AI 问答 API 对接说明

news2025/1/13 10:11:20

我们知道,市面上一些问答 API 的对接还是相对没那么容易的,比如说 OpenAI 的 Chat Completions API,它有一个 messages 字段,如果要完成连续对话,需要我们把所有的上下文历史全部传递,同时还需要处理 Token 超出限制的问题。

AceDataCloud 提供的 AI 问答 API 针对上述情况进行了优化,在保证问答效果不变的情况下,对连续对话的实现进行了封装,对接时无需再关心 messages 的传递,也无需关心 Token 超出限制的问题(API 内部自动进行了处理),同时也提供了对话查询、修改等功能,使得整体的对接大大简化。

本文档会介绍下 AI 问答 API 的对接说明。

申请流程

要使用 API,需要先到 AI 问答 API[1] 对应页面申请对应的服务,(文章底部原文链接可进入官网)

扫码打开官网注册获免费 API 额度

扫码打开官网注册获免费 API 额度

进入页面之后,点击「Acquire」按钮,如图所示:

如果你尚未登录或注册,会自动跳转到登录页面邀请您来注册和登录,登录注册之后会自动返回当前页面。

在首次申请时会有免费额度赠送,可以免费使用该 API。

基本使用

首先先了解下基本的使用方式,就是输入问题,获得回答,只需要简单地传递一个 question 字段,并指定相应模型即可。

比如说询问:“What's your name?”,我们接下来就可以在界面上填写对应的内容,如图所示:

可以看到这里我们设置了 Request Headers,包括:

  • accept:想要接收怎样格式的响应结果,这里填写为 application/json,即 JSON 格式。

  • authorization:调用 API 的密钥,申请之后可以直接下拉选择。

另外设置了 Request Body,包括:

  • model:模型的选择,比如主流的 GPT 3.5,GPT 4 等。

  • question:需要询问的问题,可以是任意的纯文本。

选择之后,可以发现右侧也生成了对应代码,如图所示:

点击「Try」按钮即可进行测试,如上图所示,这里我们就得到了如下结果:

{
  "answer": "I am an AI language model developed by OpenAI and I don't have a personal name. However, you can call me GPT or simply Chatbot. How can I assist you today?"
}

可以看到,这里返回的结果中有一个 answer 字段,就是该问题的回答。我们可以输入任意问题,就可以得到任意的回答。

如果你不需要任何多轮对话的支持,这个 API 可以极大方便你的对接。

另外如果想生成对应的对接代码,可以直接复制生成,例如 CURL 的代码如下:

curl -X POST 'https://api.acedata.cloud/aichat/conversations' \
-H 'accept: application/json' \
-H 'authorization: Bearer {token}' \
-H 'content-type: application/json' \
-d '{
  "model": "gpt-3.5",
  "question": "What's your name?"
}'

Python 的对接代码如下:

import requests

url = "https://api.acedata.cloud/aichat/conversations"

headers = {
    "accept": "application/json",
    "authorization": "Bearer {token}",
    "content-type": "application/json"
}

payload = {
    "model": "gpt-3.5",
    "question": "What's your name?"
}

response = requests.post(url, json=payload, headers=headers)
print(response.text)

多轮对话

如果您想要对接多轮对话功能,需要传递一个额外参数 stateful,其值为 true,后续的每次请求都要携带该参数。传递了 stateful 参数之后,API 会额外返回一个 id 参数,代表当前对话的 ID,后续我们只需要将该 ID 作为参数传递,就可以轻松实现多轮对话。

下面我们来演示下具体的操作。

第一次请求,将 stateful 参数设置为 true,并正常传递 modelquestion 参数,如图所示:

对应代码如下:

curl -X POST 'https://api.acedata.cloud/aichat/conversations' \
-H 'accept: application/json' \
-H 'authorization: Bearer {token}' \
-H 'content-type: application/json' \
-d '{
  "model": "gpt-3.5",
  "question": "What's your name?",
  "stateful": true
}'

可以得到如下回答:

{
  "answer": "I am an AI language model created by OpenAI and I don't have a personal name. You can simply call me OpenAI or ChatGPT. How can I assist you today?",
  "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"
}

第二次请求,将第一次请求返回的 id 字段作为参数传递,同时 stateful 参数依然设置为 true,询问「What I asked you just now?」,如图所示:

对应代码如下:

curl -X POST 'https://api.acedata.cloud/aichat/conversations' \
-H 'accept: application/json' \
-H 'authorization: Bearer {token}' \
-H 'content-type: application/json' \
-d '{
  "model": "gpt-3.5",
  "stateful": true,
  "id": "7cdb293b-2267-4979-a1ec-48d9ad149916",
  "question": "What I asked you just now?"
}'

结果如下:

