第十二届蓝桥杯省赛真题 Java A 组【原卷】

news2024/11/27 18:28:31

文章目录

发现宝藏

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【宝藏入口】。


第十二届蓝桥杯大赛软件赛省赛
Java A 组

【考生须知】

考试开始后, 选手首先下载题目, 并使用考场现场公布的解压密码解压试题。

考试时间为 4 小时。考试期间选手可浏览自己已经提交的答案, 被浏览的答案允许拷贝。时间截止后,将无法继续提交或浏览答案。

对同一题目, 选手可多次提交答案, 以最后一次提交的答案为准。

选手必须通过浏览器方式提交自己的答案。选手在其它位置的作答或其它方式提交的答案无效。

试题包含 “结果填空” 和 “程序设计” 两种题型。

结果填空题: 要求选手根据题目描述直接填写结果。求解方式不限。不要求源代码。把结果填空的答案直接通过网页提交即可, 不要书写多余的内容。

程序设计题: 要求选手设计的程序对于给定的输入能给出正确的输出结果。考生的程序只有能运行出正确结果才有机会得分。

注意: 在评卷时使用的输入数据与试卷中给出的示例数据可能是不同的。选手的程序必须是通用的, 不能只对试卷中给定的数据有效。

所有源码必须在同一文件中。调试通过后,拷贝提交。

注意: 不要使用 package 语句。

注意:选手代码的主类名必须为: Main, 否则会被判为无效代码。

注意: 如果程序中引用了类库, 在提交时必须将 import 语句与程序的其他部分同时提交。只允许使用 Java 自带的类库。


试题 A: 相乘

本题总分: 5 分

【问题描述】

小蓝发现, 他将 1 至 1000000007 之间的不同的数与 2021 相乘后再求除以 1000000007 的余数, 会得到不同的数。

小蓝想知道, 能不能在 1 至 1000000007 之间找到一个数, 与 2021 相乘后再除以 1000000007 后的余数为 999999999 。如果存在, 请在答案中提交这个数:如果不存在, 请在答案中提交 0 。

【答案提交】

这是一道结果填空的题, 你只需要算出结果后提交即可。本题的结果为一个整数, 在提交答案时只填写这个整数, 填写多余的内容将无法得分。


试题 B: 直线

本题总分: 5 分

【问题描述】

在平面直角坐标系中, 两点可以确定一条直线。如果有多点在一条直线上,那么这些点中任意两点确定的直线是同一条。

给定平面上 2 × 3 2 \times 3 2×3 个整点 { ( x , y ) ∣ 0 ≤ x < 2 , 0 ≤ y < 3 , x ∈ Z , y ∈ Z } \{(x, y) \mid 0 \leq x<2,0 \leq y<3, x \in Z, y \in Z\} {(x,y)0x<2,0y<3,xZ,yZ}, 即横坐标是 0 到 1 (包含 0 和 1) 之间的整数、纵坐标是 0 到 2 (包含 0 和 2 ) 之间的整数的点。这些点一共确定了 11 条不同的直线。

给定平面上 20 × 21 20 \times 21 20×21 个整点 { ( x , y ) ∣ 0 ≤ x < 20 , 0 ≤ y < 21 , x ∈ Z , y ∈ Z } \{(x, y) \mid 0 \leq x<20,0 \leq y<21, x \in Z, y \in Z\} {(x,y)0x<20,0y<21,xZ,yZ}, 即横坐标是 0 到 19 (包含 0 和 19) 之间的整数、纵坐标是 0 到 20 (包含 0 和 20 ) 之间的整数的点。请问这些点一共确定了多少条不同的直线。

【答案提交】

这是一道结果填空的题, 你只需要算出结果后提交即可。本题的结果为一个整数, 在提交答案时只填写这个整数, 填写多余的内容将无法得分。


试题 C : \mathrm{C}: C: 货物摆放

本题总分: 10 分

【问题描述】

小蓝有一个超大的仓库, 可以摆放很多货物。

现在, 小蓝有 n n n 箱货物要摆放在仓库, 每箱货物都是规则的正方体。小蓝规定了长、宽、高三个互相垂直的方向, 每箱货物的边都必须严格平行于长、宽、高。

小蓝希望所有的货物最终摆成一个大的长方体。即在长、宽、高的方向上分别堆 L 、 W 、 H L 、 W 、 H LWH 的货物, 满足 n = L × W × H n=L \times W \times H n=L×W×H

