大模型面试常考知识点1

news2024/11/18 7:35:41

文章目录

1. 写出Multi-Head Attention

import torch
import torch.nn as nn
import torch.nn.functional as F
import math


class MHA(nn.Module):
    def __init__(self, d_model, nums_head):
        super(MHA, self).__init__()     # !!

        self.d_model = d_model
        self.nums_head = nums_head

        self.wq = nn.Linear(d_model, d_model)
        self.wk = nn.Linear(d_model, d_model)
        self.wv = nn.Linear(d_model, d_model)
        self.dk = d_model/nums_head

        self.wo = nn.Linear(d_model,d_model)

    def split_head(self, x, batch_size):  # x(batch_size, seq_len, d_model) -> x(batch_size, seq_len, nums_head, d_k) -> x(batch_size, nums_head, seq_len, dk)
        return x.view(batch_size, self.nums_head, -1, self.dk).transpose(1,2)

    def forward(self, q, k, v, mask=None):

        batch_size = q.size(0)

        q = self.wq(q)
        k = self.wk(k)
        v = self.wv(v)

        q = self.split_head(q, batch_size)
        k = self.split_head(k, batch_size)
        v = self.split_head(v, batch_size)

        scores = torch.matmul(q, k.transpose(-2,-1))/math.sqrt(self.dk)
        if mask is not None:
            scores = scores.mask_fill(mask, float('-inf'))    # mask_fill
        weights = F.softmax(scores, dim=-1)
        attention = torch.matmul(weights, v)

        concat = attention.transpose(1,2).contiguous().view(batch_size, -1, self.d_model)     # contiguous

        output = self.wo(concat)

        return output

2. Pre-Norm vs Post-Norm

在这里插入图片描述

  • Pre-Norm优势:
    在这里插入图片描述

  • 为什么层数较深时,Pre-Norm不如Post-Norm:
    在这里插入图片描述

3. Layer Norm

任何norm的意义都是为了让使用norm的网络的输入的数据分布变得更好,也就是转换为标准正态分布,数值进入敏感度区间,以减缓梯度消失,从而更容易训练。
在这里插入图片描述
这里结合PyTorch的nn.LayerNorm算子来看比较明白:

nn.LayerNorm(normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None)
  • normalized_shape:归一化的维度,int(最后一维)list(list里面的维度),还是以(2,2,4)为例,如果输入是int,则必须是4,如果是list,则可以是[4], [2,4], [2,2,4],即最后一维,倒数两维,和所有维度
  • eps:加在分母方差上的偏置项,防止分母为0
  • elementwise_affine:是否使用可学习的参数 γ \gamma γ β \beta β ,前者开始为1,后者为0,设置该变量为True,则二者均可学习随着训练过程而变化

RMS Norm

与layerNorm相比,RMS Norm的主要区别在于去掉了减去均值的部分
在RMS Norm的论文中指出:RMS Norm 比Layer Norm更快(可以在各个模型上减少约 7%∼ 64% 的计算时间),效果也基本一致。

Batch Norm

在这里插入图片描述

  • Batch Norm:把每个Batch中,每句话的相同位置的字向量看成一组做归一化。
  • Layer Norm:在每一个句子中进行归一化。
  • Instance Norm:每一个字的字向量的看成一组做归一化。
  • Group Norm:把每句话的每几个字的字向量看成一组做归一化。计算成本较高

4. SwiGLU

  • Sigmoid

在这里插入图片描述

从ReLU到Swish

  • ReLU
    在这里插入图片描述

  • Leaky ReLU,ELU
    在这里插入图片描述

  • Swish
    在这里插入图片描述

  • GELU vs Swish
    在这里插入图片描述

GELU (高斯误差线性单元)与 Swish 激活函数(x · σ(βx))的函数形式和性质非常相像,一个是固定系数 1.702,另一个是可变系数 β(可以是可训练的参数,也可以是通过搜索来确定的常数),两者的实际应用表现也相差不大。
【GPT2, BERT, ALBERT, RoBERTA常用GELU】

SwiGLU

  • GLU
    在这里插入图片描述理解GLU激活函数的关键在于它的门控机制。门控机制使得GLU能够选择性地过滤输入向量的某些部分,并根据输入的上下文来调整输出。门控部分的作用是将输入进行二分类,决定哪些部分应该被保留,哪些部分应该被抑制。

