你好 GPT-4o!

news2025/1/20 5:11:58

你好 GPT-4o!

OpenAI公司宣布推出 GPT-4o,这是OpenAI的新旗舰模型,可以实时对音频、视觉和文本进行推理。
在这里插入图片描述
GPT-4o(“o”代表“o​​mni”)是迈向更自然的人机交互的一步——它接受文本、音频、图像和视频的任意组合作为输入,并生成文本、音频和图像的任意组合输出。它可以在短至 232 毫秒的时间内响应音频输入,平均为 320 毫秒,与人类的响应时间相似(在新窗口中打开)在一次谈话中。它在英语文本和代码上的性能与 GPT-4 Turbo 的性能相匹配,在非英语文本上的性能显着提高,同时 API 的速度也更快,成本降低了 50%。与现有模型相比,GPT-4o 在视觉和音频理解方面尤其出色。
在这里插入图片描述

在 GPT-4o 之前,您可以使用语音模式与 ChatGPT 对话,平均延迟为 2.8 秒 (GPT-3.5) 和 5.4 秒 (GPT-4)。为了实现这一目标,语音模式是由三个独立模型组成的管道:一个简单模型将音频转录为文本,GPT-3.5 或 GPT-4 接收文本并输出文本,第三个简单模型将该文本转换回音频。这个过程意味着主要智能来源GPT-4丢失了大量信息——它无法直接观察音调、多个说话者或背景噪音,也无法输出笑声、歌唱或表达情感。

借助 GPT-4o,OpenAI跨文本、视觉和音频端到端地训练了一个新模型,这意味着所有输入和输出都由同一神经网络处理。由于 GPT-4o 是OpenAI第一个结合所有这些模式的模型,因此OpenAI仍然只是浅尝辄止地探索该模型的功能及其局限性。

能力探索

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
中文翻译的内容
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

输出
当然!该演讲的重点是最大化大型语言模型 (LLM) 性能的技术,由 OpenAI 的 Colin Jarvis 和 John Allard 发表。该会议是 OpenAI 首届开发者大会的一部分,旨在提供针对特定任务优化法学硕士的见解。

介绍
Colin Jarvis是 OpenAI 欧洲解决方案实践的负责人,**John Allard** 是微调产品团队的工程主管。
该演讲强调了优化法学硕士的挑战,强调不存在一刀切的解决方案。

优化法学硕士的挑战
**从噪声中分离信号**:确定确切的问题非常具有挑战性。
**抽象性能指标**:测量性能可能很困难。
**选择正确的优化**:很难知道要使用哪种方法。

优化流程
演讲者介绍了一个基于两个轴优化法学硕士的框架:
**上下文优化**:模型需要知道什么。
**LLM 优化**:模型需要如何运作。
该框架包括四个象限:
**即时工程**:优化的起点。
**检索增强生成(RAG)**:用于上下文优化。
**微调**:用于 LLM 优化。
**以上所有**:结合所有技术。

及时工程
策略:
写下清晰的说明。
将复杂的任务拆分为更简单的子任务。
给模型时间思考。
系统地测试变更。
适合:
尽早测试和学习。
设定基线。
不适合:
介绍新信息。
复制复杂的风格。
最大限度地减少代币使用。

检索增强生成 (RAG)
概述:
RAG 涉及检索相关文档并使用它们生成响应。
适合:
介绍新信息。
减少幻觉。
不适合:
嵌入广泛的领域知识。
教授新的格式或风格。
最大限度地减少代币使用。
成功的故事:
演示者分享了一个成功案例,他们使用 RAG 将准确率从 45% 提高到 98%。

微调
概述:
微调涉及在较小的特定领域数据集上继续训练过程。
好处:
提高特定任务的性能。
提高效率。
适合:
强调现有知识。
定制结构或语气。
教授复杂的指令。
不适合:
增加新知识。
快速迭代。
成功的故事:
演示者分享了 Canva 的成功故事,其中微调显着提高了性能。