给定 n n n, 请问有多少种堆放货物的方案满足要求。

例如, 当 n = 4 n=4 n=4 时, 有以下 6 种方案: 1 × 1 × 4 、 1 × 2 × 2 、 1 × 4 × 1 、 2 × 1 × 2 1 \times 1 \times 4 、 1 \times 2 \times 2 、 1 \times 4 \times 1 、 2 \times 1 \times 2 1×1×41×2×21×4×12×1×2 2 × 2 × 1 、 4 × 1 × 1 2 \times 2 \times 1 、 4 \times 1 \times 1 2×2×14×1×1

请问, 当 n = 2021041820210418 n=2021041820210418 n=2021041820210418 (注意有 16 位数字) 时, 总共有多少种方案?

提示: 建议使用计算机编程解决问题。

【答案提交】

这是一道结果填空的題, 你只需要算出结果后提交即可。本题的结果为一个整数, 在提交答案时只填写这个整数, 填写多余的内容将无法得分。


试题 D: 路径

本题总分: 10 分

【问题描述】

小蓝学习了最短路径之后特别高兴, 他定义了一个特别的图, 希望找到图中的最短路径。

小蓝的图由 2021 个结点组成, 依次编号 1 至 2021。

对于两个不同的结点 a , b a, b a,b, 如果 a a a b b b 的差的绝对值大于 21 , 则两个结点之间没有边相连; 如果 a a a b b b 的差的绝对值小于等于 21 , 则两个点之间有一条长度为 a a a b b b 的最小公倍数的无向边相连。

例如: 结点 1 和结点 23 之间没有边相连: 结点 3 和结点 24 之间有一条无向边, 长度为 24 ; 结点 15 和结点 25 之间有一条无向边, 长度为 75 。

请计算, 结点 1 和结点 2021 之间的最短路径长度是多少。

提示: 建议使用计算机编程解决问题。

【答案提交】

这是一道结果填空的题, 你只需要算出结果后提交即可。本题的结果为一个整数, 在提交答案时只填写这个整数, 填写多余的内容将无法得分。


试题 E: 回路计数

本题总分: 15 分

【问题描述】

蓝桥学院由 21 栋教学楼组成, 教学楼编号 1 到 21。对于两栋教学楼 a a a b b b, 当 a a a b b b 互质时, a a a b b b 之间有一条走廊直接相连, 两个方向皆可通行, 否则没有直接连接的走廊。

小蓝现在在第一栋教学楼, 他想要访问每栋教学楼正好一次, 最终回到第一标教学楼(即走一条哈密尔顿回路),请问他有多少种不同的访问方案?两个访问方案不同是指存在某个 i i i, 小蓝在两个访问方法中访问完教学楼 i i i 后访问了不同的教学楼。

提示: 建议使用计算机编程解决问题。

【答案提交】

这是一道结果填空的题, 你只需要算出结果后提交即可。本题的结果为一个整数, 在提交答案时只填写这个整数, 填写多余的内容将无法得分。


试题 F : \mathrm{F}: F: 最少砝码

时间限制: 1.0   s 1.0 \mathrm{~s} 1.0 s 内存限制: 512.0 M B 512.0 \mathrm{MB} 512.0MB 本题总分: 15 分

【问题描述】

你有一架天平。现在你要设计一套砝码, 使得利用这些砝码可以称出任意小于等于 N N N 的正整数重量。

那么这套砝码最少需要包含多少个砝码?

注意砝码可以放在天平两边。

【输入格式】

输入包含一个正整数 N N N

【输出格式】

输出一个整数代表答案。

【样例输入】

7 \begin{array}{llllll}7 \end{array} 7

【样例输出】

3 \begin{array}{llllll}3 \end{array} 3

【样例说明】

3 个砝码重量是 1 、 4 、 6 1 、 4 、 6 146, 可以称出 1 至 7 的所有重量。

1 = 1 1=1 1=1;

2 = 6 − 4 ( 2=6-4( 2=64( 天平一边放 6 , 另一边放 4 ) ) );

3 = 4 − 1 ; 3=4-1 ; 3=41;

4 = 4 4=4 4=4

5 = 6 − 1 5=6-1 5=61;