  • SwiGLU
    在这里插入图片描述

5. AdamW

  • Adam

优点:惯性保持 + 自适应
在这里插入图片描述

  g t \ g_t  gt为梯度
在这里插入图片描述自适应:经常被更新的权重,更新的幅度小一些;不经常被更新的权重,更新的幅度大一些

  • AdamW
    Adam的基础上,权重更新时,加入L2正则化项。
    之前各类框架对 Adam 的实现中,在损失函数中加入了 L2 正则化项,也就是把权重衰减放到了梯度里,由梯度间接缩小θ。但是这种方法并没有起到有效的正则化作用。AdamW 直接将权重衰减项放到权重计算中,可以对大的权重进行惩罚,起到了有效的正则化作用。
    (下图中x表示权重)
    在这里插入图片描述

6. 位置编码

原因:为 Attention 添加位置信息
没有位置编码的Attention并不能捕捉序列的顺序。(交换单词位置后 Attention map 的对应位置数值也会进行交换,然而并不会产生数值变化)

Transformer位置编码

用sin和cos交替来表示位置,并把位置编码加在embeding上。

RoPE

参考文献
Transformer中sinusoidal位置编码对相对位置关系的表示还是比较间接的,那有没有办法更直接的表示相对位置关系呢?旋转位置编码(Rotary Position Embedding,RoPE)是一种用绝对位置编码来表征相对位置编码的方法,并被用在了很多大语言模型的设计中。

假设通过下述运算来给 q, k 添加绝对位置信息:
  f ( q , m ) \ f(q,m)  f(q,m) 表示给向量 q q q在位置 m m m添加位置信息,   f ( k , n ) \ f(k,n)  f(k,n) 表示给向量 k k k在位置 n n n添加位置信息。
同时,我们希望经过 Attention 的内积运算后,内积结果带有相对位置信息:
在这里插入图片描述RoPE这一研究就是为上面这个等式找到了一组解答,也就是:

  f ( q , m ) = q e i m θ \ f(q,m) = qe^{imθ}  f(q,m)=qeimθ

根据复数乘法的⼏何意义,该变换实际上对应着向量的旋转,所以我们称之为“旋转式位置编码”,
它还可以写成矩阵形式(二维):
在这里插入图片描述根据刚才的结论,结合内积的线性叠加性,可以将结论推广到高维的情形。可以理解为,每两个维度一组,进行了上述的“旋转”操作,然后再拼接在一起:
在这里插入图片描述由于矩阵的稀疏性,会造成计算上的浪费,所以在计算时采用逐位相乘再相加的方式进行:
在这里插入图片描述

ALibi

在这里插入图片描述注意看上表的位置编码那一列,baichuan 7B无论第一代还是第二代,位置编码均用的RoPE,而baichuan 13B则无论是第一代还是第二代,均用的ALiBi

在这里插入图片描述

在这里插入图片描述
怎么理解呢,就是在query和key做矩阵点乘的基础上,加上一个常数负值,比如距离当前位置前1位为-1, 前两位为-2,这些常数要乘上 权重 m

在这里插入图片描述

7. LoRA

lora之前的PEFT方法是adapter/prefix/promp/P-tuning,但是Adapter会引入很强的推理延迟(只能串行),prefix/prompt/P-tuning很难练,而且要占用context length,变相的降低模型能力——所以,根本不改原来的model,这就引出了lora:Low-Rank Adaptation

在这里插入图片描述
在这里插入图片描述

初始化

为什么用随机高斯分布初始化 A ,用 0 矩阵初始化 B ?
需要深入探讨这两个矩阵在权重更新过程中的角色和相互作用

  • 矩阵𝐴:这个矩阵可以被看作是一个特征提取器,它将输入特征映射到一个低维空间(通过矩阵乘法)。在 LORA 的设置中,𝐴通常被视为首先应用于输入的一种转换,将数据从原始的高维空间压缩到一个低维空间。
  • 矩阵𝐵:这个矩阵作为一个特征转换器,它将𝐴输出的低维表示映射回原始的高维空间。可以看作是从𝐴创建的低维空间中恢复信息到原始空间的过程。

