llm.c/train_gpt2.c at master · karpathy/llm.c (github.com)
源码
/*
This file trains the GPT-2 model.
This version is the clean, minimal, reference. As such:
- it runs on CPU.
- it does not make the code too complex; it is readable.
- it does not use any processor-specific instructions, intrinsics and such.
- it _does_ use a few OpenMP pragmas because this is a large speedup at very low cost
There will be other versions of this code that specialize it and make it fast.
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <stdint.h>
#include <assert.h>
#include <math.h>
#include <time.h>
#include <string.h>
#include <unistd.h>
#ifdef OMP
#include <omp.h>
#endif
// our own utilities
// defines: fopenCheck, freadCheck, fcloseCheck, fseekCheck, mallocCheck
#include "utils.h"
// defines: tokenizer_init, tokenizer_decode, tokenizer_free
#include "tokenizer.h"
// ----------------------------------------------------------------------------
// all the individual layers' forward and backward passes
// B = batch_size, T = sequence_length, C = channels, V = vocab_size
void encoder_forward(float* out,
int* inp, float* wte, float* wpe,
int B, int T, int C) {
// out is (B,T,C). At each position (b,t), a C-dimensional vector summarizing token & position
// inp is (B,T) of integers, holding the token ids at each (b,t) position
// wte is (V,C) of token embeddings, short for "weight token embeddings"
// wpe is (maxT,C) of position embeddings, short for "weight positional embedding"
for (int b = 0; b < B; b++) {
for (int t = 0; t < T; t++) {
// seek to the output position in out[b,t,:]
float* out_bt = out + b * T * C + t * C;
// get the index of the token at inp[b, t]
int ix = inp[b * T + t];
// seek to the position in wte corresponding to the token
float* wte_ix = wte + ix * C;
// seek to the position in wpe corresponding to the position
float* wpe_t = wpe + t * C;
// add the two vectors and store the result in out[b,t,:]
for (int i = 0; i < C; i++) {
out_bt[i] = wte_ix[i] + wpe_t[i];
}
}
}
}
void encoder_backward(float* dwte, float* dwpe,
float* dout, int* inp,
int B, int T, int C) {
for (int b = 0; b < B; b++) {
for (int t = 0; t < T; t++) {
float* dout_bt = dout + b * T * C + t * C;
int ix = inp[b * T + t];
float* dwte_ix = dwte + ix * C;
float* dwpe_t = dwpe + t * C;
for (int i = 0; i < C; i++) {
float d = dout_bt[i];
dwte_ix[i] += d;
dwpe_t[i] += d;
}
}
}
}
void layernorm_forward(float* out, float* mean, float* rstd,
float* inp, float* weight, float* bias,
int B, int T, int C) {
// reference: https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html
// both inp and out are (B,T,C) of the activations
// mean and rstd are (B,T) buffers, to be used later in backward pass
// at each position (b,t) of the input, the C-dimensional vector
// of activations gets normalized, then scaled and shifted
float eps = 1e-5f;
for (int b = 0; b < B; b++) {
for (int t = 0; t < T; t++) {
// seek to the input position inp[b,t,:]
float* x = inp + b * T * C + t * C;
// calculate the mean
float m = 0.0f;
for (int i = 0; i < C; i++) {
m += x[i];
}
m = m/C;
// calculate the variance (without any bias correction)
float v = 0.0f;
for (int i = 0; i < C; i++) {
float xshift = x[i] - m;
v += xshift * xshift;
}
v = v/C;
// calculate the rstd (reciprocal standard deviation)
float s = 1.0f / sqrtf(v + eps);
// seek to the output position in out[b,t,:]
float* out_bt = out + b * T * C + t * C;
for (int i = 0; i < C; i++) {
float n = (s * (x[i] - m)); // normalize
float o = n * weight[i] + bias[i]; // scale and shift
out_bt[i] = o; // write
}
// cache the mean and rstd for the backward pass later
mean[b * T + t] = m;
rstd[b * T + t] = s;
}
}
}
void layernorm_backward(float* dinp, float* dweight, float* dbias,
float* dout, float* inp, float* weight, float* mean, float* rstd,
int B, int T, int C) {
for (int b = 0; b < B; b++) {
for (int t = 0; t < T; t++) {
float* dout_bt = dout + b * T * C + t * C;
float* inp_bt = inp + b * T * C + t * C;
float* dinp_bt = dinp + b * T * C + t * C;
float mean_bt = mean[b * T + t];
float rstd_bt = rstd[b * T + t];
// first: two reduce operations
float dnorm_mean = 0.0f;
float dnorm_norm_mean = 0.0f;
for (int i = 0; i < C; i++) {
float norm_bti = (inp_bt[i] - mean_bt) * rstd_bt;
float dnorm_i = weight[i] * dout_bt[i];
dnorm_mean += dnorm_i;
dnorm_norm_mean += dnorm_i * norm_bti;
}
dnorm_mean = dnorm_mean / C;
dnorm_norm_mean = dnorm_norm_mean / C;
// now iterate again and accumulate all the gradients
for (int i = 0; i < C; i++) {
float norm_bti = (inp_bt[i] - mean_bt) * rstd_bt;
float dnorm_i = weight[i] * dout_bt[i];
// gradient contribution to bias
dbias[i] += dout_bt[i];
// gradient contribution to weight
dweight[i] += norm_bti * dout_bt[i];
// gradient contribution to input
float dval = 0.0f;
dval += dnorm_i; // term 1
dval -= dnorm_mean; // term 2
dval -= norm_bti * dnorm_norm_mean; // term 3
dval *= rstd_bt; // final scale
dinp_bt[i] += dval;
}
}
}
}
void matmul_forward(float* out,
float* inp, float* weight, float* bias,
int B, int T, int C, int OC) {
// most of the running time is spent here and in matmul_backward
// OC is short for "output channels"
// inp is (B,T,C), weight is (OC, C), bias is (OC)
// out will be (B,T,OC)
#pragma omp parallel for collapse(2)
for (int b = 0; b < B; b++) {
for (int t = 0; t < T; t++) {
float* out_bt = out + b * T * OC + t * OC;
float* inp_bt = inp + b * T * C + t * C;
for (int o = 0; o < OC; o++) {
float val = (bias != NULL) ? bias[o] : 0.0f;
float* wrow = weight + o*C;
for (int i = 0; i < C; i++) {
val += inp_bt[i] * wrow[i];
}
out_bt[o] = val;
}
}
}
}
void matmul_backward(float* dinp, float* dweight, float* dbias,
float* dout, float* inp, float* weight,
int B, int T, int C, int OC) {
// most of the running time is spent here and in matmul_forward
// this backward could be done in a single "round" of loops
// but that doesn't afford an efficient parallelization strategy
// backward into inp first, parallelize over B,T
#pragma omp parallel for collapse(2)
for (int b = 0; b < B; b++) {
for (int t = 0; t < T; t++) {
float* dout_bt = dout + b * T * OC + t * OC;
float* dinp_bt = dinp + b * T * C + t * C;
for (int o = 0; o < OC; o++) {
float* wrow = weight + o*C;
float d = dout_bt[o];
for (int i = 0; i < C; i++) {
dinp_bt[i] += wrow[i] * d;
}
}
}
