论文:Dispersion relation prediction and structure inverse design of elastic metamaterials via deep learning
DOI:https://doi.org/10.1016/j.mtphys.2022.100616
1、摘要
精心设计的超材料结构给予前所未有的性能,保证了各种各样的具体应用。传统的方法通常依赖于在研究人员的经验和优化算法的帮助下,在广阔的设计空间中进行迭代搜索,以获得具有所需性能的结构。在这里,使用深度学习方法建立弹性超材料的结构拓扑和色散关系之间的映射。我们的研究结果表明,该模型能够准确预测的色散关系为一个给定的结构和逆设计的近最佳结构的基础上的目标色散关系。此外,对于逆设计过程,输入色散关系可以主动定制。我们基于深度学习的方法已经显示出加速设计和优化过程的能力,为超材料研究的新突破铺平了道路。
2、主要研究
在这里,开发了一个基于数据驱动方法的系统框架来应对这些挑战。聚焦于二维(2D)弹性超材料结构,在具有高自由度的设计空间中构建数据集。卷积神经网络(CNN)和条件生成对抗网络(cGAN)分别用于从正向和反向桥接结构和属性。表明,该框架实现了一个给定的结构配置和主动设计的近最佳结构的基础上的目标色散关系的色散关系的准确预测。数据驱动和传统方法的整合和协同可以加速超材料结构设计,性能优化和机理揭示的进展。
3、技术路线
4、研究方法
4.1 样本结构生成
遵循p4m对称性的晶胞结构
为了确保生成的结构的对称性,在基本区域执行膨胀操作(Matlab的内置imdilate函数)。在完全由0个元素组成的基本三角形区域中,选择要设置为1的像素。值得注意的是,它们的数量和初始位置是随机的。然后,imdilate函数与随机生成的3X3结构元素重复,直到空隙相达到指定的大小。通过反射操作获得完整的结构。为了确保结构的可制造性,以4连接的方式评估像素连接性,其中如果像素的边缘接触,则认为像素是连接的。
4.2 数据准备
数值模拟,以计算所获得的结构的色散关系,使用有限元法(FEM,见方法),通过结合弹性动力学理论和Bloch定理,色散关系可以通过在第一不可约布里渊区的波矢量下求解具有Bloch—Floquet边界条件的单胞的本征频率来获得。
4.3 有限元法
商业软件COMSOL
4.4 DL方法概述
建立结构和色散关系之间的正向-反向关系涉及正向预测给定结构的色散关系并检索具有期望色散关系的结构。它们实际上涉及两个问题,回归和生成,分别由CNN和cGAN解决。此外,这两个网络可以组装,以提高反设计的精度和效率。首先,开发了一个CNN来建立从结构到本征频率的映射,因为CNN可以从高维数据中自动学习显著的低维表示。表示单元结构的像素矩阵被馈送到卷积层以提取拓扑特征,然后链接到回归层以进行预测。为了克服不同波段之间数据分布的不一致性,单独预测每个波段,而不是直接预测整个色散关系。每个波段都由具有相同架构的CNN预测,但每个网络都是单独训练的。这种策略使得轻量级的网络架构足以很好地工作。一旦经过良好的训练,CNN作为预测器可以快速批量执行预测任务,比传统的数值模拟快几个数量级。
对于逆设计,目的是根据所需的色散关系生成结构。cGAN是一类生成模型,它将标签作为约束条件来实现按需数据生成,适用于此目的。它由两个相互竞争的组件组成,称为发电机和发电机。然而,与需要尽可能真实地生成图像的图像处理不同,使用cGAN进行超材料逆向设计更具挑战性,因为这里的图像对应于具有可量化响应的现实结构。因此,挑战在于能够基于期望的量化目标准确地生成可行的结构。在这项工作中,表示色散关系的本征频率矩阵输入到生成器,以生成由像素矩阵描述的单元结构。然后,为了使生成的结构与真实的结构的几何特征尽可能地匹配,我们将生成的结构与真实的结构连接起来,并将其输入到机器人,而不是直接使用生成的结构。该算法能够从生成的结构中识别出真实的结构。这两个网络在竞争中进行训练,以找到最大化其分类精度的分类器参数和最大化欺骗分类器的生成器参数。这样做的一个问题是,它不能保证生成的几何形状的对称性,并且生成的图像被二值化。因此,图像的后处理(更多细节参见方法)对于确保所得结构的可制造性和对称性是必要的。