为什么𝐴不能为零而 𝐵采用高斯初始化?
如果𝐴初始化为零,那么无论𝐵初始化为什么值,Δ𝑊始终为零矩阵。这意味着在训练的开始阶段,没有任何更新被应用于原始权重 𝑊,导致模型在这一阶段无法学习或适应任何新的特征或模式。

优点:

  • 在面对不同的下游任务时,仅需训练参数量很少的低秩矩阵,而预训练权重可以在这些任务之间共享;
  • 省去了预训练权重的梯度和相关的 optimizer states,大大增加了训练效率并降低了硬件要求;
  • 训练好的低秩矩阵可以合并(merge)到预训练权重中,多分支结构变为单分支,从而达到没有推理延时的效果;
  • 与之前的一些参数高效的微调方法(如 Adapter, Prefix-Tuning 等)互不影响,并且可以相互结合

局限性:

  • 基于低秩的微调可能并不always work,比如finetune与pretrain的gap过大的时候,比如中英差异。当然,这一点在LLM时代可能并不突出,我们认为LLM在预训练阶段已经get了所有基本的知识,finetune只是格式微调,因此可能不会有上述gap过大的情况。
  • 用lora也需要设置r和target module等,这部分超参的设置需要考虑

参考文献

大模型面试八股

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1664978.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【.NET Core】你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟

你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟 文章目录 你认识Attribute之CallerMemberName、CallerFilePath、CallerLineNumber三兄弟一、概述二、CallerMemberNameAttribute类三、CallerFilePathAttribute 类四、CallerLineNumberAttribute 类…

Java面试题:ReentrantLock

ReentrantLock 可重入锁 可中断 可以设置超时时间 可以让线程在超时后放弃获取锁 可以设置公平锁 可以实现公平锁或非公平锁 支持多个条件变量 让线程在某些条件下进入等待 和synchronized一样都支持重入 //创建锁对象 ReentrantLock Lock new ReentrantLock(); try…

oracle 9i 行头带有scn的表

oracle 9i 行头带有scn的表 conn scott/tiger drop table t1; drop table t2; create table t1(c varchar2(5)); create table t2(c varchar2(6)) ROWDEPENDENCIES; --t2表每行都有scn,会增加六个字节的开销 alter table t1 pctfree 0; alter table t2 pctfree 0; insert in…

Transformer模型详解03-Self-Attention(自注意力机制)

文章目录 简介基础知识什么是AttentionSelf Attention原理通俗易懂理解矩阵计算Q,K,V计算Self-Attention 的输出 优势 Multi-head self-attention原理通俗易懂理解矩阵计算代码实现 简介 下图是论文中 Transformer 的内部结构图,左侧为 Enco…

十、Redis内存回收策略和机制

1、Redis的内存回收 在Redis中可以设置key的过期时间,以期可以让Redis回收内存,循环使用。在Redis中有4个命令可以设置Key的过期时间。分别为 expire、pexpire、expireat、pexpireat。 1.1、expire expire key ttl:将key的过期时间设置为tt…

SpringBoot自定义初始化sql文件 支持多类型数据库

我在resources目录下有init.sql初始化sql语句 指定sql文件的地址 sql内容如下: /*角色表*/ INSERT INTO #{schema}ccc_base_role (id, create_time, create_user_id, is_delete, role_name, status, update_time, update_user_id) VALUES(b89e30d81acb88448d412…

谷粒商城实战(023 业务-订单模块-页面和幂等性等校验)

Java项目《谷粒商城》架构师级Java项目实战,对标阿里P6-P7,全网最强 总时长 104:45:00 共408P 此文章包含第270p-第p283的内容 简介 远程调用的服务已经注册到了注册中心 校验 幂等性校验 拿令牌 读令牌 删令牌 要实现 原子性 在一个事务中 添加令牌…

小红书·电商运营课:小红书开店流程,小红书电商如何运营(18节视频课)

课程目录 第1节课:学习流程以及后续实操流程注意事项 第2节课:小红书店铺类型解析以及开店细节 第3节课:小红书电商运营两种玩法之多品店铺解析 第4节课:小红书电商运营两种玩法之单品店铺解析 第5节课:选品课(多品类类目推荐) 第6节课:选品课(多品类类目推荐) 第7节课:…

以C++为核心语言的高频交易系统是如何做到低延迟的?

