在初始 python 环境中安装项目依赖包:pip install -r requirements.txt,因为xx.gradio.py是在下面这个python环境中启动的:

此外,还可以选择在本地 Linux 环境中运行项目,完美避开上述各种坑。

总结

至此,我们共同走完了一个完整的视频问答项目,从基础的动手跑通 CRNN 文本识别任务,再到应用开发和部署,旨在帮助初学者快速入门 OCR 相关技术并搭建一个简单的应用。

本系列的后续文章将沿袭这一思路,继续分享更多采用 Paddle 深度学习框架服务更多产业应用的案例。如果对你有帮助,欢迎 关注 收藏 支持~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1692301.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

UE5 像素流web 交互2

进来点个关注不迷路谢谢&#xff01; ue 像素流交互多参数匹配 主要运用像素流的解析json 状态&#xff1a; 测试结果&#xff1a; 浏览器控制台&#xff1a; 接下来编写事件传递 关注下吧&#xff01;

C语言 变量的存储类型

今天 我们来说变量的存储类型 变量的存储类型是指系统为变量分配存储区域的方式。 决定着变量存储空间在哪里分配&#xff0c;和变量的生存期、作用域存在着一定联系。 动态存储 函数调用发生时系统根据函数定义的需要动态为其分配的一个栈区&#xff0c;函数调用结束时释放…

刷代码随想录有感(76):回溯算法——全排列

题干&#xff1a; 代码&#xff1a; class Solution { public:vector<int> tmp;vector<vector<int>> res;void backtracking(vector<int> nums, vector<int> used){if(tmp.size() nums.size()){res.push_back(tmp);return;}for(int i 0; i &l…

【Linux】POSIX线程库——线程控制

目录 1.线程创建方法 例&#xff1a;多线程创建 2.线程终止 2.1 return nulptr; 2.2 pthread_exit(nullptr); 3. 线程等待 3.1 等待原因 3.2 等待方法 线程终止的返回值问题 4.线程取消 5. 线程分离 5.1 分离原因 5.2 分离方法 6.封装线程 用的接口是POSIX线程库…

(Java企业 / 公司项目)配置Linux网络-导入虚拟机

公司给了我一个IP地址 &#xff0c;提供了一个虚拟机或者自己搭建虚拟机&#xff0c;还有提供登录的账号密码 可以查看我之前的文章 VMware Workstation Pro 17虚拟机超级详细搭建&#xff08;含redis&#xff0c;nacos&#xff0c;docker, rabbitmq&#xff0c;sentinel&…

Ribbon负载均衡(自己总结的)

文章目录 Ribbon负载均衡负载均衡解决的问题不要把Ribbon负载均衡和Eureka-Server服务器集群搞混了Ribbon负载均衡代码怎么写ribbon负载均衡依赖是怎么引入的&#xff1f; Ribbon负载均衡 负载均衡解决的问题 首先Ribbon负载均衡配合Eureka注册中心一块使用。 在SpringCloud…

学习笔记——STM32F103的V3版本——3*3矩阵键盘控制数码管

一.硬件 1.数码管 2.3*3的矩阵键盘&#xff08;自己做的模块&#xff08;手残党一枚&#xff09;&#xff09; 3.总体连接 二.在Keil5中的部分软代码 test.c中&#xff1a; #include "sys.h" #include "usart.h" #include "delay.h" #include …

1099: 希尔排序算法实现

解法&#xff1a; 希尔增量选定n/2&#xff0c; #include<iostream> #include<vector> using namespace std; int main() {int n;cin >> n;vector<int> vec(n);for (int i 0; i < n; i) cin >> vec[i];int d n / 2;for (int i 0; i <…

大摩:AI PC渗透率到2028年将达65%,联想和戴尔是最大受益者

报告预计&#xff0c;当AI PC的渗透率在2025年达到20%时&#xff0c;PC出货量将加速增长&#xff1b;微软的“CopilotPC”将成为AI PC第一个“杀手级应用”。 报告正文 从苹果M4芯片、高通骁龙X的发布&#xff0c;再到微软推出重磅“CopilotPC”&#xff0c;AI PC逐渐成为市场…