最佳实践
**从快速工程和少量学习开始****建立基线****从小事做起,注重质量**。

结合微调和 RAG
演讲者强调了将微调和 RAG 相结合以获得最佳性能的好处。

理论应用
演讲者将该理论应用于实际挑战,即 Spider 1.0 基准测试,使用 RAG 和微调实现了高精度。

结论
演讲最后总结了优化流程,并强调了使用所讨论的技术迭代提高 LLM 性能的重要性。

问答
演讲者邀请观众提问并进行进一步讨论。

在这里插入图片描述

在这里插入图片描述

模型评估

根据传统基准测试,GPT-4o 在文本、推理和编码智能方面实现了 GPT-4 Turbo 级别的性能,同时在多语言、音频和视觉功能上设置了新的高水位线。
在这里插入图片描述

改进推理

GPT-4o 在 0-shot COT MMLU(常识问题)上创下了 88.7% 的新高分。所有这些评估都是通过 新的简单评估收集的(在新窗口中打开)图书馆。此外,在传统的5-shot no-CoT MMLU上,GPT-4o创下了87.2%的新高分。 (注:Llama3 400b(在新窗口中打开)还在训练中)

语言标记化

这 20 种语言被选为新分词器跨不同语系压缩的代表

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

模型安全与局限性

GPT-4o在设计时就通过跨模态的技术手段内置了安全性,例如通过过滤训练数据和通过后训练来完善模型的行为。OpenAI还创建了新的安全系统,以在语音输出上提供防护措施。
OpenAI根据OpenAI的准备框架评估了GPT-4o,并与OpenAI的自愿承诺保持一致。OpenAI对网络安全、化学、生物、放射性和核(CBRN)、说服以及模型自主性的评估表明,GPT-4o在这些类别中的任何一项都没有超过中等风险。这项评估涉及在模型训练过程中运行一系列自动化和人工评估。OpenAI测试了安全缓解前后的模型版本,使用自定义的微调和提示,以更好地引出模型的能力。
GPT-4o还经历了广泛的外部红队测试,超过70名外部专家参与了社会心理学、偏见与公平、以及错误信息等领域的测试,以识别由新增加的模态引入或放大的风险。OpenAI利用这些学习成果来构建OpenAI的安全干预措施,以提高与GPT-4o交互的安全性。OpenAI将继续在发现新风险时减轻它们。
OpenAI认识到GPT-4o的音频模态带来了多种新的风险。今天,OpenAI公开发布了文本和图像输入以及文本输出。在接下来的几周和几个月里,OpenAI将致力于技术基础设施、通过后训练的可用性以及发布其他模态所需的安全性。例如,在启动时,音频输出将限制为一组预设的声音,并将遵守OpenAI现有的安全政策。OpenAI将在即将发布的系统卡中分享更多细节,以解决GPT-4o模态的全范围。
通过OpenAI对模型的测试和迭代,OpenAI观察到所有模型模态中都存在几个局限性,其中一些如下所示。
在这里插入图片描述
OpenAI非常希望收到反馈,以帮助OpenAI识别。GPT-4 Turbo仍然优于GPT-4o的任务,这样OpenAI就可以继续改进模型。

模型可用性

GPT-4o是OpenAI在推动深度学习边界方面的最新步骤,这一次是在实用性方面。在过去的两年里,OpenAI投入了大量的努力,在堆栈的每个层面上进行效率改进。作为这项研究的首个成果,OpenAI能够使GPT-4级别的模型更加广泛地可用。GPT-4o的能力将逐步推出(今天开始提供扩展的红队访问权限)。

GPT-4o的文本和图像能力今天开始在ChatGPT中推出。OpenAI正在免费层级中提供GPT-4o,并为Plus用户提供高达5倍的消息限制。在未来几周内,OpenAI将在ChatGPT Plus中推出带有GPT-4o的语音模式的新版本。

开发者现在也可以在API中以文本和视觉模型的形式访问GPT-4o。与GPT-4 Turbo相比,GPT-4o的速度提高了2倍,价格降低了一半,速率限制提高了5倍。OpenAI计划在未来几周内向API中的一小部分信任合作伙伴推出对GPT-4o新音频和视频能力的支持。