}
// backward into weight/bias, parallelize over output channels OC
#pragma omp parallel for
for (int o = 0; o < OC; o++) {
for (int b = 0; b < B; b++) {
for (int t = 0; t < T; t++) {
float* dout_bt = dout + b * T * OC + t * OC;
float* inp_bt = inp + b * T * C + t * C;
float* dwrow = dweight + o*C;
float d = dout_bt[o];
if (dbias != NULL) { dbias[o] += d; }
for (int i = 0; i < C; i++) {
dwrow[i] += inp_bt[i] * d;
}
}
}
}
}
void attention_forward(float* out, float* preatt, float* att,
float* inp,
int B, int T, int C, int NH) {
// input is (B, T, 3C) holding the query, key, value (Q, K, V) vectors
// preatt, att are (B, NH, T, T). NH = number of heads, T = sequence length
// that holds the pre-attention and post-attention scores (used in backward)
// output is (B, T, C)
// attention is the only layer that mixes information across time
// every other operation is applied at every (b,t) position independently
// (and of course, no layer mixes information across batch)
int C3 = C*3;
int hs = C / NH; // head size
float scale = 1.0 / sqrtf(hs);
#pragma omp parallel for collapse(3)
for (int b = 0; b < B; b++) {
for (int t = 0; t < T; t++) {
for (int h = 0; h < NH; h++) {
float* query_t = inp + b * T * C3 + t * C3 + h * hs;
float* preatt_bth = preatt + b*NH*T*T + h*T*T + t*T;
float* att_bth = att + b*NH*T*T + h*T*T + t*T;
// pass 1: calculate query dot key and maxval
float maxval = -10000.0f; // TODO something better
for (int t2 = 0; t2 <= t; t2++) {
float* key_t2 = inp + b * T * C3 + t2 * C3 + h * hs + C; // +C because it's key
// (query_t) dot (key_t2)
float val = 0.0f;
for (int i = 0; i < hs; i++) {
val += query_t[i] * key_t2[i];
}
val *= scale;
if (val > maxval) {
maxval = val;
}
preatt_bth[t2] = val;
}
// pass 2: calculate the exp and keep track of sum
// maxval is being calculated and subtracted only for numerical stability
float expsum = 0.0f;
for (int t2 = 0; t2 <= t; t2++) {
float expv = expf(preatt_bth[t2] - maxval);
expsum += expv;
att_bth[t2] = expv;
}
float expsum_inv = expsum == 0.0f ? 0.0f : 1.0f / expsum;
// pass 3: normalize to get the softmax
for (int t2 = 0; t2 < T; t2++) {
if (t2 <= t) {
att_bth[t2] *= expsum_inv;
} else {
// causal attention mask. not strictly necessary to set to zero here
// only doing this explicitly for debugging and checking to PyTorch
att_bth[t2] = 0.0f;
}
}
// pass 4: accumulate weighted values into the output of attention
float* out_bth = out + b * T * C + t * C + h * hs;
for (int i = 0; i < hs; i++) { out_bth[i] = 0.0f; }
for (int t2 = 0; t2 <= t; t2++) {
float* value_t2 = inp + b * T * C3 + t2 * C3 + h * hs + C*2; // +C*2 because it's value
float att_btht2 = att_bth[t2];
for (int i = 0; i < hs; i++) {
out_bth[i] += att_btht2 * value_t2[i];
}
}
}
}
}
}
void attention_backward(float* dinp, float* dpreatt, float* datt,
float* dout, float* inp, float* att,
int B, int T, int C, int NH) {
// inp/dinp are (B, T, 3C) Q,K,V
// att/datt/dpreatt are (B, NH, T, T)
// dout is (B, T, C)
int C3 = C*3;
int hs = C / NH; // head size
float scale = 1.0 / sqrtf(hs);
for (int b = 0; b < B; b++) {
for (int t = 0; t < T; t++) {
for (int h = 0; h < NH; h++) {
float* att_bth = att + b*NH*T*T + h*T*T + t*T;
float* datt_bth = datt + b*NH*T*T + h*T*T + t*T;
float* dpreatt_bth = dpreatt + b*NH*T*T + h*T*T + t*T;
float* dquery_t = dinp + b * T * C3 + t * C3 + h * hs;
float* query_t = inp + b * T * C3 + t * C3 + h * hs;
// backward pass 4, through the value accumulation
float* dout_bth = dout + b * T * C + t * C + h * hs;
for (int t2 = 0; t2 <= t; t2++) {
float* value_t2 = inp + b * T * C3 + t2 * C3 + h * hs + C*2; // +C*2 because it's value
float* dvalue_t2 = dinp + b * T * C3 + t2 * C3 + h * hs + C*2;
for (int i = 0; i < hs; i++) {
// in the forward pass this was:
// out_bth[i] += att_bth[t2] * value_t2[i];
// so now we have:
datt_bth[t2] += value_t2[i] * dout_bth[i];
dvalue_t2[i] += att_bth[t2] * dout_bth[i];
}
}
// backward pass 2 & 3, the softmax
// note that softmax (like e.g. tanh) doesn't need the input (preatt) to backward
for (int t2 = 0; t2 <= t; t2++) {
for (int t3 = 0; t3 <= t; t3++) {
float indicator = t2 == t3 ? 1.0f : 0.0f;
float local_derivative = att_bth[t2] * (indicator - att_bth[t3]);
dpreatt_bth[t3] += local_derivative * datt_bth[t2];
}
}
// backward pass 1, the query @ key matmul
for (int t2 = 0; t2 <= t; t2++) {
float* key_t2 = inp + b * T * C3 + t2 * C3 + h * hs + C; // +C because it's key
float* dkey_t2 = dinp + b * T * C3 + t2 * C3 + h * hs + C; // +C because it's key
for (int i = 0; i < hs; i++) {
// in the forward pass this was:
// preatt_bth[t2] += (query_t[i] * key_t2[i]) * scale;
// so now we have:
dquery_t[i] += key_t2[i] * dpreatt_bth[t2] * scale;
dkey_t2[i] += query_t[i] * dpreatt_bth[t2] * scale;
}
}
}
}
}
}
#define GELU_SCALING_FACTOR sqrtf(2.0f / M_PI)
void gelu_forward(float* out, float* inp, int N) {
// (approximate) GeLU elementwise non-linearity in the MLP block of Transformer
for (int i = 0; i < N; i++) {
float x = inp[i];
float cube = 0.044715f * x * x * x;
out[i] = 0.5f * x * (1.0f + tanhf(GELU_SCALING_FACTOR * (x + cube)));
}
}
// we want to use -Ofast optimization, but sadly GeLU breaks, so disable this flag just for it (#168)
#pragma float_control(precise, on, push)
#if defined(__GNUC__) && !defined(__clang__)
__attribute__((optimize("no-finite-math-only")))
#endif
void gelu_backward(float* dinp, float* inp, float* dout, int N) {
for (int i = 0; i < N; i++) {
float x = inp[i];
float cube = 0.044715f * x * x * x;
float tanh_arg = GELU_SCALING_FACTOR * (x + cube);
float tanh_out = tanhf(tanh_arg);
float coshf_out = coshf(tanh_arg);
float sech_out = 1.0f / (coshf_out * coshf_out);
float local_grad = 0.5f * (1.0f + tanh_out) + x * 0.5f * sech_out * GELU_SCALING_FACTOR * (1.0f + 3.0f * 0.044715f * x * x);
dinp[i] += local_grad * dout[i];
}
}
#pragma float_control(pop)
void residual_forward(float* out, float* inp1, float* inp2, int N) {
for (int i = 0; i < N; i++) {
out[i] = inp1[i] + inp2[i];
}
}
void residual_backward(float* dinp1, float* dinp2, float* dout, int N) {
for (int i = 0; i < N; i++) {
dinp1[i] += dout[i];
dinp2[i] += dout[i];
}
}
void softmax_forward(float* probs, float* logits, int B, int T, int V, int Vp) {
// output: probs are (B,T,Vp) of the probabilities (sums to 1.0 in each b,t position)