一旦网络被完全训练,网络参数是固定的,并且给定的色散关系输入确定特定的输出结构。然而,它并不总是最优的,最小化之间的偏差的色散关系的生成结构和目标。这是因为存在网络的系统误差和图像后处理引起的随机误差。在这项工作中,提出了一个在预训练cGAN中使用预训练串联CNN实现的逆向设计框架,以及一个统计优化策略,以提高生成结构的色散关系的准确性。具体地说,对目标色散关系施加随机扰动,并将其作为输入,生成器网络可以产生一批具有相似几何图案的结构。然后,连接到生成器网络输出的预训练CNN可以批量有效地预测这些结构的色散关系,并统计筛选出偏差相对较小的结构作为候选结构。该框架的优点在于,它最大限度地利用了经过训练的CNN和cGAN来提高逆向设计的准确性,而无需额外处理输入数据、引入复杂网络模型或特殊构造损失函数等。并可方便地应用于其它反设计问题。
4.5 模型结构
4.5.1 CNN
4.5.2 GAN
4.5.3 统计分析
平均误差:MRE
相关系数:R2
4.6 图像后处理
cGAN生成的单元结构并不严格遵循p4m对称性,有时生成的结构中会出现单个离散像素或少数模糊像素。为了解决对称性问题,我们水平和垂直翻转生成的结构,并对角变换它。满足对称性的结构,然后通过逐元素求和。我们使用核尺寸为3x3的中值滤波器对单个离散像素进行滤波。此外,执行二值化以消除模糊像素。考虑到可制造性,还确保实体区域是互连的,并且在后处理过程中边缘不会完全空白。
5、结果与讨论
CNN用于色散关系预测的性能。(a)CNN预测的本征频率与FEM计算的本征频率之间的比较。(b)测试样本的预测误差分布。(c)CNN预测的色散关系的随机示例。蓝色曲线是通过FEM计算的地面实况,红色曲线表示预测结果。
生成的结构及其模拟色散关系的示例。(a)生成的单元结构及其模拟色散关系的两个例子。(b)生成不同类型的几何图案的示例。(c)(B)中所示的真实的结构的单位晶胞的等效选择。(d)生成不同结构的代表性示例。(e)(d)中所示的真实的结构的单位晶胞的等效选择。
重新定制色散关系的逆向设计的代表性示例。(a)带隙开放。通过将第1至第3带压缩15%和将第4至第10带拉伸10%,在第3和第4带之间产生新的带隙(0.46e0.59)。(b)带隙扩展。通过将第1至第6带压缩20%并将第7至第10带拉伸5%,带隙宽度扩展了155%。(c)带隙转换。通过将第1至第3频带拉伸50%并将第4至第10频带向上移动,带隙被移动到更高的频率范围。(d)带隙合并。随着第4至第6频带向下平移,原始的第一带隙变为通带,并且剩余的带隙变得更宽。(e)色散曲线平坦化。第9条带被拉直成具有零斜率的平坦带。(f)色散曲线翻转。翻转带的斜率具有与原始带的斜率相反的符号。
6、结论
提出了一种基于数据驱动的深度学习框架,用于弹性超材料的色散关系预测和结构逆设计。尽管其高度非线性的输入—输出关系的性质,开发的CNN使得一个给定的结构配置的色散关系的准确预测。色散关系与超材料的大量基本物理性质有关。因此,一旦经过良好的训练,CNN的高效率有助于加速或可能绕过数值模拟,以找到针对这些物理特性的最佳设计。此外,在逆设计方面,所提出的框架实现了所需色散关系的近最优结构的生成。此外,证明了该模型具有生成结构的能力,基于重新定制的色散关系与合理的误差。这种无需经验的数据驱动的逆向设计方法可以加速各种性能的剪裁过程,是对传统的基于先验知识的设计方法的有力补充。
此外,值得注意的是,所提出的框架可以进一步扩展到多材料系统和3D情况。对于多材料弹性超材料,像素矩阵将不再指示材料的存在或不存在,而是对应于特定的材料参数。不同的材料参数可以以多通道的形式同时输入网络。此外,3D结构可以被体素化,然后由相关的DL模型(例如3D CNN)处理。此外,不限于色散关系,所提出的模型可以应用于映射的结构拓扑结构的其他属性,如电磁性能和力学行为。然而,目前的DL模型仍然存在一些不足。一个主要的限制是样本数据生成和模型训练的前期计算成本很高。因此,可能认为基于深度学习的方法特别适合需要大量设计任务的情况或需要快速响应速度的应用程序。潜在的方法是减少DL模型的数据依赖性,例如使用主动学习,迁移学习和物理信息学习。此外,一个更合理的表示所需的响应是需要的反设计。
总之,研究是一个探索性的一步,在建立之间的正-逆关系的几何结构和色散关系,使用DL模型。可以预期,数据驱动的DL方法深入整合到超材料研究的更多方面,可能会带来性能的正向预测和结构的逆向设计之外的进一步突破。更广泛地说,数据驱动的深度学习方法的赋权可能会给科学研究的范式带来变化。
若有问题,欢迎讨论