GPT-4o贡献者

Pre-training leads
Aidan Clark, Alex Paino, Jacob Menick

Post-training leads
Liam Fedus, Luke Metz

Architecture leads
Clemens Winter, Lia Guy

Optimization leads
Sam Schoenholz, Daniel Levy

Long-context lead
Nitish Keskar

Pre-training Data leads
Alex Carney, Alex Paino, Ian Sohl, Qiming Yuan

Tokenizer lead
Reimar Leike

Human data leads
Arka Dhar, Brydon Eastman, Mia Glaese

Eval lead
Ben Sokolowsky

Data flywheel lead
Andrew Kondrich

Inference leads
Felipe Petroski Such, Henrique Ponde de Oliveira Pinto

Inference Productionzation lead
Henrique Ponde de Oliveira Pinto

Post-training infrastructure leads
Jiayi Weng, Randall Lin, Youlong Cheng

Pre-training organization lead
Nick Ryder

Pre-training program lead
Lauren Itow

Post-training organization leads
Barret Zoph, John Schulman

Post-training program lead
Mianna Chen

Core contributors
Adam Lerer, Adam P. Goucher, Adam Perelman, Akila Welihinda, Alec Radford, Alex Borzunov, Alex Carney, Alex Chow, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexi Christakis, Ali Kamali, Allison Moyer, Allison Tam, Amin Tootoonchian, Ananya Kumar, Andrej Karpathy, Andrey Mishchenko, Andrew Cann, Andrew Kondrich, Andrew Tulloch, Angela Jiang, Antoine Pelisse, Anuj Gosalia, Avi Nayak, Avital Oliver, Behrooz Ghorbani, Ben Leimberger, Ben Wang, Blake Samic, Brian Guarraci, Brydon Eastman, Camillo Lugaresi, Chak Li, Charlotte Barette, Chelsea Voss, Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christopher Hesse, Colin Wei, Daniel Kappler, Daniel Levin, Daniel Levy, David Farhi, David Mely, David Sasaki, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Peterson, Eric Sigler, Eugene Brevdo, Farzad Khorasani, Francis Zhang, Gene Oden, Geoff Salmon, Hadi Salman, Haiming Bao, Heather Schmidt, Hongyu Ren, Hyung Won Chung, Ian Kivlichan, Ian O'Connell, Ian Osband, Ilya Kostrikov, Ingmar Kanitscheider, Jacob Coxon, James Crooks, James Lennon, Jason Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jiayi Weng, Jie Tang, Joanne Jang, Jonathan Ward, Jonathan McKay, Jong Wook Kim, Josh Gross, Josh Kaplan, Joy Jiao, Joyce Lee, Juntang Zhang, Kai Fricke, Kavin Karthik, Kenny Hsu, Kiel Howe, Kyle Luther, Larry Kai, Lauren Itow, Leo Chen, Lia Guy, Lien Mamitsuka, Lilian Weng, Long Ouyang, Louis Feuvrier, Lukas Kondraciuk, Lukasz Kaiser, Lyric Doshi, Mada Aflak, Maddie Simens, Madeleine Thompson, Marat Dukhan, Marvin Zhang, Mateusz Litwin, Max Johnson, Mayank Gupta, Mia Glaese, Michael Janner, Michael Petrov, Michael Wu, Michelle Fradin, Michelle Pokrass, Miguel Oom Temudo de Castro, Mikhail Pavlov, Minal Khan, Mo Bavarian, Natalia Gimelshein, Natalie Staudacher, Nick Stathas, Nik Tezak, Nithanth Kudige, Noel Bundick, Ofir Nachum, Oleg Boiko, Oleg Murk, Olivier Godement, Owen Campbell-Moore, Philip Pronin, Philippe Tillet, Rachel Lim, Rajan Troll, Randall Lin, Rapha gontijo lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Rob Honsby, Rohit Ramchandani, Rory Carmichael, Ruslan Nigmatullin, Ryan Cheu, Scott Gray, Sean Grove, Sean Metzger, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shuaiqi (Tony) Xia, Sonia Phene, Spencer Papay, Steve Coffey, Steve Lee, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tarun Gogineni, Ted Sanders, Thomas Cunninghman, Thomas Dimson, Thomas Raoux, Tianhao Zheng, Tina Kim, Todd Underwood, Tristan Heywood, Valerie Qi, Vinnie Monaco, Vlad Fomenko, Weiyi Zheng, Wenda Zhou, Wojciech Zaremba, Yash Patil, Yilei, Qian, Yongjik Kim, Youlong Cheng, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, Yury Malkov

大模型技术分享

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1682095.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

财富加速器!AI智能无人直播,矩阵操作引领您卖货、卖团购券、拓客,助力财富梦想实现!