// input: logits is (B,T,Vp) of the unnormalized log probabilities
// Vp is the padded vocab size (for efficiency), V is the "real" vocab size
// example: Vp is 50304 and V is 50257
#pragma omp parallel for collapse(2)
for (int b = 0; b < B; b++) {
for (int t = 0; t < T; t++) {
// probs <- softmax(logits)
float* logits_bt = logits + b * T * Vp + t * Vp;
float* probs_bt = probs + b * T * Vp + t * Vp;
// maxval is only calculated and subtracted for numerical stability
float maxval = -10000.0f; // TODO something better
for (int i = 0; i < V; i++) {
if (logits_bt[i] > maxval) {
maxval = logits_bt[i];
}
}
float sum = 0.0f;
for (int i = 0; i < V; i++) {
probs_bt[i] = expf(logits_bt[i] - maxval);
sum += probs_bt[i];
}
// note we only loop to V, leaving the padded dimensions
for (int i = 0; i < V; i++) {
probs_bt[i] /= sum;
}
// for extra super safety we may wish to include this too,
// forcing the probabilities here to be zero, but it shouldn't matter
for (int i = V; i < Vp; i++) {
probs_bt[i] = 0.0f;
}
}
}
}
void crossentropy_forward(float* losses,
float* probs, int* targets,
int B, int T, int Vp) {
// output: losses is (B,T) of the individual losses at each position
// input: probs are (B,T,Vp) of the probabilities
// input: targets is (B,T) of integers giving the correct index in logits
for (int b = 0; b < B; b++) {
for (int t = 0; t < T; t++) {
// loss = -log(probs[target])
float* probs_bt = probs + b * T * Vp + t * Vp;
int ix = targets[b * T + t];
losses[b * T + t] = -logf(probs_bt[ix]);
}
}
}
void crossentropy_softmax_backward(float* dlogits,
float* dlosses, float* probs, int* targets,
int B, int T, int V, int Vp) {
// backwards through both softmax and crossentropy
for (int b = 0; b < B; b++) {
for (int t = 0; t < T; t++) {
float* dlogits_bt = dlogits + b * T * Vp + t * Vp;
float* probs_bt = probs + b * T * Vp + t * Vp;
float dloss = dlosses[b * T + t];
int ix = targets[b * T + t];
// note we only loop to V, leaving the padded dimensions
// of dlogits untouched, so gradient there stays at zero
for (int i = 0; i < V; i++) {
float p = probs_bt[i];
float indicator = i == ix ? 1.0f : 0.0f;
dlogits_bt[i] += (p - indicator) * dloss;
}
}
}
}
// ----------------------------------------------------------------------------
// GPT-2 model definition
typedef struct {
int max_seq_len; // max sequence length, e.g. 1024
int vocab_size; // vocab size, e.g. 50257
int padded_vocab_size; // padded to e.g. %128==0, 50304
int num_layers; // number of layers, e.g. 12
int num_heads; // number of heads in attention, e.g. 12
int channels; // number of channels, e.g. 768
} GPT2Config;
// the parameters of the model
#define NUM_PARAMETER_TENSORS 16
typedef struct {
float* wte; // (V, C)
float* wpe; // (maxT, C)
float* ln1w; // (L, C)
float* ln1b; // (L, C)
float* qkvw; // (L, 3*C, C)
float* qkvb; // (L, 3*C)
float* attprojw; // (L, C, C)
float* attprojb; // (L, C)
float* ln2w; // (L, C)
float* ln2b; // (L, C)
float* fcw; // (L, 4*C, C)
float* fcb; // (L, 4*C)
float* fcprojw; // (L, C, 4*C)
float* fcprojb; // (L, C)
float* lnfw; // (C)
float* lnfb; // (C)
} ParameterTensors;
void fill_in_parameter_sizes(size_t* param_sizes, GPT2Config config) {
size_t Vp = config.padded_vocab_size;
size_t C = config.channels;
size_t maxT = config.max_seq_len;
size_t L = config.num_layers;
param_sizes[0] = Vp * C; // wte
param_sizes[1] = maxT * C; // wpe
param_sizes[2] = L * C; // ln1w
param_sizes[3] = L * C; // ln1b
param_sizes[4] = L * (3 * C) * C; // qkvw
param_sizes[5] = L * (3 * C); // qkvb
param_sizes[6] = L * C * C; // attprojw
param_sizes[7] = L * C; // attprojb
param_sizes[8] = L * C; // ln2w
param_sizes[9] = L * C; // ln2b
param_sizes[10] = L * (4 * C) * C; // fcw
param_sizes[11] = L * (4 * C); // fcb
param_sizes[12] = L * C * (4 * C); // fcprojw
param_sizes[13] = L * C; // fcprojb
param_sizes[14] = C; // lnfw
param_sizes[15] = C; // lnfb
}
// allocate memory for the parameters and point the individual tensors to the right places
float* malloc_and_point_parameters(ParameterTensors* params, size_t* param_sizes) {
size_t num_parameters = 0;
for (size_t i = 0; i < NUM_PARAMETER_TENSORS; i++) {
num_parameters += param_sizes[i];
}
// malloc all parameters all at once
float* params_memory = (float*)mallocCheck(num_parameters * sizeof(float));
// assign all the tensors
float** ptrs[] = {
¶ms->wte, ¶ms->wpe, ¶ms->ln1w, ¶ms->ln1b, ¶ms->qkvw, ¶ms->qkvb,
¶ms->attprojw, ¶ms->attprojb, ¶ms->ln2w, ¶ms->ln2b, ¶ms->fcw, ¶ms->fcb,
¶ms->fcprojw, ¶ms->fcprojb, ¶ms->lnfw, ¶ms->lnfb
};
float* params_memory_iterator = params_memory;
for (size_t i = 0; i < NUM_PARAMETER_TENSORS; i++) {
*(ptrs[i]) = params_memory_iterator;
params_memory_iterator += param_sizes[i];
}
return params_memory;
}
#define NUM_ACTIVATION_TENSORS 23
typedef struct {
float* encoded; // (B, T, C)
float* ln1; // (L, B, T, C)
float* ln1_mean; // (L, B, T)
float* ln1_rstd; // (L, B, T)
float* qkv; // (L, B, T, 3*C)
float* atty; // (L, B, T, C)
float* preatt; // (L, B, NH, T, T)
float* att; // (L, B, NH, T, T)
float* attproj; // (L, B, T, C)
float* residual2; // (L, B, T, C)
float* ln2; // (L, B, T, C)
float* ln2_mean; // (L, B, T)
float* ln2_rstd; // (L, B, T)
float* fch; // (L, B, T, 4*C)
float* fch_gelu; // (L, B, T, 4*C)
float* fcproj; // (L, B, T, C)
float* residual3; // (L, B, T, C)
float* lnf; // (B, T, C)
float* lnf_mean; // (B, T)
float* lnf_rstd; // (B, T)
float* logits; // (B, T, V)
float* probs; // (B, T, V)
float* losses; // (B, T)
} ActivationTensors;
float* malloc_and_point_activations(ActivationTensors* acts, size_t* act_sizes) {
size_t num_activations = 0;
for (size_t i = 0; i < NUM_ACTIVATION_TENSORS; i++) {
num_activations += act_sizes[i];
}
float* acts_memory = (float*)mallocCheck(num_activations * sizeof(float));
float** ptrs[] = {
&acts->encoded, &acts->ln1, &acts->ln1_mean, &acts->ln1_rstd, &acts->qkv, &acts->atty,
&acts->preatt, &acts->att, &acts->attproj, &acts->residual2, &acts->ln2, &acts->ln2_mean,
&acts->ln2_rstd, &acts->fch, &acts->fch_gelu, &acts->fcproj, &acts->residual3, &acts->lnf,
&acts->lnf_mean, &acts->lnf_rstd, &acts->logits, &acts->probs, &acts->losses
};
float* acts_memory_iterator = acts_memory;
for (size_t i = 0; i < NUM_ACTIVATION_TENSORS; i++) {
*(ptrs[i]) = acts_memory_iterator;
acts_memory_iterator += act_sizes[i];
}
