基于GWO灰狼优化的CNN-GRU-Attention的时间序列回归预测matlab仿真

news2024/11/16 7:32:12

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1卷积神经网络(CNN)在时间序列中的应用

4.2 GRU网络

4.3 注意力机制(Attention)

4.4 GWO优化

5.算法完整程序工程


1.算法运行效果图预览

优化前

优化后

2.算法运行软件版本

matlab2022a

3.部分核心程序

..........................................................
            r1      = rand; 
            r2      = rand;
            A3      = 2*a*r1-a; %
            C3      = 2*r2; %
            D_delta = abs(C3*dltx(j)-xpos(i,j)); %
            X3      = dltx(j)-A3*D_delta; %           
            
            xpos(i,j) = (X1+X2+X3)/3;%

            if xpos(i,j)>=Lmax(j)
               xpos(i,j)=Lmax(j);
            end
            if xpos(i,j)<=Lmin(j)
               xpos(i,j)=Lmin(j);
            end
 
        end
    end
end

LR             = Alpx(1)
numHiddenUnits = floor(Alpx(2))+1

....................................................
Net = trainNetwork(Nsp_train2, NTsp_train, layers, options);

%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);

%归一化还原
T_sim1=Dpre1*Vmax2;
T_sim2=Dpre2*Vmax2;


%网络结构
analyzeNetwork(Net)


figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);



figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on

subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);


save R2.mat Num2 Tat_test T_sim2 

136

4.算法理论概述

       时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、GRU以及注意力机制(Attention Mechanism)在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。灰狼优化(GWO)作为一种高效的全局优化算法,被引入用于优化深度学习模型的超参数。

4.1卷积神经网络(CNN)在时间序列中的应用

       在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:

       CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

4.2 GRU网络

      GRU(Gated Recurrent Unit)是一种先进的循环神经网络(RNN)变体,专门设计用于处理序列数据,如文本、语音、时间序列等。GRU旨在解决传统RNN在处理长序列时可能出现的梯度消失或梯度爆炸问题,并简化LSTM(Long Short-Term Memory)网络的结构,同时保持其捕获长期依赖关系的能力。 

       GRU包含一个核心循环单元,该单元在每个时间步t处理输入数据xt​并更新隐藏状态ht​。其核心创新在于引入了两个门控机制:更新门(Update Gate)重置门(Reset Gate)

4.3 注意力机制(Attention)

         注意力机制是一种让模型能够自动地关注输入数据中重要部分的技术。在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。              

4.4 GWO优化

        灰狼优化(Grey Wolf Optimizer, GWO)是一种受到灰狼社群行为启发的全球优化算法,由Seyedali Mirjalili等于2014年提出。它模仿了灰狼在自然界中的领导层次结构、狩猎策略以及社会共存机制,以解决各种复杂的优化问题。与遗传算法类似,GWO也是基于种群的优化技术,但其独特的搜索策略和更新规则使其在处理某些类型的问题时展现出不同的优势。

        在GWO算法中,灰狼被分为四类:α(领头狼)、β(第二领导者)、δ(第三领导者)以及普通狼(Ω)。在每次迭代中,这些角色对应于当前种群中适应度最好的三个解以及其余的解。通过模拟这些狼在捕食过程中的协作与竞争,算法逐步向全局最优解靠近.

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1676719.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

银河麒麟V10操作系统编译LLVM18踩坑记录

1、简述 要在银河麒麟V10操作系统上编译一个LLVM18&#xff0c;这个系统之前确实也没有用过&#xff0c;所以开始了一系列的摸排工作&#xff0c;进行一下记录。 首先肯定是要搞一个系统&#xff0c;所以去到银河麒麟的网站&#xff0c;填写了一个申请 产品试用申请国产操作系…

力扣416. 分割等和子集

Problem: 416. 分割等和子集 文章目录 题目描述思路解题方法复杂度Code 题目描述 思路 该题目可以归类为0-1背包问题&#xff0c;具体到细节可以再归纳为背包是否装满问题 1.首先判断数组元素和的奇偶性&#xff08;奇数则不能划分&#xff09; 2.我们定义一个二维布尔类型数组…

只用了三天就入门了Vue3?

"真的我学Vue3&#xff0c;只是为了完成JAVA课设" 环境配置 使用Vue3要去先下载Node.js。 就像用Python离不开pip包管理器一样。 Node.js — Run JavaScript Everywhere (nodejs.org) 下完Node.js去学习怎么使用npm包管理器&#xff0c;放心你只需要学一些基础的…

C++进阶:红黑树介绍及模拟实现(图示详解过程)

C进阶&#xff1a;红黑树介绍及模拟实现 上次介绍了AVL树&#xff1a;C进阶&#xff1a;AVL树详解及模拟实现&#xff08;图示讲解旋转过程&#xff09; 今天就来紧接着来红黑树啦!!! 文章目录 1.红黑树介绍约束规则 2.项目文件规划3.整体框架&#xff08;节点和Tree&#xf…

【java】异常与错误

Throwable包括Error和Expected。 Error Error错误是程序无法处理的&#xff0c;由JVM产生并抛出的。 举例&#xff1a;StackOverflowError \ ThreadDeath Expected Expected异常包括两类&#xff0c;即受检异常(非运行时异常)和非受检异常(运行时异常)&#xff0c;异常往往…

【微记录】Makefile中wildcard(通配)的一种用法--如何避免某个头文件路径不存在造成CLFAGS添加后编译报错?