AI应用案例:服务器智能分析管理系统

服务器硬件配置、性能状态、所运行的应用系统等信息分散于多个不同的信息管理系统。人为查询判断现有的服务器资源是否满足用户需求&#xff0c;且需结合资产管理系统与Maximo基础资源、性能监控、运维管理等各个系统互不关联&#xff0c;数据分散不能为运维管理提供完整一致的…

MySql--表的基本查询(CRUD)

CRUD : Create( 创建 ), Retrieve( 读取 ) &#xff0c; Update( 更新 ) &#xff0c; Delete &#xff08;删除&#xff09; 1.insert 基本插入 创建一张表&#xff1a; -- 创建一张学生表 CREATE TABLE students ( id INT UNSIGNED PRIMARY KEY AUTO_INCREMENT, sn INT NO…

【软件设计师】大题

一、数据流图 基础知识 数据流图&#xff08;Data Flow Diagram,DFD&#xff09;基本图形元素&#xff1a; 外部实体&#xff08;External Agent&#xff09; 表示存在于系统之外的对象&#xff0c;用来帮助用户理解系统数据的来源和去向加工&#xff08;Process&#xff09;数…

Python设计模式之适配器模式

目录 一、适配器模式 适配器模式的组成部分 适配器模式的种类 应用场景 实现步骤 二、测试例子 一、适配器模式 适配器模式&#xff08;Adapter Pattern&#xff09;是一种结构型设计模式&#xff0c;它通过将一个现有接口转换为另一个期望的接口来让不兼容的接口能够合作…

渗透测试 一个很奇怪的支付漏洞

新手实战刷课网站、好玩又有趣&#xff01; 第一步 打开网站、任意账户名密码登陆发现验证码可重复利用 这时候我们可以试试admin账号、发现如果账号正确会提示账户已存在、反之回显账户密码错误 第二步 既然验证码可以重复利用&#xff1b;而且账号名有回显 这时候我们试…

DNS服务的部署与配置(1)

一、DNS的定义 1、域名系统&#xff08;英文&#xff1a;Domain Name System&#xff0c;缩写&#xff1a;DNS&#xff09;是互联网的一项服务。 它作为将域名和IP地址相互映射的一个分布式数据库&#xff0c;能够使人更方便地访问互联网。 DNS使用UDP端口53。 当前&#xff0…

SpringBoot 集成 Nebula

工作需求&#xff0c;开始了解图数据库&#xff0c;经过工具选型&#xff0c;最终选择nebula graph&#xff0c;并集成到springboot&#xff0c;java 环境下如何对 Nebula Graph 进行操作&#xff0c;本文整理下过程。 1、首先引入 pom 依赖 <dependency><groupId&g…

安全访问python字典:避免空键错误的艺术

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、引言 二、直接访问字典键的问题 三、使用get方法安全访问字典键 四、get方法的实际应…

v-model详解

目录 原理 作用 表单类组件封装 ​编辑v-model简化代码 原理 v-model本质上是一个语法糖。例如应用在输入框上&#xff0c;就是value属性和input属性的合写。 作用 提供数据的双向绑定。 数据变&#xff0c;视图跟着变:value视图变&#xff0c;数据跟着变input 注意&…

【C++】AVL树和红黑树模拟实现

AVL树和红黑树 1. 背景2. AVL树的概念3. AVL树节点的定义4. AVL树的插入5. AVL树的旋转5.1. 左单旋5.2. 右单旋5.3. 左右单旋5.4. 右左单旋5.5. 旋转总结 6. AVL树的验证7. AVL树的性能8. 红黑树的概念9. 红黑树的节点的定义10. 红黑树的插入10.1. 情况一10.2.情况二 11. 红黑树…

2024电工杯数学建模B题高质量成品论文,包括代码数据

2024电工杯数学建模B题高质量成品论文&#xff0c;包括代码数据 完整内容见文末名片 摘要 大学时期是学生们知识学习和身体成长的重要阶段&#xff0c;良好的饮食习惯对于促进生长发育和保证身体健康具有重要意义。针对当前大学生中存在的饮食结构不合理及不良饮食习惯的问题…