return acts_memory;
}
typedef struct {
GPT2Config config;
// the weights (parameters) of the model, and their sizes
ParameterTensors params;
size_t param_sizes[NUM_PARAMETER_TENSORS];
float* params_memory;
size_t num_parameters;
// gradients of the weights
ParameterTensors grads;
float* grads_memory;
// buffers for the AdamW optimizer
float* m_memory;
float* v_memory;
// the activations of the model, and their sizes
ActivationTensors acts;
size_t act_sizes[NUM_ACTIVATION_TENSORS];
float* acts_memory;
size_t num_activations;
// gradients of the activations
ActivationTensors grads_acts;
float* grads_acts_memory;
// other run state configuration
int batch_size; // the batch size (B) of current forward pass
int seq_len; // the sequence length (T) of current forward pass
int* inputs; // the input tokens for the current forward pass
int* targets; // the target tokens for the current forward pass
float mean_loss; // after a forward pass with targets, will be populated with the mean loss
} GPT2;
void gpt2_build_from_checkpoint(GPT2 *model, const char* checkpoint_path) {
// read in model from a checkpoint file
FILE *model_file = fopenCheck(checkpoint_path, "rb");
if (model_file == NULL) { printf("Error opening model file\n"); exit(1); }
int model_header[256];
freadCheck(model_header, sizeof(int), 256, model_file);
if (model_header[0] != 20240326) { printf("Bad magic model file\n"); exit(1); }
if (model_header[1] != 3) {
printf("Bad version in model file\n");
printf("---> HINT: try to re-run `python train_gpt2.py`\n");
exit(1);
}
// read in hyperparameters
size_t maxT, V, Vp, L, NH, C; // size_t to prevent int overflow
model->config.max_seq_len = maxT = model_header[2];
model->config.vocab_size = V = model_header[3];
model->config.num_layers = L = model_header[4];
model->config.num_heads = NH = model_header[5];
model->config.channels = C = model_header[6];
model->config.padded_vocab_size = Vp = model_header[7];
printf("[GPT-2]\n");
printf("max_seq_len: %zu\n", maxT);
printf("vocab_size: %zu\n", V);
printf("padded_vocab_size: %zu\n", Vp);
printf("num_layers: %zu\n", L);
printf("num_heads: %zu\n", NH);
printf("channels: %zu\n", C);
// allocate space for all the parameters and read them in
fill_in_parameter_sizes(model->param_sizes, model->config);
// count the number of parameters
size_t num_parameters = 0;
for (size_t i = 0; i < NUM_PARAMETER_TENSORS; i++) {
num_parameters += model->param_sizes[i];
}
printf("num_parameters: %zu\n", num_parameters);
model->num_parameters = num_parameters;
// read in all the parameters from file
model->params_memory = malloc_and_point_parameters(&model->params, model->param_sizes);
freadCheck(model->params_memory, sizeof(float), num_parameters, model_file);
fcloseCheck(model_file);
// other inits
model->acts_memory = NULL;
model->grads_memory = NULL;
model->m_memory = NULL;
model->v_memory = NULL;
model->grads_acts_memory = NULL;
model->inputs = NULL;
model->targets = NULL;
model->batch_size = 0;
model->seq_len = 0;
model->mean_loss = -1.0f; // -1.0f will designate no loss
}
void gpt2_forward(GPT2 *model, int* inputs, int* targets, size_t B, size_t T) {
// targets are optional and could be NULL
// ensure the model was initialized or error out
if (model->params_memory == NULL) {
printf("Error: model was not initialized properly.\n");
exit(1);
}
// convenience parameters (size_t to help prevent int overflow)
size_t V = model->config.vocab_size;
size_t Vp = model->config.padded_vocab_size;
size_t L = model->config.num_layers;
size_t NH = model->config.num_heads;
size_t C = model->config.channels;
// validate inputs, all indices must be in the range [0, V)
for(int i = 0; i < B * T; i++) {
assert(0 <= inputs[i] && inputs[i] < V);
if (targets != NULL) {
assert(0 <= targets[i] && targets[i] < V);
}
}
// allocate space for all the activations if needed (done here, lazily)
if(model->acts_memory == NULL) {
// record the current B,T as well
model->batch_size = B;
model->seq_len = T;
// and now allocate the space
model->act_sizes[0] = B * T * C; // encoded
model->act_sizes[1] = L * B * T * C; // ln1
model->act_sizes[2] = L * B * T; // ln1_mean
model->act_sizes[3] = L * B * T; // ln1_rstd
model->act_sizes[4] = L * B * T * 3*C; // qkv
model->act_sizes[5] = L * B * T * C; // atty
model->act_sizes[6] = L * B * NH * T * T; // preatt
model->act_sizes[7] = L * B * NH * T * T; // att
model->act_sizes[8] = L * B * T * C; // attproj
model->act_sizes[9] = L * B * T * C; // residual2
model->act_sizes[10] = L * B * T * C; // ln2
model->act_sizes[11] = L * B * T; // ln2_mean
model->act_sizes[12] = L * B * T; // ln2_rstd
model->act_sizes[13] = L * B * T * 4*C; // fch
model->act_sizes[14] = L * B * T * 4*C; // fch_gelu
model->act_sizes[15] = L * B * T * C; // fcproj
model->act_sizes[16] = L * B * T * C; // residual3
model->act_sizes[17] = B * T * C; // lnf
model->act_sizes[18] = B * T; // lnf_mean
model->act_sizes[19] = B * T; // lnf_rstd
model->act_sizes[20] = B * T * Vp; // logits
model->act_sizes[21] = B * T * Vp; // probs
model->act_sizes[22] = B * T; // losses
size_t num_activations = 0;
for (size_t i = 0; i < NUM_ACTIVATION_TENSORS; i++) {
num_activations += model->act_sizes[i];
}
printf("num_activations: %zu\n", num_activations);
model->num_activations = num_activations;
model->acts_memory = malloc_and_point_activations(&model->acts, model->act_sizes);
// also create memory for caching inputs and targets
model->inputs = (int*)mallocCheck(B * T * sizeof(int));
model->targets = (int*)mallocCheck(B * T * sizeof(int)); // might be unused if we never have targets but it's small
} else {
// validate B,T is consistent with how we've allocated the memory before
// in principle we could get more clever here in the future, for now this is safest
if (B != model->batch_size || T != model->seq_len) {
printf("Model: B=%d T=%d, Desired: B=%d T=%d\n", model->batch_size, model->seq_len, (int)B, (int)T);
exit(EXIT_FAILURE);
}
}
// cache the inputs/targets
memcpy(model->inputs, inputs, B * T * sizeof(int));
if (targets != NULL) {
memcpy(model->targets, targets, B * T * sizeof(int));
}
// forward pass
ParameterTensors params = model->params; // for brevity
ActivationTensors acts = model->acts;
float* residual;
encoder_forward(acts.encoded, inputs, params.wte, params.wpe, B, T, C); // encoding goes into residual[0]