文章目录 背景方法&#xff1a;wildcard补充信息wildcard解释Make中wildcard用法 背景 工程中&#xff0c;如果某个代码需要再不同平台有不同的依赖头文件&#xff0c;于是会出现不同平台依赖头文件路径不一样&#xff0c;但是为了适配多个平台如何做到避免某个头文件路径不存…

笔记本黑屏,重新开机主板没有正常运作的解决办法

拆开笔记本后壳&#xff0c;打开看到主板&#xff0c;将主板上的这颗纽扣电池拆下来&#xff0c;如果是带连接线的&#xff08;如下图&#xff09;&#xff0c;可以将接口处线头拔出&#xff0c;等1分钟再把线接上。 ------------- 以下是科普 首先&#xff0c;电脑主板上的这…

【学习笔记】C++每日一记[20240513]

简述静态全局变量的概念 在全局变量前加上static关键字&#xff0c;就定义了一个静态全局变量。通常情况下&#xff0c;静态全局变量的声明和定义放在源文件中&#xff0c;并且不能使用extern关键字将静态全局变量导出&#xff0c;因此静态全局变量的**作用于仅限于定义静态全…

[初学者必看]JavaScript 简单实际案例练习,锻炼代码逻辑思维

文章目录 创意小项目合集&#xff1a;从简易图片轮播到购物车1. 图片轮播器2. 动态列表3. 模态框&#xff08;Modal&#xff09;4. 简单的表单验证5. 简易待办事项列表&#xff08;Todo List&#xff09;6. 简易图片画廊7. 简易时钟8. 简易搜索框高亮9. 简易颜色选择器10. 简易…

华为认证大数据是什么?华为认证大数据有用吗?

华为大数据是用来搜集整理大数据&#xff0c;提供解决方案的数据中心。华为大数据解决方案是华为公司推出的一种综合性云解决方案&#xff0c;主要针对广告营销、电商、车联网等大数据应用场景的云计算大数据方案&#xff0c;帮助企业用户构建大数据平台&#xff0c;解决企业的…

Elasticsearch分词及其自定义

文章目录 分词发生的阶段写入数据阶段执行检索阶段 分词器的组成字符过滤文本切分为分词分词后再过滤 分词器的分类默认分词器其他典型分词器 特定业务场景的自定义分词案例实战问题拆解实现方案 分词发生的阶段 写入数据阶段 分词发生在数据写入阶段&#xff0c;也就是数据索…

10G UDP协议栈 IP层设计-(5)IP RX模块

一、模块功能 1、解析目的IP是否是本节点的源IP&#xff0c;如果是则进行如下的处理&#xff0c;如果不是则无需上上级传递 2、提取MAC层发送过来的IP报文&#xff0c;并提取其中的数据字段&#xff08;上层协议字段&#xff09;&#xff0c;传递给上级 3、提取IP报文头中的…

港股大反攻结束了吗?

‘港股长线见顶了吗&#xff1f;今天开盘就是最高点&#xff0c;然后一路跳水&#xff0c;市场又是一片恐慌。到底是健康的技术性回调&#xff0c;还是市场已经见顶&#xff1f; 港股此轮“大反攻”中&#xff0c;科网股表现十分亮眼。今日港股盘后&#xff0c;阿里巴巴、腾讯…

联软安渡 UniNXG 安全数据交换系统 任意文件读取漏洞复现

0x01 产品简介 联软安渡UniNXG安全数据交换系统,是联软科技自研的业内融合网闸、网盘和DLP的一体机产品,它同时支持多网交换,查杀毒、审计审批、敏感内容识别等功能,是解决用户网络隔离、网间及网内数据传输、交换、共享/分享、存储的理想安全设备,具有开创性意义。 UniN…

【Android踩坑】 Constant expression required

gradle 8&#xff0c;报错 Constant expression required&#xff1a;意思是case语句后面要跟常量 解决1 单击switch语句&#xff0c;键盘按下altenter&#xff0c;将switch-case语句替换为if-else语句(或者手动修改) 解决2 在gradle.properties中添加 android.nonFinalRes…

Java(四)---方法的使用

文章目录 前言1.方法的概念和使用2.方法的定义3.实参和形参的关系4.方法重载4.1.改进4.2.注意事项 5.递归5.1 生活中的故事5.2 递归的概念 5.3.练习 前言 前面一章我们学习到了程序逻辑语句&#xff0c;在写代码的过程中&#xff0c;我们会遇到需要重复使用的代码块&#xff0…

使用 Python 进行图像验证码识别训练及调用

目录 1、验证码识别原理1.1 Tensorflow 介绍1.2 Tensorflow 运行原理1.3 卷积神经网络 CNN&#xff08;Convolutional Neural Networks&#xff09; 2、验证码识别实现步骤2.1 安装第三方模块2.1.1 安装 TensorFlow 模块2.2.2 安装 cuda2.2.3 下载 cudnn 2.2 读取验证码样本形成…

智慧公厕的核心技术详解:物联网、云计算、大数据、自动化控制

公共厕所是城市的重要组成部分&#xff0c;而智慧公厕的建设和管理正成为城市发展的重要方向。智慧公厕的核心技术即是物联网、云计算、大数据和自动化控制。下面将以智慧公厕源头实力厂家广州中期科技有限公司&#xff0c;大量精品案例项目现场实景实图实例&#xff0c;详细介…

【微命令】git config如何配置全局的用户和邮箱?(--global user.name、user.email;git config --help)

虽然经常用&#xff0c;也经常忘记&#xff0c;特此记录。 命令 git config --global user.name "myname" git config --global user.email test163.com另外一种方式 help git config --help |grep email | grep name直接help查看

Redis的集群模式——Java全栈知识(20)

1、主从模式 Redis 支持主从模式的集群搭建&#xff0c;这是 Redis 提供的最简单的集群模式搭建方案&#xff0c;目的是解决单点服务器宕机的问题。当单点服务器发生故障的时候保证 Redis 正常运行。 主从模式主要是将集群中的 Redis 节点分为主节点和从节点。然后读和写发生在…