Yolov8目标检测——在Android上部署Yolov8 tflite模型

news2024/11/19 2:44:50

1. 简介

YOLOv8 是一种用于目标检测的深度学习模型,它是 YOLO(You Only Look Once)系列的最新版本之一。YOLO 系列因其高效和准确性而在计算机视觉领域非常受欢迎,特别是在需要实时目标检测的应用中,如视频监控、自动驾驶汽车、机器人视觉等。

以下是 YOLOv8 的一些关键特点:

  • 实时性能:YOLOv8 旨在提供实时目标检测,即使在资源受限的设备上也能快速运行。
  • 准确性:YOLOv8 在多个标准数据集上展示了其准确性,能够检测图像中的多种对象。
  • 单阶段检测器:与多阶段检测器相比,YOLOv8 采用单阶段检测方法,这意味着它在网络的前向传播过程中只需一次即可完成检测任务。
  • 端到端对象识别:YOLOv8 能够同时预测边界框、对象类别和每个框的置信度。
  • 泛化能力:YOLOv8 在不同大小和形状的对象上都表现出良好的泛化能力。
  • 易于部署:YOLOv8 支持转换为不同的格式,如 TensorFlow Lite,使得它可以轻松部署在移动设备和嵌入式系统中。
  • 自定义训练:YOLOv8 允许用户使用自己的数据集进行自定义训练,以适应特定的检测任务。

2.模型转换

2.1 tflite模型

TensorFlow Lite (tflite) 是一种用于移动和嵌入式设备上的机器学习模型的格式。它允许开发者将训练好的 TensorFlow 模型转换为一个更小、更快、更高效的格式,以便于在资源受限的环境中运行,比如智能手机和微控制器。

  • 模型优化:TensorFlow Lite 支持将模型量化,以减少模型的大小和提高运行效率。
  • 跨平台:tflite 模型可以在多种设备上运行,包括 Android、iOS 和一些嵌入式设备。
  • 实时性能:由于模型体积小,加载快,非常适合需要实时响应的应用,如图像识别、语音识别等。
  • 转换过程:TensorFlow 提供了工具来将 TensorFlow 模型(例如 SavedModel 或 HDF5)转换为 tflite 格式。
  • 硬件加速:tflite 支持一些硬件加速器,如 GPU、Edge TPU,可以进一步提高运行速度。
  • 使用 TensorFlow Lite Interpreter:在应用中,通常使用 TensorFlow Lite Interpreter 来加载和运行 tflite 模型。
  • 兼容性:tflite 模型与 TensorFlow.js 类似,但专为不同的运行环境设计。tflite 适用于移动和嵌入式设备,而 TensorFlow.js 适用于浏览器和 Node.js 环境。
  • 部署:在 Android 或 iOS 应用中,tflite 模型可以作为资源文件被打包和部署。
  • 更新和维护:tflite 模型可以像其他资源一样被更新,无需重新构建整个应用。

2.2 Pytorch 格式转换为 tflite 格式

YOLOv8 是以 pytorch 格式构建的。将其转换为 tflite,以便在 Android 上使用。
安装 Ultralytics 框架
使用 pip 安装 Ultralytics 框架,该框架包含了 YOLOv8:

conda create -n yolov8 python=3.8
activate ylolv8
pip install ultralytics

转换模型为 tflite 格式
使用 Ultralytics 框架提供的 YOLO 类来加载 PyTorch 格式的 YOLOv8 模型,并导出为 tflite 格式:

  from ultralytics import YOLO
  model = YOLO('yolov8s.pt')  # 这里 'yolov8s.pt' 是模型权重文件
  model.export(format="tflite")

这将生成一个 tflite 文件,例如 yolov8s_saved_model/yolov8s_float16.tflite

处理转换过程中的错误
如果在转换过程中遇到错误,特别是与 TensorFlow 版本相关的问题,需要安装一个特定版本的 TensorFlow 来解决兼容性问题:

  pip install tensorflow==2.13.0

3.创建项目

3.1 创建项目

创建一个安卓项目,语言选择Kotlin,如下图所示:
在这里插入图片描述
然后在 Android Studio 项目的 app 目录中创建一个 assets 目录(文件 → 新建 → 文件夹 → 资产文件夹),并将 tflite 文件(例如 yolov8s_float32.tflite)和 labels.txt 添加进去。labels.txt其中描述了 YOLOv8 模型的类别名称。

  1. 打开 Android Studio 项目。
  2. 在项目浏览器中,定位到 app 目录。
  3. 右键点击 app 目录,选择 New > Folder > Asset Folder
  4. 输入文件夹名称 assets 并确认创建。
  5. 打开新创建的 assets 文件夹。
  6. 通过复制和粘贴的方式,将 yolov8s_float32.tflite 文件和 labels.txt 文件添加到此文件夹中。

