《博主简介》
小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!
《------往期经典推荐------》
一、AI应用软件开发实战专栏【链接】
项目名称 | 项目名称 |
---|---|
1.【人脸识别与管理系统开发】 | 2.【车牌识别与自动收费管理系统开发】 |
3.【手势识别系统开发】 | 4.【人脸面部活体检测系统开发】 |
5.【图片风格快速迁移软件开发】 | 6.【人脸表表情识别系统】 |
7.【YOLOv8多目标识别与自动标注软件开发】 | 8.【基于YOLOv8深度学习的行人跌倒检测系统】 |
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】 | 10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】 |
11.【基于YOLOv8深度学习的安全帽目标检测系统】 | 12.【基于YOLOv8深度学习的120种犬类检测与识别系统】 |
13.【基于YOLOv8深度学习的路面坑洞检测系统】 | 14.【基于YOLOv8深度学习的火焰烟雾检测系统】 |
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】 | 16.【基于YOLOv8深度学习的舰船目标分类检测系统】 |
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】 | 18.【基于YOLOv8深度学习的血细胞检测与计数系统】 |
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】 | 20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】 |
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】 | 22.【基于YOLOv8深度学习的路面标志线检测与识别系统】 |
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】 | 24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】 |
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】 | 26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】 |
27.【基于YOLOv8深度学习的人脸面部表情识别系统】 | 28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】 |
29.【基于YOLOv8深度学习的智能肺炎诊断系统】 | 30.【基于YOLOv8深度学习的葡萄簇目标检测系统】 |
31.【基于YOLOv8深度学习的100种中草药智能识别系统】 | 32.【基于YOLOv8深度学习的102种花卉智能识别系统】 |
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】 | 34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】 |
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】 | 36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】 |
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】 | 38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】 |
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】 | 40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】 |
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】 | 42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】 |
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】 | 44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】 |
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】 | 46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】 |
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】 | 48.【车辆检测追踪与流量计数系统】 |
49.【行人检测追踪与双向流量计数系统】 | 50.【基于YOLOv8深度学习的反光衣检测与预警系统】 |
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
问题描述
如何判断一个点是在多边形的内部还是在多边形外面?本文直接使用opencv提供的cv2.pointPolygonTest()
函数进行判断。下面对该函数进行详细说明,并给出具体示例。
cv2.pointPolygonTest()函数使用说明
代码示例:
result = cv2.pointPolygonTest(contour, test_point, measureDist)
参数说明
contour参数
:某一轮廓点的列表,如:polygon = np.array([[10, 10], [100, 10], [100, 100], [10, 100]], dtype=np.int32)
;
test_point参数
:像素点坐标(x,y)
;
measureDist参数
:如果measureDist为True则输出该像素点到轮廓最近距离。当measureDist设置为false时,若返回值为+1,表示点在轮廓内部,返回值为-1,表示在轮廓外部,返回值为0,表示在轮廓上。
如果我们需要判断一个点是在多边形的内部,只需要将measureDist
参数设为False
即可,当输出结果为正时,即可判断点在多边形的内部
。示例代码如下:
result = cv2.pointPolygonTest(polygon, test_point, measureDist=False)
print(result)
# 判断结果
if result > 0:
print("点在多边形内部")
elif result == 0:
print("点在多边形边界上")
else:
print("点在多边形外部")
算法原理说明
多边形,随便定一个点,然后通过这个点水平划一条线,先数数看这条横线和多边形的边相交几次,(或者说先排除那些不相交的边,第一个判断条件),然后再数这条横线穿越多边形的次数是否为奇数,如果是奇数,那么该点在多边形内,如果是偶数,则在多边形外。如下图所示:
完整示例
定义点与多边形并展示
定义点与多边形
# 定义多边形的顶点
polygon = np.array([[10, 10], [100, 10], [100, 100], [10, 100]], dtype=np.int32)
# 要判断的点
test_point = [50, 50]
画出多边形及点进行展示
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('TkAgg')
# 定义多边形的顶点
polygon = np.array([[10, 10], [100, 10], [100, 100], [10, 100]], dtype=np.int32)
# 要判断的点
test_point = [50, 50]
# 画出点与多边形并展示
# 创建一个新的图像
fig, ax = plt.subplots()
# 绘制多边形
ax.plot(polygon[:,0], polygon[:,1], 'r-', lw=2, label='Polygon')
ax.fill(polygon[:,0], polygon[:,1], 'r', alpha=0.3)
# 绘制点
ax.plot(test_point[0], test_point[1], 'go', markersize=10, label='Test Point')
# 添加标签和轴限制
ax.set_xlabel('X-axis')
ax.set_ylabel('Y-axis')
ax.legend()
ax.set_xlim(0, 110) # 设置x轴范围
ax.set_ylim(0, 110) # 设置y轴范围
# 显示图像
plt.show()
判断点是否在多边形内部
import cv2
import numpy as np
# 定义多边形的顶点
polygon = np.array([[10, 10], [100, 10], [100, 100], [10, 100]], dtype=np.int32)
# 要判断的点
test_point = [50, 50]
# 判断test_point点是否在多边形内部
# 使用pointPolygonTest函数
result = cv2.pointPolygonTest(polygon, test_point, measureDist=False)
print(result)
# 判断结果
if result > 0:
print("点在多边形内部")
elif result == 0:
print("点在多边形边界上")
else:
print("点在多边形外部")
打印结果如下:
好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
更多干货内容,可关注文末G-Z-H: 【阿旭算法与机器学习】,欢迎共同学习交流