for (int l = 0; l < L; l++) {
residual = l == 0 ? acts.encoded : acts.residual3 + (l-1) * B * T * C;
// get the pointers of the weights for this layer
float* l_ln1w = params.ln1w + l * C;
float* l_ln1b = params.ln1b + l * C;
float* l_qkvw = params.qkvw + l * 3*C * C;
float* l_qkvb = params.qkvb + l * 3*C;
float* l_attprojw = params.attprojw + l * C * C;
float* l_attprojb = params.attprojb + l * C;
float* l_ln2w = params.ln2w + l * C;
float* l_ln2b = params.ln2b + l * C;
float* l_fcw = params.fcw + l * 4*C * C;
float* l_fcb = params.fcb + l * 4*C;
float* l_fcprojw = params.fcprojw + l * C * 4*C;
float* l_fcprojb = params.fcprojb + l * C;
// get the pointers of the activations for this layer
float* l_ln1 = acts.ln1 + l * B * T * C;
float* l_ln1_mean = acts.ln1_mean + l * B * T;
float* l_ln1_rstd = acts.ln1_rstd + l * B * T;
float* l_qkv = acts.qkv + l * B * T * 3*C;
float* l_atty = acts.atty + l * B * T * C;
float* l_preatt = acts.preatt + l * B * NH * T * T;
float* l_att = acts.att + l * B * NH * T * T;
float* l_attproj = acts.attproj + l * B * T * C;
float* l_residual2 = acts.residual2 + l * B * T * C;
float* l_ln2 = acts.ln2 + l * B * T * C;
float* l_ln2_mean = acts.ln2_mean + l * B * T;
float* l_ln2_rstd = acts.ln2_rstd + l * B * T;
float* l_fch = acts.fch + l * B * T * 4*C;
float* l_fch_gelu = acts.fch_gelu + l * B * T * 4*C;
float* l_fcproj = acts.fcproj + l * B * T * C;
float* l_residual3 = acts.residual3 + l * B * T * C;
// now do the forward pass
layernorm_forward(l_ln1, l_ln1_mean, l_ln1_rstd, residual, l_ln1w, l_ln1b, B, T, C);
matmul_forward(l_qkv, l_ln1, l_qkvw, l_qkvb, B, T, C, 3*C);
attention_forward(l_atty, l_preatt, l_att, l_qkv, B, T, C, NH);
matmul_forward(l_attproj, l_atty, l_attprojw, l_attprojb, B, T, C, C);
residual_forward(l_residual2, residual, l_attproj, B*T*C);
layernorm_forward(l_ln2, l_ln2_mean, l_ln2_rstd, l_residual2, l_ln2w, l_ln2b, B, T, C);
matmul_forward(l_fch, l_ln2, l_fcw, l_fcb, B, T, C, 4*C);
gelu_forward(l_fch_gelu, l_fch, B*T*4*C);
matmul_forward(l_fcproj, l_fch_gelu, l_fcprojw, l_fcprojb, B, T, 4*C, C);
residual_forward(l_residual3, l_residual2, l_fcproj, B*T*C);
}
residual = acts.residual3 + (L-1) * B * T * C; // last residual is in residual3
layernorm_forward(acts.lnf, acts.lnf_mean, acts.lnf_rstd, residual, params.lnfw, params.lnfb, B, T, C);
matmul_forward(acts.logits, acts.lnf, params.wte, NULL, B, T, C, Vp);
softmax_forward(acts.probs, acts.logits, B, T, V, Vp);
// also forward the cross-entropy loss function if we have the targets
if (targets != NULL) {
crossentropy_forward(model->acts.losses, model->acts.probs, targets, B, T, Vp);
// for convenience also evaluate the mean loss
float mean_loss = 0.0f;
for (int i=0; i<B*T; i++) { mean_loss += model->acts.losses[i]; }
mean_loss /= B*T;
model->mean_loss = mean_loss;
} else {
// if we don't have targets, we don't have a loss
model->mean_loss = -1.0f;
}
}
void gpt2_zero_grad(GPT2 *model) {
if(model->grads_memory != NULL) { memset(model->grads_memory, 0, model->num_parameters * sizeof(float)); }
if(model->grads_acts_memory != NULL) { memset(model->grads_acts_memory, 0, model->num_activations * sizeof(float)); }
}
void gpt2_backward(GPT2 *model) {
// double check we forwarded previously, with targets
if (model->mean_loss == -1.0f) {
printf("Error: must forward with targets before backward\n");
exit(1);
}
// lazily allocate the memory for gradients of the weights and activations, if needed
if (model->grads_memory == NULL) {
model->grads_memory = malloc_and_point_parameters(&model->grads, model->param_sizes);
model->grads_acts_memory = malloc_and_point_activations(&model->grads_acts, model->act_sizes);
gpt2_zero_grad(model);
}
// convenience shortcuts (and size_t to help prevent int overflow)
size_t B = model->batch_size;
size_t T = model->seq_len;
size_t V = model->config.vocab_size;
size_t Vp = model->config.padded_vocab_size;
size_t L = model->config.num_layers;
size_t NH = model->config.num_heads;
size_t C = model->config.channels;
// backward pass: go in the reverse order of the forward pass, and call backward() functions
ParameterTensors params = model->params; // for brevity
ParameterTensors grads = model->grads;
ActivationTensors acts = model->acts;
ActivationTensors grads_acts = model->grads_acts;
// we kick off the chain rule by filling in dlosses with 1.0f/(B*T)
// technically this is a small, inline backward() pass of calculating
// total, final loss as the mean over all losses over all (B,T) positions in the batch
float dloss_mean = 1.0f / (B*T);
for (int i = 0; i < B*T; i++) { grads_acts.losses[i] = dloss_mean; }
crossentropy_softmax_backward(grads_acts.logits, grads_acts.losses, acts.probs, model->targets, B, T, V, Vp);
matmul_backward(grads_acts.lnf, grads.wte, NULL, grads_acts.logits, acts.lnf, params.wte, B, T, C, Vp);
float* residual = acts.residual3 + (L-1) * B * T * C; // last layer's residual
float* dresidual = grads_acts.residual3 + (L-1) * B * T * C; // write to last layer's residual
layernorm_backward(dresidual, grads.lnfw, grads.lnfb, grads_acts.lnf, residual, params.lnfw, acts.lnf_mean, acts.lnf_rstd, B, T, C);
for (int l = L-1; l >= 0; l--) {
residual = l == 0 ? acts.encoded : acts.residual3 + (l-1) * B * T * C;
dresidual = l == 0 ? grads_acts.encoded : grads_acts.residual3 + (l-1) * B * T * C;
// get the pointers of the weights for this layer
float* l_ln1w = params.ln1w + l * C;
float* l_qkvw = params.qkvw + l * 3*C * C;
float* l_attprojw = params.attprojw + l * C * C;
float* l_ln2w = params.ln2w + l * C;
float* l_fcw = params.fcw + l * 4*C * C;
float* l_fcprojw = params.fcprojw + l * C * 4*C;
// get the pointers of the gradients of the weights for this layer
float* dl_ln1w = grads.ln1w + l * C;
float* dl_ln1b = grads.ln1b + l * C;
float* dl_qkvw = grads.qkvw + l * 3*C * C;
float* dl_qkvb = grads.qkvb + l * 3*C;
float* dl_attprojw = grads.attprojw + l * C * C;
float* dl_attprojb = grads.attprojb + l * C;
float* dl_ln2w = grads.ln2w + l * C;
float* dl_ln2b = grads.ln2b + l * C;
float* dl_fcw = grads.fcw + l * 4*C * C;
float* dl_fcb = grads.fcb + l * 4*C;
float* dl_fcprojw = grads.fcprojw + l * C * 4*C;
float* dl_fcprojb = grads.fcprojb + l * C;
// get the pointers of the activations for this layer
float* l_ln1 = acts.ln1 + l * B * T * C;