{
  "answer": "You asked me what my name is. As an AI language model, I do not possess a personal identity, so I don't have a specific name. However, you can refer to me as OpenAI or ChatGPT, the names used for this AI model. Is there anything else I can help you with?",
  "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"
}

可以看到,就可以根据上下文回答对应的问题了。

流式响应

该接口也支持流式响应,这对网页对接十分有用,可以让网页实现逐字显示效果。

如果想流式返回响应,可以更改请求头里面的 accept 参数,修改为 application/x-ndjson

修改如图所示,不过调用代码需要有对应的更改才能支持流式响应。

accept 修改为 application/x-ndjson 之后,API 将逐行返回对应的 JSON 数据,在代码层面我们需要做相应的修改来获得逐行的结果。

Python 样例调用代码:

import requests

url = "https://api.acedata.cloud/aichat/conversations"

headers = {
    "accept": "application/x-ndjson",
    "authorization": "Bearer {token}",
    "content-type": "application/json"
}

payload = {
    "model": "gpt-3.5",
    "stateful": True,
    "id": "7cdb293b-2267-4979-a1ec-48d9ad149916",
    "question": "Hello"
}

response = requests.post(url, json=payload, headers=headers, stream=True)
for line in response.iter_lines():
    print(line.decode())

输出效果如下:

{"answer": "Hello", "delta_answer": "Hello", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello!", "delta_answer": "!", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello! How", "delta_answer": " How", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello! How can", "delta_answer": " can", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello! How can I", "delta_answer": " I", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello! How can I assist", "delta_answer": " assist", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello! How can I assist you", "delta_answer": " you", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello! How can I assist you today", "delta_answer": " today", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}
{"answer": "Hello! How can I assist you today?", "delta_answer": "?", "id": "7cdb293b-2267-4979-a1ec-48d9ad149916"}

可以看到,响应里面的 answer 即为最新的回答内容,delta_answer 则是新增的回答内容,您可以根据结果来对接到您的系统中。

JavaScript 也是支持的,比如 Node.js 的流式调用代码如下:

const axios = require("axios");

const url = "https://api.acedata.cloud/aichat/conversations";
const headers = {
  "Content-Type": "application/json",
  Accept: "application/x-ndjson",
  Authorization: "Bearer {token}",
};
const body = {
  question: "Hello",
  model: "gpt-3.5",
  stateful: true,
};

axios
  .post(url, body, { headers: headers, responseType: "stream" })
  .then((response) => {
    console.log(response.status);
    response.data.on("data", (chunk) => {
      console.log(chunk.toString());
    });
  })
  .catch((error) => {
    console.error(error);
  });

Java 样例代码:

String url = "https://api.acedata.cloud/aichat/conversations";
OkHttpClient client = new OkHttpClient();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\"question\": \"Hello\", \"stateful\": true, \"model\": \"gpt-3.5\"}");
Request request = new Request.Builder()
        .url(url)
        .post(body)
        .addHeader("Content-Type", "application/json")
        .addHeader("Accept", "application/x-ndjson")
        .addHeader("Authorization", "Bearer {token}")
        .build();

client.newCall(request).enqueue(new Callback() {
    @Override
    public void onFailure(Call call, IOException e) {
        e.printStackTrace();
    }

    @Override
    public void onResponse(Call call, Response response) throws IOException {
        if (!response.isSuccessful()) throw new IOException("Unexpected code " + response);
        try (BufferedReader br = new BufferedReader(
                new InputStreamReader(response.body().byteStream(), "UTF-8"))) {
            String responseLine;
            while ((responseLine = br.readLine()) != null) {
                System.out.println(responseLine);
            }
        }
    }
});

其他语言可以另外自行改写,原理都是一样的。

模型预设

我们知道,OpenAI 相关的 API 有对应的 system_prompt 的概念,就是给整个模型设置一个预设,比如它叫什么名字等等。本 AI 问答 API 也暴露了这个参数,叫做 preset,利用它我们可以给模型增加预设,我们用一个例子来体验下:

这里我们额外添加 preset 字段,内容为 You are a professional artist,如图所示:

对应代码如下:

curl -X POST 'https://api.acedata.cloud/aichat/conversations' \
-H 'accept: application/json' \
-H 'authorization: Bearer {token}' \
-H 'content-type: application/json' \
-d '{
  "model": "gpt-3.5",
  "stateful": true,
  "question": "What can you help me?",
  "preset": "You are a professional artist"
}'

运行结果如下:

{
    "answer": "As a professional artist, I can offer a range of services and assistance depending on your specific needs. Here are a few ways I can help you:\n\n1. Custom Artwork: If you have a specific vision or idea, I can create custom artwork for you. This can include paintings, drawings, digital art, or any other medium you prefer.\n\n2. Commissioned Pieces: If you have a specific subject or concept in mind, I can create commissioned art pieces tailored to your preferences. This could be for personal enjoyment or as a unique gift for someone special.\n\n3. Art Consultation: If you need guidance on art selection, interior design, or how to showcase and display art in your space, I can provide professional advice to help enhance your aesthetic sense and create a cohesive look."
}