6 = 6 6=6 6=6;

7 = 1 + 6 ; 7=1+6 ; 7=1+6;

少于 3 个砝码不可能称出 1 至 7 的所有重量。

【评测用例规模与约定】

对于所有评测用例, 1 ≤ N ≤ 1000000000 1 \leq N \leq 1000000000 1N1000000000


试题 G: 左孩子右兄弟

时间限制: 3.0   s 3.0 \mathrm{~s} 3.0 s 内存限制: 512.0 M B 512.0 \mathrm{MB} 512.0MB 本题总分: 20 分

【问题描述】

对于一柦多叉树, 我们可以通过 “左孩子右兄弟” 表示法, 将其转化成一棵二叉树。

如果我们认为每个结点的子结点是无序的, 那么得到的二叉树可能不唯一。换句话说, 每个结点可以选任意子结点作为左孩子, 并按任意顺序连接右兄弟。给定一棵包含 N N N 个结点的多叉树, 结点从 1 至 N N N 编号, 其中 1 号结点是根, 每个结点的父结点的编号比自己的编号小。请你计算其通过 “左孩子右兄弟” 表示法转化成的二叉树, 高度最高是多少。注: 只有根结点这一个结点的树高度为 0 。

例如如下的多叉树:

在这里插入图片描述

可能有以下 3 种 (这里只列出 3 种, 并不是全部) 不同的 “左孩子右兄弟”表示:

在这里插入图片描述

其中最后一种高度最高, 为 4 。

【输入格式】

输入的第一行包含一个整数 N N N

以下 N − 1 N-1 N1 行, 每行包含一个整数, 依次表示 2 至 N N N 号结点的父结点编号。

【输出格式】

输出一个整数表示答案。

【样例输入】

5 \begin{array}{llllll}5\end{array} 5

1 \begin{array}{llllll}1\end{array} 1

1 \begin{array}{llllll}1\end{array} 1

1 \begin{array}{llllll}1\end{array} 1

2 \begin{array}{llllll}2\end{array} 2

【样例输出】

4 \begin{array}{llllll}4\end{array} 4

【评测用例规模与约定】

对于 30 % 30 \% 30% 的评测用例, 1 ≤ N ≤ 20 1 \leq N \leq 20 1N20;

对于所有评测用例, 1 ≤ N ≤ 100000 1 \leq N \leq 100000 1N100000


试题 H : \mathrm{H}: H: 异或数列

时间限制: 2.0   s 2.0 \mathrm{~s} 2.0 s 内存限制: 512.0 M B 512.0 \mathrm{MB} 512.0MB 本题总分: 20 分

【问题描述】

Alice 和 Bob 正在玩一个异或数列的游戏。初始时, Alice 和 Bob 分别有一个整数 a a a b b b, 初始值均为 0 。有一个给定的长度为 n n n 的公共数列 X 1 , X 2 , ⋯   , X n X_{1}, X_{2}, \cdots, X_{n} X1,X2,,Xn

Alice 和 Bob 轮流操作, Alice 先手, 每步可以在以下两种选项中选一种:

选项 1: 从数列中选一个 X i X_{i} Xi 给 Alice 的数异或上, 或者说令 a a a 变为 a ⊕ a \oplus a X i X_{i} Xi 。(其中 ⊕ \oplus 表示按位异或)

选项 2: 从数列中选一个 X i X_{i} Xi 给 Bob 的数异或上, 或者说令 b b b 变为 b ⊕ X i b \oplus X_{i} bXi

每个数 X i X_{i} Xi 都只能用一次, 当所有 X i X_{i} Xi 均被使用后 ( n n n 轮后) 游戏结束。游戏结束时, 拥有的数比较大的一方获胜, 如果双方数值相同, 即为平手。

现在双方都足够㴔明, 都采用最优策略, 请问谁能获胜?