float* l_ln1_mean = acts.ln1_mean + l * B * T;
float* l_ln1_rstd = acts.ln1_rstd + l * B * T;
float* l_qkv = acts.qkv + l * B * T * 3*C;
float* l_atty = acts.atty + l * B * T * C;
float* l_att = acts.att + l * B * NH * T * T;
float* l_residual2 = acts.residual2 + l * B * T * C;
float* l_ln2 = acts.ln2 + l * B * T * C;
float* l_ln2_mean = acts.ln2_mean + l * B * T;
float* l_ln2_rstd = acts.ln2_rstd + l * B * T;
float* l_fch = acts.fch + l * B * T * 4*C;
float* l_fch_gelu = acts.fch_gelu + l * B * T * 4*C;
// get the pointers of the gradients of the activations for this layer
float* dl_ln1 = grads_acts.ln1 + l * B * T * C;
float* dl_qkv = grads_acts.qkv + l * B * T * 3*C;
float* dl_atty = grads_acts.atty + l * B * T * C;
float* dl_preatt = grads_acts.preatt + l * B * NH * T * T;
float* dl_att = grads_acts.att + l * B * NH * T * T;
float* dl_attproj = grads_acts.attproj + l * B * T * C;
float* dl_residual2 = grads_acts.residual2 + l * B * T * C;
float* dl_ln2 = grads_acts.ln2 + l * B * T * C;
float* dl_fch = grads_acts.fch + l * B * T * 4*C;
float* dl_fch_gelu = grads_acts.fch_gelu + l * B * T * 4*C;
float* dl_fcproj = grads_acts.fcproj + l * B * T * C;
float* dl_residual3 = grads_acts.residual3 + l * B * T * C;
// backprop this layer
residual_backward(dl_residual2, dl_fcproj, dl_residual3, B*T*C);
matmul_backward(dl_fch_gelu, dl_fcprojw, dl_fcprojb, dl_fcproj, l_fch_gelu, l_fcprojw, B, T, 4*C, C);
gelu_backward(dl_fch, l_fch, dl_fch_gelu, B*T*4*C);
matmul_backward(dl_ln2, dl_fcw, dl_fcb, dl_fch, l_ln2, l_fcw, B, T, C, 4*C);
layernorm_backward(dl_residual2, dl_ln2w, dl_ln2b, dl_ln2, l_residual2, l_ln2w, l_ln2_mean, l_ln2_rstd, B, T, C);
residual_backward(dresidual, dl_attproj, dl_residual2, B*T*C);
matmul_backward(dl_atty, dl_attprojw, dl_attprojb, dl_attproj, l_atty, l_attprojw, B, T, C, C);
attention_backward(dl_qkv, dl_preatt, dl_att, dl_atty, l_qkv, l_att, B, T, C, NH);
matmul_backward(dl_ln1, dl_qkvw, dl_qkvb, dl_qkv, l_ln1, l_qkvw, B, T, C, 3*C);
layernorm_backward(dresidual, dl_ln1w, dl_ln1b, dl_ln1, residual, l_ln1w, l_ln1_mean, l_ln1_rstd, B, T, C);
}
encoder_backward(grads.wte, grads.wpe, grads_acts.encoded, model->inputs, B, T, C);
}
void gpt2_update(GPT2 *model, float learning_rate, float beta1, float beta2, float eps, float weight_decay, int t) {
// reference: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
// lazily allocate the memory for m_memory and v_memory
if (model->m_memory == NULL) {
model->m_memory = (float*)calloc(model->num_parameters, sizeof(float));
model->v_memory = (float*)calloc(model->num_parameters, sizeof(float));
}
for (size_t i = 0; i < model->num_parameters; i++) {
float param = model->params_memory[i];
float grad = model->grads_memory[i];
// update the first moment (momentum)
float m = beta1 * model->m_memory[i] + (1.0f - beta1) * grad;
// update the second moment (RMSprop)
float v = beta2 * model->v_memory[i] + (1.0f - beta2) * grad * grad;
// bias-correct both moments
float m_hat = m / (1.0f - powf(beta1, t));
float v_hat = v / (1.0f - powf(beta2, t));
// update
model->m_memory[i] = m;
model->v_memory[i] = v;
model->params_memory[i] -= learning_rate * (m_hat / (sqrtf(v_hat) + eps) + weight_decay * param);
}
}
void gpt2_free(GPT2 *model) {
free(model->params_memory);
free(model->grads_memory);
free(model->m_memory);
free(model->v_memory);
free(model->acts_memory);
free(model->grads_acts_memory);
free(model->inputs);
free(model->targets);
}
#ifndef TESTING
// if we are TESTING (see test_gpt2.c), we'll skip the int main below
// ----------------------------------------------------------------------------
// data loader lite
// returns random batches of data from a file of integers
typedef struct {
// hyperparameters
int B; // batch size
int T; // sequence length
// input handling and its state
FILE* tokens_file;
long file_size;
long current_position;
// output memory
int* batch;
int* inputs;
int* targets;
// convenience variables
int num_batches;
} DataLoader;
void dataloader_init(DataLoader *loader, const char* filename, int B, int T) {
loader->B = B;
loader->T = T;
// open the input file for reading
loader->tokens_file = fopen(filename, "rb");
if (loader->tokens_file == NULL) {
printf("Error opening tokens file\n");
exit(1);
}
// determine the file size
fseekCheck(loader->tokens_file, 0, SEEK_END);
loader->file_size = ftell(loader->tokens_file);
fseekCheck(loader->tokens_file, 0, SEEK_SET);
if (loader->file_size < (B * T + 1) * sizeof(int)) {
printf("Error: file size is too small for the batch size and sequence length\n");
exit(1);
}
loader->current_position = 0; // start at the beginning
// allocate space for B*T + 1 integers to store the inputs and targets
loader->batch = (int*) mallocCheck((B * T + 1) * sizeof(int));
loader->inputs = loader->batch;
loader->targets = loader->batch + 1; // targets are shifted by one
loader->num_batches = loader->file_size / (B * T * sizeof(int));
}
void dataloader_reset(DataLoader *loader) {
loader->current_position = 0;
}
void dataloader_next_batch(DataLoader *loader) {
int B = loader->B;
int T = loader->T;
// if we are at the end of the file, loop back to the beginning
if (loader->current_position + (B*T+1) * sizeof(int) > loader->file_size) {
loader->current_position = 0;
}
// read the B*T+1 integers from the file into batch
fseekCheck(loader->tokens_file, loader->current_position, SEEK_SET);
freadCheck(loader->batch, sizeof(int), B*T+1, loader->tokens_file);
// advance the current position by B*T integers
loader->current_position += B*T * sizeof(int);
}
void dataloader_free(DataLoader *loader) {
fcloseCheck(loader->tokens_file);
free(loader->batch);
}
// ----------------------------------------------------------------------------
// sampler
// the GPT-2 end-of-text token id
#define GPT2_EOT 50256
unsigned int random_u32(unsigned long long *state) {
// xorshift rng: https://en.wikipedia.org/wiki/Xorshift#xorshift.2A
*state ^= *state >> 12;
*state ^= *state << 25;
*state ^= *state >> 27;
return (*state * 0x2545F4914F6CDD1Dull) >> 32;
}
float random_f32(unsigned long long *state) { // random float32 in [0,1)
return (random_u32(state) >> 8) / 16777216.0f;
}
int sample_mult(float* probabilities, int n, float coin) {
// sample index from probabilities (they must sum to 1!)