可以看到这里我们告诉 GPT 他是一个机器人,然后问它可以为我们做什么,他就可以扮演一个机器人的角色来回答问题了。

图片识别

本 AI 也能支持添加附件进行图片识别,通过 references 传递对应图片链接即可,比如我这里有一张苹果的图片,如图所示:

该图片的链接是 https://cdn.acedata.cloud/ht05g0.png,我们直接将其作为 references 参数传递即可,同时需要注意的是,模型必须要选择支持视觉识别的模型,目前支持的是 gpt-4-vision,所以输入如下:

对应的代码如下:

curl -X POST 'https://api.acedata.cloud/aichat/conversations' \
-H 'accept: application/json' \
-H 'authorization: Bearer {token}' \
-H 'content-type: application/json' \
-d '{
  "model": "gpt-4-vision",
  "question": "How many apples in the picture?",
  "references": ["https://cdn.acedata.cloud/ht05g0.png"]
}'

运行结果如下:

{
  "answer": "There are 5 apples in the picture."
}

可以看到,我们就成功得到了对应图片的回答结果。

联网问答

本 API 还支持联网模型,包括 GPT-3.5、GPT-4 均能支持,在 API 背后有一个自动搜索互联网并总结的过程,我们可以选择模型为 gpt-3.5-browsing 来体验下,如图所示:

代码如下:

curl -X POST 'https://api.acedata.cloud/aichat/conversations' \
-H 'accept: application/json' \
-H 'authorization: Bearer {token}' \
-H 'content-type: application/json' \
-d '{
  "model": "gpt-3.5-browsing",
  "question": "What's the weather of New York today?"
}'

运行结果如下:

{
  "answer": "The weather in New York today is as follows:\n- Current Temperature: 16°C (60°F)\n- High: 16°C (60°F)\n- Low: 10°C (50°F)\n- Humidity: 47%\n- UV Index: 6 of 11\n- Sunrise: 5:42 am\n- Sunset: 8:02 pm\n\nIt's overcast with a chance of occasional showers overnight, and the chance of rain is 50%.\nFor more details, you can visit [The Weather Channel](https://weather.com/weather/tenday/l/96f2f84af9a5f5d452eb0574d4e4d8a840c71b05e22264ebdc0056433a642c84).\n\nIs there anything else you'd like to know?"
}

可以看到,这里它自动联网搜索了 The Weather Channel 网站,并获得了里面的信息,然后进一步返回了实时结果。

如果对模型回答质量有更高要求,可以将模型更换为 gpt-4-browsing,回答效果会更好。

[1]

AI 问答 API: https://platform.acedata.cloud/documents/59fb1199-6694-4afb-a222-3554d7f7d05a?inviter_id=aef91f35-f7f9-494d-bcf6-3a533440101f 。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1668921.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

47岁古天乐唯一承认女友约「御用阿妈」过母亲节

日前关宝慧在IG晒出一张聚会照,并写道:「预祝各位#母亲节快乐🌹#dinner #happy #friends #好味」相中所见,前TVB金牌监制潘嘉德、卢宛茵、黄𨥈莹、黎萨达姆都有出席饭局。 当中黄𨥈莹身穿卡其色西装褛&…

【35分钟掌握金融风控策略24】定额策略实战

目录 基于客户风险评级的定额策略 确定托底额度和盖帽额度 确定基础额度 基于客户风险评级确定风险系数 计算最终授信额度 确定授信有效期 基于客户风险评级的定额策略 在开发定额策略时,精准确定客户的基础额度是一个关键步骤,通常会基于客户的收…

整体安全设计

人员和资产的安全是当今许多组织的最高优先事项之一。随着暴力事件在美国各地盛行——枪击事件、袭击、内乱等——建筑物业主必须为其建筑物及其居住者的安全做好计划。 为了创造一个安全的环境,新设施或园区的安全设计必须超越基本的摄像头和访问控制设备&#xf…

纯血鸿蒙APP实战开发——首页下拉进入二楼效果案例

介绍 本示例主要介绍了利用position和onTouch来实现首页下拉进入二楼、二楼上划进入首页的效果场景,利用translate和opacity实现动效的移动和缩放,并将界面沉浸式(全屏)显示。 效果图预览 使用说明 向下滑动首页页面超过触发距…

【Linux】centos7安装软件(rpm、yum、编译安装),补充:查找命令的相关文件路径,yum安装mysql

【Linux】技术上,Linux是内核。而术语上,我们通常说的Linux是完整的操作系统,其实称为"Linux发行版",是将Linux内核和应用系统打包,由不同的发行家族发行了不同版本。Linux发行版众多,主要有RedH…