【输入格式】

每个评测用例包含多组询问。询问之间彼此独立。

输入的第一行包含一个整数 T T T, 表示询问数。

接下来 T T T 行每行包含一组询问。其中第 i i i 行的第一个整数 n i n_{i} ni 表示数列长度, 随后 n i n_{i} ni 个整数 X 1 , X 2 , ⋯   , X n i X_{1}, X_{2}, \cdots, X_{n i} X1,X2,,Xni 表示数列中的每个数。

【输出格式】

输出 T T T 行, 依次对应每组询问的答案。

每行包含一个整数 1 、 0 1 、 0 10 或 -1 分别表示 Alice 胜、平局或败。

【样例输入】

4 \begin{array}{llllllll}4\end{array} 4

1 1 \begin{array}{llllllll}1&1\end{array} 11

1 0 \begin{array}{llllllll}1&0\end{array} 10

2 2 1 \begin{array}{llllllll}2&2&1\end{array} 221

7 992438 1006399 781139 985280 4729 872779 563580 \begin{array}{llllllll}7 & 992438 & 1006399 & 781139 & 985280 & 4729 & 872779 & 563580\end{array} 799243810063997811399852804729872779563580

【样例输出】

【评测用例规模与约定】

对于所有评测用例, 1 ≤ T ≤ 200000 , 1 ≤ ∑ i = 1 T n i ≤ 200000 , 0 ≤ X i < 2 20 1 \leq T \leq 200000,1 \leq \sum_{i=1}^{T} n_{i} \leq 200000,0 \leq X_{i}<2^{20} 1T200000,1i=1Tni200000,0Xi<220


试题 I \mathbf{I} I 双向排序

时间限制: 5.0   s 5.0 \mathrm{~s} 5.0 s 内存限制: 512.0 M B 512.0 \mathrm{MB} 512.0MB 本题总分: 25 分

【问题描述】

给定序列 ( a 1 , a 2 , ⋯   , a n ) = ( 1 , 2 , ⋯   , n ) \left(a_{1}, a_{2}, \cdots, a_{n}\right)=(1,2, \cdots, n) (a1,a2,,an)=(1,2,,n), 即 a i = i 。 a_{i}=i_{。} ai=i

小蓝将对这个序列进行 m m m 次操作, 每次可能是将 a 1 , a 2 , ⋯   , a q i a_{1}, a_{2}, \cdots, a_{q_{i}} a1,a2,,aqi 降序排列,或者将 a q , , a q i + 1 , ⋯   , a n a_{q,}, a_{q_{i}+1},\cdots, a_{n} aq,,aqi+1,,an 升序排列。

请求出操作完成后的序列。

【输入格式】

输入的第一行包含两个整数 n , m n, m n,m, 分别表示序列的长度和操作次数。

接下来 m m m 行描述对序列的操作, 其中第 i i i 行包含两个整数 p i , q i p_{i}, q_{i} pi,qi 表示操作类型和参数。当 p i = 0 p_{i}=0 pi=0 时, 表示将 a 1 , a 2 , ⋯   , a q i a_{1}, a_{2}, \cdots, a_{q i} a1,a2,,aqi 降序排列; 当 p i = 1 p_{i}=1 pi=1 时, 表示将 a q i , a q i + 1 , ⋯   , a n a_{q_{i}}, a_{q_{i}+1}, \cdots, a_{n} aqi,aqi+1,,an 升序排列。

【输出格式】

输出一行, 包含 n n n 个整数, 相邻的整数之间使用一个空格分隔, 表示操作完成后的序列。

【样例输入】

3 3 \begin{array}{llllllll}3&3\end{array} 33

0 3 \begin{array}{llllllll}0&3\end{array} 03

1 2 \begin{array}{llllllll}1&2\end{array} 12

0 2 \begin{array}{llllllll}0&2\end{array} 02

【样例输出】

3 1 2 \begin{array}{llllllll}3&1&2\end{array} 312

【样例说明】

原数列为 ( 1 , 2 , 3 ) (1,2,3) (1,2,3)

第 1 步后为 ( 3 , 2 , 1 ) (3,2,1) (3,2,1)

第 2 步后为 ( 3 , 1 , 2 ) (3,1,2) (3,1,2)

第 3 步后为 ( 3 , 1 , 2 ) (3,1,2) (3,1,2) 。与第 2 步操作后相同, 因为前两个数已经是降序了。

【评测用例规模与约定】

对于 30 % 30 \% 30% 的评测用例, n , m ≤ 1000 n, m \leq 1000 n,m1000;

对于 60 % 60 \% 60% 的评测用例, n , m ≤ 5000 n, m \leq 5000 n,m5000;