财富加速器!AI智能无人直播,矩阵操作引领您卖货、卖团购券、拓客,助力财富梦想实现! 在当今数字化时代,AI智能技术正以惊人的力量催生新的商机,为经济增长注入源源不断的动力。如果您渴望实现财富梦想&…

go语言数组与切片

1.数组 数组 类型名是[n]elemetType,其中n是数组长度,elementType是数组元素类型。比如一个包 含2个int类型元素的数组类型可表示为[2]int。 数组一般在创建时通过字面量初始化,单独声明一个数组类型变量而不进行初始化是没有意义的。 packa…

Linux-CentOS-7忘记密码-修改登录密码图文详解

Linux-CentOS-7忘记密码-修改登录密码图文详解 1.重启系统: 在登录界面,选择要登录的用户并点击"Power"按钮,然后选择"Restart"或"Reboot"重新启动系统。 在系统启动时持续按下 “e” 键进入编辑模式。 2…

人工智能到底是什么玩意儿?

说实话,每次听到“人工智能”这个词,我都感觉像是在听天书一样。它似乎总是被包裹在一堆高大上的术语和概念里,让人摸不着头脑。但今天,我决定挑战一下自己,把这个问题搞个明白! 首先,我得承认&…

通过gen_compile_commands.py产生compile_commands.json文件的方法

大家在使用vscode查看linux源代码时,会有很多飘红处,而且函数的跳转非常不方便。所以linux给了一个脚本gen_compile_commands.py,此脚本类似ctags这样,产生相应的关联之类的数据库,方便函数及文件的跳转等等。非常好。…

每日一练 2024.5.16 (补 2024.5.15)

题目: 给定一个 正整数 数组 beans ,其中每个整数表示一个袋子里装的魔法豆的数目。 请你从每个袋子中 拿出 一些豆子(也可以 不拿出),使得剩下的 非空 袋子中(即 至少还有一颗 魔法豆的袋子)…

Docker mysql主从同步

1. 在主节点注册一个账号,用于子节点访问主节点 #mysql 1主2从,先创建主节点 ,注意 \ 后面不要带空格 docker run --name mysql-m \ -v /usr/local/mysql/data:/var/lib/mysql \ -v /usr/local/mysql/conf:/etc/mysql/conf.d \ -v /usr/local/mysql/log:…

20231911 2023-2024-2 《网络攻防实践》实践九报告

1.实践内容 1.1 缓冲区 缓冲区是内存空间的一部分,在内存中预留了一定的存储空间,用来暂时保存输入和输出等I/O操作的一些数据,这些预留的空间就叫做缓冲区。 1.2 shellcode shellcode是一段用于利用软件漏洞而执行的代码,也可以…

哪款桌面便签app能帮助我提升工作效率

作为上班族,我们每天都要处理大量的工作事项,从策划方案到处理邮件,每一个环节都需高效且有条不紊。在这样的工作环境下,提升效率显得尤为重要。而选择一款优秀的桌面便签app,无疑是提高工作效率的关键。 桌面便签app…

6-10 阶乘计算升级版

void Print_Factorial ( const int N ) {if(N<0){printf("Invalid input");return;} int nN;int a[10000]{};a[0]1; //0和1的阶乘都是1&#xff0c;同时又是用该个位去&#xff0c;所以初始化为1&#xff1b;int i,j;int len0;//当前数组所占的最大下标in…

多客开源】游戏陪玩系统,游戏陪玩源码,游戏陪玩语音社交源码运营版游戏陪玩平台源码/tt语音聊天/声优服务/陪玩系统源码开黑/约玩源码

介绍 我们针对陪玩app源码市场的发展趋势&#xff0c;整合市面上主流陪玩app应用功能&#xff0c;自主开发了多客陪玩系统源码&#xff0c;并可为客户提供全部原生陪玩源码&#xff0c;进行二次开发&#xff0c;打造适用于线上游戏陪玩、语音聊天、心理咨询、情感陪伴等业务场…

NOC初赛成绩,你们都查到了吗?