HCIP-Datacom-ARST自选题库_07_割接【35道题】

一、单选题 1.在割接的测试阶段,符合以下哪一种情况的可以判断为割接成功? 网络承载的上层应用业务测试正常 网络设备的配置查看结果正常 网络流量路径正常 路由协议运行正常 2.在割接的测试阶段中,表明已经完成测试的标准是: IP设备的配置查看结…

org.postgresql.util.PSQLException: 错误: 关系 “dual“ 不存在

springboot 项目连接 postgreps,启动时报错 org.postgresql.util.PSQLException: 错误: 关系 "dual" 不存在。 查阅资料后发现这是由配置文件中的配置 datasource-dynamic-druid-validationQuery 导致的 spring:datasource:druid:stat-view-servlet:ena…

二叉树介绍

引入 定义 区别 定义不同 形态不同 基本形态

Ubuntu18.04解决有线网卡连接问题(不更新内核成功版)

https://www.realtek.com/Download/List?cate_id584 (需要翻一下) 不想自己去下载,直接去我资源里下载我上传的包就好啦(😂😂😂刚刚看了下别人下载要VIP还是自己去网站下很快的) 下载后解压,在…

FreeRTOS二值信号量

目录 一、信号量的概念 1、信号量的基本概念 2、信号量的分类 二、二值信号量简介 三、二值信号量相关API 1、创建二值信号量 2、释放二值信号量 3、获取二值信号量 四、二值信号量实操 1、实验需求 2、CubeMX配置 3、代码实现 一、信号量的概念 1、信号量的基本概…

从零开始的软件测试学习之旅(七)接口测试流程及原则案例

接口测试三要素及案例 接口测试介绍接口预定义接口测试的主要作用测试接口流程如下接口测试三要素接口测试分类RESTful架构风格RESTful架构三要素要素一要素二要素三 RESTful架构风格实现restful架构案例接口测试流程接口测试原则功能测试自动化测性能测试 复习复盘 接口测试介…

MYSQL:MySQL 事务隔离级别详解

一、MySQL事务是什么? MySQL事务是一组在数据库中执行的操作,这些操作要么全部成功执行,要么全部不执行,以确保数据库的完整性和一致性。 事务的 ACID 事务具有四个特征:原子性( Atomicity )、…

COX回归特征筛选

任务:利用cox筛选出P值小于0.05的特征 数据的格式第一列为标签,第二列为时间,第三列及后为特征 先想一想,想好了再更新 这里我们先举一个例子: import pandas as pd from lifelines import CoxPHFitter# 创建示例数…

【随笔】Git 高级篇 -- 远程跟踪分支 git checkout -b | branch -u(三十五)

💌 所属专栏:【Git】 😀 作  者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! 💖 欢迎大…

Github 2024-05-12 开源项目日报 Top10

根据Github Trendings的统计,今日(2024-05-12统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量TypeScript项目5Python项目2非开发语言项目2Vue项目1Rust项目1AFFiNE: 下一代知识库 创建周期:649 天开发语言:TypeScript协议类型:OtherSta…

2024最新最全【NMAP】零基础入门到精通

一、Nmap介绍 Nmap(Network Mapper,网络映射器)是一款开放源代码的网络探测和安全审核工具。它被设计用来快速扫描大型网络,包括主机探测与发现、开放的端口情况、操作系统与应用服务指纹识别、WAF识别及常见安全漏洞。它的图形化界面是Zenmap&#xff…

AJAX前端与后端交互技术知识点以及案例

Promise promise对象用于表示一个异步操作的最终完成(或失败)及其结果值 好处: 逻辑更清晰了解axios函数内部运作机制成功和失败状态,可以关联对应处理程序能解决回调函数地狱问题 /*** 目标:使用Promise管理异步任…

基于JAVA的微信小程序二手车交易平台(源码)

博主介绍:✌程序员徐师兄、8年大厂程序员经历。全网粉丝15w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…

顺序表、单链表和双链表

2.算法设计题 1.合并递增链表 1.算法分析: 两个链表合并,由于限定不能用额外的存储空间,所以链表比较合适。 算法步骤: 第一步:取出b表中的第一个结点; 第二步:和a表中的结点依次比较&…

全国院校及梯度排序深度解析课(免费下载-帮助更多高考生做出人生重要的选择。)

"全国院校及梯度排序深度解析课"旨在深入探讨全国院校的排名及梯度排序原理。通过系统解析各院校的学术声誉、师资力量、科研水平等因素,帮助学员全面了解院校排名的背后逻辑,为选择合适院校提供理论支持。 课程大小:7G 课程下载…