// coin is a random number in [0, 1), usually from random_f32()
float cdf = 0.0f;
for (int i = 0; i < n; i++) {
cdf += probabilities[i];
if (coin < cdf) {
return i;
}
}
return n - 1; // in case of rounding errors
}
// ----------------------------------------------------------------------------
// main training loop
int main() {
// build the GPT-2 model from a checkpoint
GPT2 model;
gpt2_build_from_checkpoint(&model, "gpt2_124M.bin");
// build the DataLoaders from tokens files. for now use tiny_shakespeare if available, else tiny_stories
const char* tiny_stories_train = "data/TinyStories_train.bin";
const char* tiny_stories_val = "data/TinyStories_val.bin";
const char* tiny_shakespeare_train = "data/tiny_shakespeare_train.bin";
const char* tiny_shakespeare_val = "data/tiny_shakespeare_val.bin";
const char* train_tokens = access(tiny_shakespeare_train, F_OK) != -1 ? tiny_shakespeare_train : tiny_stories_train;
const char* val_tokens = access(tiny_shakespeare_val, F_OK) != -1 ? tiny_shakespeare_val : tiny_stories_val;
int B = 4; // batch size 4 (i.e. 4 independent token sequences will be trained on)
int T = 64; // sequence length 64 (i.e. each sequence is 64 tokens long). must be <= maxT, which is 1024 for GPT-2
DataLoader train_loader;
dataloader_init(&train_loader, train_tokens, B, T);
printf("train dataset num_batches: %d\n", train_loader.num_batches);
DataLoader val_loader;
dataloader_init(&val_loader, val_tokens, B, T);
printf("val dataset num_batches: %d\n", val_loader.num_batches);
int val_num_batches = 5;
// build the Tokenizer
Tokenizer tokenizer;
tokenizer_init(&tokenizer, "gpt2_tokenizer.bin");
// some memory for generating samples from the model
unsigned long long rng_state = 1337;
int* gen_tokens = (int*)mallocCheck(B * T * sizeof(int));
const int genT = 64; // number of steps of inference we will do
// train
struct timespec start, end;
for (int step = 0; step <= 40; step++) {
// once in a while estimate the validation loss
if (step % 10 == 0) {
float val_loss = 0.0f;
dataloader_reset(&val_loader);
for (int i = 0; i < val_num_batches; i++) {
dataloader_next_batch(&val_loader);
gpt2_forward(&model, val_loader.inputs, val_loader.targets, B, T);
val_loss += model.mean_loss;
}
val_loss /= val_num_batches;
printf("val loss %f\n", val_loss);
}
// once in a while do model inference to print generated text
if (step > 0 && step % 20 == 0) {
// fill up gen_tokens with the GPT2_EOT, which kicks off the generation
for(int i = 0; i < B * T; ++i) {
gen_tokens[i] = GPT2_EOT;
}
// now sample from the model autoregressively
printf("generating:\n---\n");
for (int t = 1; t < genT; t++) {
// note that inference is very wasteful here because for each token
// we re-calculate the forward pass for all of (B,T) positions from scratch
// but the inference here is just for sanity checking anyway
// and we can maybe optimize a bit more later, with careful tests
gpt2_forward(&model, gen_tokens, NULL, B, T);
// furthermore, below we're only using b=0 (i.e. the first row) of all B rows
// we're in principle running B "inference streams" in parallel here
// but only using position 0
// get the Vp-dimensional vector probs[0, t-1, :]
float* probs = model.acts.probs + (t-1) * model.config.padded_vocab_size;
float coin = random_f32(&rng_state);
// note we're only sampling from the first V elements, ignoring padding
// (the probabilities in the padded region should be zero anyway)
int next_token = sample_mult(probs, model.config.vocab_size, coin);
gen_tokens[t] = next_token;
// print the generated token, either using the Tokenizer or a fallback
if (tokenizer.init_ok) {
const char* token_str = tokenizer_decode(&tokenizer, next_token);
safe_printf(token_str);
} else {
// fall back to printing the token id
printf("%d ", next_token);
}
fflush(stdout);
}
printf("\n---\n");
}
// do a training step
clock_gettime(CLOCK_MONOTONIC, &start);
dataloader_next_batch(&train_loader);
gpt2_forward(&model, train_loader.inputs, train_loader.targets, B, T);
gpt2_zero_grad(&model);
gpt2_backward(&model);
gpt2_update(&model, 1e-4f, 0.9f, 0.999f, 1e-8f, 0.0f, step+1);
clock_gettime(CLOCK_MONOTONIC, &end);
double time_elapsed_s = (end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) / 1e9;
printf("step %d: train loss %f (took %f ms)\n", step, model.mean_loss, time_elapsed_s * 1000);
}
// free
dataloader_free(&train_loader);
dataloader_free(&val_loader);
tokenizer_free(&tokenizer);
gpt2_free(&model);
free(gen_tokens);
return 0;
}
#endif
解读
这段代码是一个用于训练GPT-2模型的C语言程序。GPT-2是一种基于Transformer架构的语言模型,常用于生成文本。这个程序的设计目标是提供一个简洁、易读的参考实现,它在CPU上运行,没有使用特定的处理器指令或内联函数,但使用了OpenMP来加速并行计算。 下面是程序的主要组成部分和它们的功能:
-
头文件和实用宏:程序包含了多个标准库头文件,如