NOC大赛部分编程赛道要开始复赛了&#xff0c;2024信息素养大赛初赛及NOC复赛这篇就够了&#xff01;初赛结束后&#xff0c;很多家长和学生还没有查到是否晋级复赛&#xff0c;因为网站卡的出现了各种问题&#xff0c;主要集中在打不开&#xff0c;验证码错误等&#xff0c;根…

【数据分析实战】华住与锦江市场布局与未来趋势解析Python数据分析采集爬虫

文章目录 引言数据采集和展示数据采集数据预处理 数据分析与结果国内门店数量对比结果可视化结果分析 酒店平均房间数对比Code结果可视化结果分析 近六年开店数量对比结果可视化结果分析 写在最后 引言 随着旅游经济的持续发展&#xff0c;中国酒店行业正迅速壮大&#xff0c;…

基于51单片机的非接触式无线红外测温

基于51单片机的无线红外测温 &#xff08;程序&#xff0b;原理图&#xff0b;设计报告&#xff09; 功能介绍 具体功能&#xff1a; 1.采用红外温度传感器测温并用LCD1602显示&#xff1b; 2.按键为启动按键、保存按键、显示数据按键&#xff0c;可以实现对温度数值的控制…

InnoDB 事务处理机制

文章目录 前言1. 事务处理挑战1.1 事务机制处理的问题1.2 并发事务带来的问题 2. InnodDB 和 ACID 模型2.1 Innodb Buffer Pool2.2 Redo log2.3 Undo log2.4 应用案例 3. 隔离级别和锁机制3.1 事务隔离级别3.1.1 READ UNCOMMITTED3.1.2 READ COMMITTED3.1.3 REPEATABLE READ3.1…

AndroidStudio集成高德地图后出现黑屏并报错

报错内容为&#xff1a;No implementation found for void com.autonavi.base.ae.gmap.GLMapEngine.nativeMainThreadTrigger(int, long) (tried Java_com_autonavi_base_ae_gmap_GLMapEngine_nativeMainThreadTrigger and Java_com_autonavi_base_ae_gmap_GLMapEngine_nativeM…

2024CCPC郑州邀请赛暨河南省赛(A,B,C,D,F,G,H,J,K,L,M)

2024 National Invitational of CCPC (Zhengzhou), 2024 CCPC Henan Provincial Collegiate Programming Contest 2024 年中国大学生程序设计竞赛全国邀请赛&#xff08;郑州&#xff09;暨第六届 CCPC 河南省大学生程序设计竞赛 比赛链接 这场的题说实话难度其实都不大&…

数仓建模理论 之 维度建模

说起维度建模&#xff0c;你不得不知道以下几个概念&#xff1a;事实表、维度表、星型模型、雪花模型、星座模型 维度建模 Ralph Kimball推崇数据集市的集合为数据仓库&#xff0c;同时也提出了对数据集市的维度建模&#xff0c;将数据仓库中的表划分为事实表、维度表两种类型…

浏览器插件Video Speed Controller(视频倍速播放),与网页自身快捷键冲突/重复/叠加的解决办法

浏览器插件Video Speed Controller&#xff08;视频倍速播放&#xff09;&#xff0c;与网站自身快捷键冲突/重复/叠加的解决办法 插件介绍问题曾今尝试的办法今日发现插件列表中打开Video Speed Controller的设置设置页面翻到下面&#xff0c;打开实验性功能。将需要屏蔽的原网…

Invicti v24.5.0 for Windows - Web 应用程序安全测试

Invicti v24.5.0 for Windows - Web 应用程序安全测试 Invicti Standard v24.5.0 - 7 May 2024 请访问原文链接&#xff1a;Invicti v24.5.0 for Windows - Web 应用程序安全测试&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.o…