对于所有评测用例, 1 ≤ n , m ≤ 100000 , 0 ≤ p i ≤ 1 , 1 ≤ q i ≤ n 。  1 \leq n, m \leq 100000,0 \leq p_{i} \leq 1,1 \leq q_{i} \leq n_{\text {。 }} 1n,m100000,0pi1,1qin 


试题 J : \mathrm{J}: J: 分果果

时间限制: 10.0   s 10.0 \mathrm{~s} 10.0 s 内存限制: 512.0 M B 512.0 \mathrm{MB} 512.0MB 本题总分: 25 分

【问题描述】

小蓝要在自己的生日宴会上将 n n n 包糖果分给 m m m 个小朋友。每包糖果都要分出去, 每个小朋友至少要分一包, 也可以分多包。

小蓝已经提前将糖果准备好了, 为了在宴会当天能把糖果分得更平均一些,小蓝要先计算好分配方案。

小蓝将榶果从 1 到 n n n 编号, 第 i i i 包榶果重 w i w_{i} wi 。 小朋友从 1 到 m m m 编号。每个小朋友只能分到编号连续的糖果。小蓝想了很久没想出合适的分配方案使得每个小朋友分到的糖果差不多重。因此需要你帮他一起想办法。为了更好的分配糖果, 他可以再买一些糖果, 让某一些编号的糖果有两份。当某个编号的糖果有两份时, 一个小朋友最多只能分其中的一份。

请找一个方案, 使得小朋友分到的糖果的最大重量和最小重量的差最小,请输出这个差。

例如, 小蓝现在有 5 包榶果, 重量分别为 6 , 1 , 2 , 7 , 9 6,1,2,7,9 6,1,2,7,9, 如果小蓝要分给两个小朋友, 则他可以将所有榶果再买一份, 两个小朋友都分到 1 至 5 包榶果,重量都是 25 , 差为 0 。

再如, 小蓝现在有 5 包糖果, 重量分别为 6 , 1 , 2 , 7 , 9 6,1,2,7,9 6,1,2,7,9, 如果小蓝要分给三个小朋友, 则他可以将第 3 包糖果再买一份, 第一个小朋友分 1 至 3 包, 第二个小朋友分 3 至 4 包, 第三个小朋友分第 5 包, 每个小朋友分到的重量都是 9 ,差为 0 。

再如, 小蓝现在有 5 包桮果, 重量分别为 6 , 1 , 2 , 7 , 9 6,1,2,7,9 6,1,2,7,9, 如果小蓝要分给四个小朋友, 则他可以将第 3 包和第 5 包糖果再买一份, 仍然可以每个小朋友分到的重量都是 9 , 差为 0 。

再如, 小蓝现在有 5 包糖果, 重量分别为 6 , 1 , 2 , 7 , 9 6,1,2,7,9 6,1,2,7,9, 如果小蓝要分给五个小朋友, 则他可以将第 4 包和第 5 包糖果再买一份, 第一个小朋友分第 1 至 2 包重量为 7 , 第二个小朋友分第 3 至 4 包重量为 9 , 第三个小朋友分第 4 包重量为 7 , 第四个和第五个小朋友都分第 5 包重量为 9 。差为 2 。

【输入格式】

输入第一行包含两个整数 n n n m m m, 分别表示糖果包数和小朋友数量。

第二行包含 n n n 个整数 w 1 , w 2 , ⋯   , w n w_1, w_2, \cdots, w_n w1,w2,,wn, 表示每包糖果的重量。

【输出格式】

输出一个整数, 表示在最优情况下小朋友分到的糖果的最大重量和最小重量的差。

【样例输入 1】

5 2 \begin{array}{llllll}5 & 2\end{array} 52

6 1 2 7 9 \begin{array}{llllll}6 & 1 & 2 & 7 & 9\end{array} 61279

【样例输出 1】

0 \begin{array}{llllll}0\end{array} 0

【样例输入 2】

5 5 \begin{array}{llllll}5&5\end{array} 55

6 1 2 7 9 \begin{array}{llllll}6 & 1 & 2 & 7 & 9\end{array} 61279

【样例输出 2】

2 \begin{array}{llllll}2 \end{array} 2

【评测用例规模与约定】

对于 30 % 30 \% 30% 的评测用例, 1 ≤ n ≤ 10 , 1 ≤ m ≤ 10 , 1 ≤ w i ≤ 10 1 \leq n \leq 10,1 \leq m \leq 10,1 \leq w_i \leq 10 1n10,1m10,1wi10;