在开始前我有一些资料,是我根据网友给的问题精心整理了一份「 c的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!! 问题中限定语言是C,可…

自动驾驶中的神经辐射场:综述

24年4月清华大学论文“Neural Radiance Field in Autonomous Driving: A Survey”。 神经辐射场(NeRF)由于其固有的优势,特别是其隐式表示和新视图合成能力,引起了学术界和工业界的广泛关注。 随着深度学习的快速发展&#xff0c…

最少数量线段覆盖-华为OD

系列文章目录 文章目录 系列文章目录前言一、题目描述二、输入描述三、输出描述四、java代码五、测试用例 前言 本人最近再练习算法,所以会发布一些解题思路,希望大家多指教 一、题目描述 给定坐标轴上的一组线段,线段的起点和终点均为整数…

ICode国际青少年编程竞赛- Python-4级训练场-列表综合练习

ICode国际青少年编程竞赛- Python-4级训练场-列表综合练习 1、 Flyer[3].step(1) Flyer[7].step(2) Flyer[11].step(1) for i in range(4):Flyer[i * 2].step(1) Flyer[8].step(3)for i in range(3):Dev.turnRight()Dev.step(-5)2、 for i in range(5):Flyer[i5].step(Flyer[…

如何通过AI技术实现员工培训的革命性变革

AI个性化培训:开启员工潜力的新篇章 在当今这个信息爆炸的时代,人工智能(AI)技术的影响力已经渗透到社会的各个层面,包括教育与培训行业。AI技术正在彻底改变我们获取知识与技能的方式,特别是在员工培训领域…

upload组件封装,支持拖拽文件上传

一、组件封装需要注意什么? 组件化思想:组件应该是独立的、可复用的部件,应该遵循单一职责原则,将组件的功能划分得尽可能细致。 API 设计:组件的 API 设计要合理,要考虑到组件的可定制性和易用性。应该尽可能的提供必要的配置项和事件回调,同时避免提供过多的 API,导…

Python Supervisor助力代码后台运行

大家好,Supervisor 是一个 C/S 架构的进程监控与管理工具,本文将主要介绍其基本用法和部分高级特性,用于解决部署持久化进程的稳定性问题。 1.问题场景 在实际的工作中,往往会有部署持久化进程的需求,比如接口服务进…

BOOT程序与APP程序的RAM共享问题与栈顶地址判断合法

一、我们在进行BOOT程序和APP程序,会想到这里面的RAM他们之间是怎么分配的,会不会有冲突? 答案是:从BOOT程序跳转到APP程序后,相当于执行了新的程序,所以BOOT里边的内存是全部释放了。所以是相互不影响的 …

硬件 - TL431计算

文章目录 1 . 概要2 . TL431内部3 . TL431应用电路4 . TL431计算5 . 小结 【全文大纲】 : https://blog.csdn.net/Engineer_LU/article/details/135149485 1 . 概要 1 . TL431常用于通过外围电阻R1,R2设置输出一个目标电压 2 . TL431内部 3 . TL431应用电路 1 . R1 1K&#xf…

web前端之sass中的颜色函数、active按钮激活、hover鼠标悬浮、disabled禁用、scss循环、css

MENU 效果图htmlsassscss编译后的css页面css 效果图 注意查看蓝色按钮。 html <div class"box"><button class"btn type_1">按钮</button><button class"btn type_2">按钮</button><button class"btn ty…

修改表空间对应数据文件的大小

Oracle从入门到总裁:​​​​​​https://blog.csdn.net/weixin_67859959/article/details/135209645 表空间与数据文件紧密相连&#xff0c;相互依存&#xff0c;创建表空间的时候需设置数据文件大小。 在后期实际应用中&#xff0c;如果实际存储的数据量超出事先设置的数据…

Threejs Shader动态修改Merge合并几何体中单个Mesh的颜色

目录 Merge合并 现象 思路 实现 为单个geometry添加映射 通过id检索Merge后的Geometry映射属性&#xff0c;获取顶点坐标 onBeforeCompile修改编译前材质的着色代码 编译前材质的顶点着色代码 编译前材质的片元着色代码 着色器代码 注意 效果 Merge合并 mergeBuf…