stdio.h
、stdlib.h
等,以及一些自定义的宏定义,如fopenCheck
和mallocCheck
,用于检查文件操作和内存分配是否成功。 -
tokenizer.h:这个头文件提供了一个分词器的接口,它允许程序初始化分词器、解码分词和释放分词器资源。
-
模型参数和超参数:定义了
GPT2Config
结构体来保存模型的超参数,如最大序列长度、词汇表大小、层数、头数和通道数。同时,ParameterTensors
结构体用于保存模型的参数张量。 -
内存分配:程序提供了函数来分配模型参数和激活张量的内存。这些函数使用
malloc
来分配内存,并将参数和激活张量的指针设置到正确的地方。 -
前向和后向传播函数:程序实现了GPT-2模型中各个层的前向和后向传播函数,包括词嵌入层、位置编码层、自注意力层、全连接层和LayerNorm层。
-
注意力机制:实现了多头注意力机制的前向和后向传播,这是Transformer模型的核心部分。
-
激活函数:实现了GELU激活函数的前向和后向传播。
-
损失函数:实现了softmax函数和交叉熵损失函数的前向传播,以及对应的后向传播。
-
模型构建和训练:定义了
GPT2
结构体来保存模型的状态,包括配置、参数、激活张量、梯度等。提供了从检查点构建模型、执行前向传播、归零梯度、执行后向传播、参数更新和释放模型资源的函数。 -
数据加载器:实现了一个简单的数据加载器,用于从文件中加载批量数据。
-
采样器:实现了从概率分布中采样的函数。
-
主训练循环:程序的主体是一个训练循环,它使用数据加载器来获取训练数据,执行模型的前向传播、后向传播和参数更新,并定期输出验证损失和生成文本。
-
文本生成:程序还包括了一个生成文本的示例,它使用模型来生成新的文本序列。
整体来看,这个程序是一个完整的GPT-2模型训练和推理的实现,它展示了如何使用C语言来实现复杂的深度学习模型。程序中使用了大量的线性代数操作和优化技术,如批量归一化、残差连接和激活函数,这些都是深度学习模型中常见的组件。此外,程序还展示了如何使用随机数生成器来实现文本生成过程中的随机采样。
注释
这个C语言程序是一个用于训练GPT-2模型的实现。GPT-2是一种基于Transformer架构的语言模型,常用于文本生成任务。以下是程序的中文注释:
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <stdint.h>
#include <assert.h>
#include <math.h>
#include <time.h>
#include <string.h>
#include <unistd.h>
#ifdef OMP
#include <omp.h>
#endif
// 引入自定义的实用工具函数
#include "utils.h"
// 引入tokenizer相关的函数
#include "tokenizer.h"
// 定义模型参数结构体
typedef struct {
int max_seq_len; // 最大序列长度
int vocab_size; // 词汇表大小
int padded_vocab_size; // 填充后的词汇表大小
int num_layers; // 层数
int num_heads; // 注意力机制中的头数
int channels; // 通道数
} GPT2Config;
// 定义模型参数
typedef struct {
float* wte; // 词嵌入参数
float* wpe; // 位置编码参数
// ... 其他层的参数
} ParameterTensors;
// 定义激活张量
typedef struct {
float* encoded; // 编码器输出
// ... 其他层的激活张量
} ActivationTensors;
// 构建模型并从检查点加载参数
void gpt2_build_from_checkpoint(GPT2 *model, const char* checkpoint_path) {
// ... 实现细节
}
// 前向传播函数
void gpt2_forward(GPT2 *model, int* inputs, int* targets, size_t B, size_t T) {
// ... 实现细节
}
// 梯度清零函数
void gpt2_zero_grad(GPT2 *model) {
// ... 实现细节
}
// 反向传播函数
void gpt2_backward(GPT2 *model) {
// ... 实现细节
}
// 参数更新函数
void gpt2_update(GPT2 *model, float learning_rate, float beta1, float beta2, float eps, float weight_decay, int t) {
// ... 实现细节
}
// 释放模型资源
void gpt2_free(GPT2 *model) {
// ... 实现细节
}
// 数据加载器初始化函数
void dataloader_init(DataLoader *loader, const char* filename, int B, int T) {
// ... 实现细节
}
// 获取下一个数据批次
void dataloader_next_batch(DataLoader *loader) {
// ... 实现细节
}
// 释放数据加载器资源
void dataloader_free(DataLoader *loader) {
// ... 实现细节
}
// 主函数
int main() {
// 构建模型
GPT2 model;
gpt2_build_from_checkpoint(&model, "gpt2_124M.bin");
// 初始化数据加载器
DataLoader train_loader;
dataloader_init(&train_loader, "tiny_shakespeare_train.bin", B, T);
// 初始化分词器
Tokenizer tokenizer;
tokenizer_init(&tokenizer, "gpt2_tokenizer.bin");
// 训练循环
for (int step = 0; step <= 40; step++) {
// 验证集损失评估
if (step % 10 == 0) {
// ... 实现细节
}
// 模型生成文本
if (step > 0 && step % 20 == 0) {
// ... 实现细节
}
// 训练步骤
dataloader_next_batch(&train_loader);
gpt2_forward(&model, train_loader.inputs, train_loader.targets, B, T);
gpt2_zero_grad(&model);
gpt2_backward(&model);
gpt2_update(&model, 1e-4f, 0.9f, 0.999f, 1e-8f, 0.0f, step+1);
}
// 释放资源
dataloader_free(&train_loader);
tokenizer_free(&tokenizer);
gpt2_free(&model);
return 0;
}
这个程序首先构建了一个GPT-2模型,然后使用数据加载器从文件中读取训练数据。在训练循环中,程序执行前向传播、梯度清零、反向传播和参数更新步骤。程序还定期评估验证集损失,并生成一些文本以展示模型的生成能力。最后,程序释放了所有分配的资源。
这个程序是一个用于训练GPT-2模型的C语言实现。GPT-2是一个基于Transformer架构的自然语言处理模型,通常用于文本生成任务。程序包括数据加载、模型构建、前向传播、反向传播、参数更新以及文本生成等部分。下面是对程序中每个函数的中文详细注释:
主要结构体和宏定义
GPT2Config
:定义了GPT-2模型的主要配置参数,如最大序列长度、词汇表大小、层数、头数和通道数。ParameterTensors
和ActivationTensors
:分别定义了模型的参数张量和激活张量,用于存储模型的权重和中间激活值。NUM_PARAMETER_TENSORS
和NUM_ACTIVATION_TENSORS
:定义了参数张量和激活张量的数量。GPT2
:是一个结构体,包含了模型的配置、参数、激活值、梯度、优化器状态等所有信息。
辅助函数
fill_in_parameter_sizes
:计算模型参数张量的大小,填充到param_sizes
数组中。malloc_and_point_parameters
:分配内存并初始化ParameterTensors
结构体中的指针。malloc_and_point_activations
:分配内存并初始化ActivationTensors
结构体中的指针。
模型构建函数
gpt2_build_from_checkpoint
:从检查点文件中读取模型参数,初始化模型。
前向传播函数
gpt2_forward
:执行模型的前向传播,计算输入文本的激活值和最终的预测概率。
损失计算函数
crossentropy_forward
:计算交叉熵损失,用于训练时评估模型性能。
反向传播函数
gpt2_backward
:执行模型的反向传播,计算参数梯度。
参数更新函数
gpt2_update
:使用AdamW优化器更新模型参数。
梯度清零函数
gpt2_zero_grad
:将模型参数的梯度清零。
释放资源函数
gpt2_free
:释放模型分配的所有资源。
数据加载器
dataloader_init
、dataloader_reset
、dataloader_next_batch
和dataloader_free
:用于从文件中加载数据,支持训练和验证数据集的批量处理。
采样器
sample_mult
:从概率分布中采样一个整数。
主函数
main
:程序的入口点,包含了模型训练的主要循环。在循环中,程序将执行数据加载、模型前向传播、损失计算、反向传播、参数更新等步骤。此外,程序还将定期输出验证损失和生成文本样本。
注意事项
- 程序中使用了大量的自定义函数,如
fopenCheck
、freadCheck
、mallocCheck
等,这些函数用于检查文件操作和内存分配是否成功,以避免程序运行中出现错误。 - 程序中的注释提供了函数的基本功能描述,但具体的数学操作和算法逻辑需要更深入的机器学习和深度学习知识来理解。
- 程序中的一些函数和变量使用了OpenMP指令进行并行化,以提高运行效率。
由于程序较长,这里仅提供了一个高层次的概述。如果需要对特定函数或代码段进行更详细的解释,请指出具体位置。
复制再试一次分享