对于 60 % 60 \% 60% 的评测用例, 1 ≤ n ≤ 30 , 1 ≤ m ≤ 20 , 1 ≤ w i ≤ 30 1 \leq n \leq 30,1 \leq m \leq 20,1 \leq w_i \leq 30 1n30,1m20,1wi30;

对于所有评测用例, 1 ≤ n ≤ 100 , 1 ≤ m ≤ 50 , 1 ≤ w i ≤ 100 1 \leq n \leq 100,1 \leq m \leq 50,1 \leq w_i \leq 100 1n100,1m50,1wi100 。在评测数据中, w i w_i wi 随机生成, 在某个区间均匀分布。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1668734.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

electron进程间通信

Electron 应用程序的结构非常相似。 作为应用开发者&#xff0c;你将控制两种类型的进程&#xff1a;主进程 和 渲染器进程。 这类似于上文所述的 Chrome 的浏览器和渲染器进程。 主进程 每个 Electron 应用都有一个单一的主进程&#xff0c;作为应用程序的入口点。 主进程在 N…

STM32快速入门(总线协议之I2C一主多从(软件实现 硬件实现))

STM32快速入门&#xff08;总线协议之I2C一主多从&#xff08;软件实现 & 硬件实现&#xff09;&#xff09; 前言 支持一对多&#xff08;一主多从&#xff09;、多对多传输&#xff08;多主多从&#xff09;&#xff0c;只支持半双工&#xff0c;一般有两根数据线&…

蓝桥之链表

最近真的特别焦虑&#xff0c;体测、比赛和考试一个接一个&#xff0c;让人喘不过气来QAQ 甚至考试和比赛还有冲突&#xff0c;sad 最近因为看了牙&#xff0c;打了药的缘故&#xff0c;一直在吃素QAQ 本来今天还想写个知识点总结的&#xff0c;但是太晚了&#xff0c;现在已…

吃透前端文件上传与文件相关操作

最近在学文件上传的操作,所以想把学习到东西写成一文章 这片文章是我以小白视角 慢慢学习并熟悉前端文件相关操作的流程总结出来的 前端文件上传 我首先想到是 <input type"file">选择文件</input>如果我们想限制上传文件的格式,大小或进行裁剪分片上传…

2022——蓝桥杯十三届2022国赛大学B组真题

问题分析 看到这个问题的同学很容易想到用十层循环暴力计算&#xff0c;反正是道填空题&#xff0c;一直算总能算得出来的&#xff0c;还有些同学可能觉得十层循环太恐怖了&#xff0c;写成回溯更简洁一点。像下面这样 #include <bits/stdc.h> using namespace std; in…

树莓派4B-搭建一个本地车牌识别服务器

实现目标&#xff1a; 一、设备自启后能够获得服务的ip与端口号&#xff0c;用于计算机连接设备&#xff1b; 二、计算机可以通过服务ip与端口访问设备服务&#xff1b; 三、上传需要处理的数据&#xff0c;返回结果反馈给用户&#xff1b; 四、上传到服务器的数据不会导致设备…

Study--Oracle-02-单实例部署Oracle19C

一、CentOS 7 环境准备 1、软件准备 操作系统&#xff1a;CentOS 7 数据库版本: Oracle19C 2、操作系统环境配置 关闭selinux &#xff0c;编辑 /etc/selinux/config文件&#xff0c;设置SELINUX enforcing 为SELINUXdisabled [rootoracle ~]# grep SELINUX /etc/seli…

手游掘金最新玩法,单条视频变现1w+,一部手机即可操作,保姆级教程

如果你也想通过手机赚钱&#xff0c;在这里有一个非常好的项目&#xff0c;它可以让你轻松赚到额外的收入。 这个手游掘金最新玩法&#xff0c;是一个非常受欢迎的项目&#xff0c;它可以让你通过制作单条视频来获得高额收益。不同于传统的游戏赚钱方式&#xff0c;这个方法不…

HTML表单创建学习

文章目录 1、创建HTML框架2.body标签CSS3.表单创建3.1、添加fieldset与label标签3.2、为label标签添加css样式3.3、添加input标签3.4、添加提交按钮3.5、在input标签中添加required3.6、添加minlength属性3.7、pattern属性3.8、设置表单单选按钮无法同时选中3.9、添加链接3.10、…

SpringSecurity的核心原理使用总结

1. SpringSecurity的核心原理 对于最原始Servlet请求处理的层次结构 客户端->过滤器链->Servlet 对于在SpringMVC中处理请求的层次结构 如何让Filter与Spring建立连接呢? 因此它增加了一个DelegatingFilterProxy 它是SpringMVC提供的的Filter,它内部代理了一个原生的F…

HC-06 蓝牙串口从机 AT 命令详解

HC-06 蓝牙串口从机 AT 命令详解 要使用 AT 命令&#xff0c;首先要知道 HC-06 的波特率&#xff0c;然后要进入 AT 命令模式。 使用串口一定要知道三要素&#xff0c;一是波特率&#xff0c;二是串口号&#xff0c;三是数据格式, HC-06只支持一种数据格式: 数据位8 位&#…

测试平台开发:Django开发实战之注册界面实现(上)

实现注册功能&#xff0c;大概包括以下几个步骤 1、设计ui ##字段 通过看数据库里面的user表里面的字段&#xff0c;可以大概知道需要几个字段&#xff1a; emailusernamepasswordpassword_confirm 生成简单的ui界面&#xff0c;复制这个html代码 然后在项目路径下面创建一…

transformer与beter

transformer与beter 解码和编码器含义tokizer标记器和one-hot独热编码编码解码--语义较好的维度空间矩阵相乘--空间变换编码理解如何构造降维的嵌入矩阵--实现到达潜空间上面是基础&#xff0c;下面是transformer正文自注意力机制注意力分数--上下文修正系数为什么需要KQ两个矩…

KAN 笔记

1 Title KAN: Kolmogorov–Arnold Networks&#xff08;Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić, Thomas Y. Hou, Max Tegmark&#xff09;【2024】 2 Conclusion Inspired by the Kolmogorov-Arnold representat…

函数式接口-闭包与柯里化

闭包 定义 示例 注意 这个外部变量 x 必须是effective final 你可以生命他是final&#xff0c;你不声明也会默认他是final的&#xff0c;并且具有final的特性&#xff0c;不可变一旦x可变&#xff0c;他就不是final&#xff0c;就无法形成闭包&#xff0c;也无法与函数对象一…

《Python编程从入门到实践》day26

# 昨日知识点回顾 添加Play按钮创建Button类绘制按钮开始游戏、游戏结束重制游戏影藏鼠标光标 # 今日知识点学习 14.2 提高等级 14.2.1 修改速度设置 # Settings.py# 加快游戏节奏的速度self.speedup_scale 1.1self.initialize_dynamic_settings()def initialize_dynamic_se…

Linux中的fork与进程地址空间

目录 前言 一、进程地址空间 二、fork的值返回 三、高清图链接 总结 前言 在博主的《进程状态解析》一文中&#xff0c;在讨论进程创建时&#xff0c;提到了一个系统调用接口fork&#xff0c;它在使用过程中表现出对于父子进程不一致的返回结果&#xff0c;而且似乎还具有…

动手学机器学习15 实战kaggle比赛

动手学机器学习15 实战kaggle比赛 1. 实战kaggle比赛&#xff1a;预测房价代码结果 2. 课程竞赛&#xff1a;加州2020年房价预测3. QA4. 用到的代码1. hashlib.sha1()2. sha1.update(data)3. train_data.iloc4. fillna(0)5. pd.get_dummies(&#xff09;6. nn.MSELoss()7. torc…

医疗行业面临的网络安全挑战及应对策略

网络攻击已经成为各行各业日益严重的威胁&#xff0c;但医疗行业尤其容易受到影响。2023年&#xff0c;医疗领域的黑客事件占数据泄露的79.7%。 医疗领域 虽然患者、医疗服务提供者和决策者都对保护医疗信息有所关注&#xff0c;但关键的弱点在于提供电子健康记录&#xff08;…

何为小波变换?

一、数学基础 小波 变换脱胎于傅里叶变换&#xff0c;但是有着傅里叶变换的优点。 1.1 点乘&#xff08;内积&#xff09; a 6; b 8; 点乘的作用&#xff1a;衡量两个事物的相似度&#xff08;Similarity&#xff09; 夹角变小&#xff0c;点乘结果变大&#xff0c;结果越…