3.2 添加依赖

将以下内容添加到 app/build.gradle.kts 中的依赖项以安装 tflite 框架。

implementation("org.tensorflow:tensorflow-lite:2.14.0")
implementation("org.tensorflow:tensorflow-lite-support:0.4.4")

导入所需的模块

import org.tensorflow.lite.DataType
import org.tensorflow.lite.Interpreter
import org.tensorflow.lite.gpu.CompatibilityList
import org.tensorflow.lite.gpu.GpuDelegate
import org.tensorflow.lite.support.common.FileUtil
import org.tensorflow.lite.support.common.ops.CastOp
import org.tensorflow.lite.support.common.ops.NormalizeOp
import org.tensorflow.lite.support.image.ImageProcessor
import org.tensorflow.lite.support.image.TensorImage
import org.tensorflow.lite.support.tensorbuffer.TensorBuffer
import java.io.BufferedReader
import java.io.IOException
import java.io.InputStream
import java.io.InputStreamReader

3.3 初始化模型

private val modelPath = "yolov8s_float32.tflite"
private val labelPath = "labels.txt"
private var interpreter: Interpreter? = null
private var tensorWidth = 0
private var tensorHeight = 0
private var numChannel = 0
private var numElements = 0
private var labels = mutableListOf<String>()
private val imageProcessor = ImageProcessor.Builder()
    .add(NormalizeOp(INPUT_MEAN, INPUT_STANDARD_DEVIATION))
    .add(CastOp(INPUT_IMAGE_TYPE))
    .build() // preprocess input
companion object {
    private const val INPUT_MEAN = 0f
    private const val INPUT_STANDARD_DEVIATION = 255f
    private val INPUT_IMAGE_TYPE = DataType.FLOAT32
    private val OUTPUT_IMAGE_TYPE = DataType.FLOAT32
    private const val CONFIDENCE_THRESHOLD = 0.3F
    private const val IOU_THRESHOLD = 0.5F
}

初始化 tflite 模型。获取模型文件并将其传递给 tflite 的 Interpreter。选择推理使用的线程数。

val model = FileUtil.loadMappedFile(context, modelPath)
val options = Interpreter.Options()
options.numThreads = 4
interpreter = Interpreter(model, options)

从 Interpreter 获取 yolov8s 输入和输层:

val inputShape = interpreter.getInputTensor(0).shape()
val outputShape = interpreter.getOutputTensor(0).shape()

tensorWidth = inputShape[1]
tensorHeight = inputShape[2]
numChannel = outputShape[1]
numElements = outputShape[2]

3.4 从 label.txt 文件中读取类名称

try {
    val inputStream: InputStream = context.assets.open(labelPath)
    val reader = BufferedReader(InputStreamReader(inputStream))
    var line: String? = reader.readLine()
    while (line != null && line != "") {
        labels.add(line)
        line = reader.readLine()
    }
    reader.close()
    inputStream.close()
} catch (e: IOException) {
    e.printStackTrace()
}

3.5 对图像进行推理

在 Android 应用中,输入是位图(Bitmap),需要根据模型的输入格式进行预处理:

  • 调整图片大小:将位图调整为模型所需的输入尺寸。YOLOv8 模型通常有固定的输入尺寸,例如 416x416 或 608x608。
  • 转换为张量:将调整大小后的位图转换为一个多维数组(张量),这是模型可以处理的格式。
  • 归一化像素值:将像素值从 0 到 255 归一化到 0 到 1 范围内。这通常通过将每个像素值除以 255 来实现。
  • 转换为模型的输入类型:根据模型的需要,将张量转换为特定的数据类型(如 float 或 uint8)。
  • 输入到 Interpreter:将预处理后的张量作为输入传递给 TensorFlow Lite Interpreter 进行推理。
import android.graphics.Bitmap;
import android.graphics.ImageFormat;
import org.tensorflow.lite.Interpreter;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.channels.WritableByteChannel;

// 假设 tflite 已经初始化,且 bitmap 是您要处理的位图
Bitmap bitmap

val resizedBitmap = Bitmap.createScaledBitmap(bitmap, tensorWidth, tensorHeight, false)
val tensorImage = TensorImage(DataType.FLOAT32)
tensorImage.load(resizedBitmap)
val processedImage = imageProcessor.process(tensorImage)
val imageBuffer = processedImage.buffer

创建一个与模型输出层匹配的输出张量缓冲区,并将其与上面的输入 imageBuffer 一起传递给解释器以执行。

val output = TensorBuffer.createFixedSize(intArrayOf(1 , numChannel, numElements), OUTPUT_IMAGE_TYPE)
interpreter.run(imageBuffer, output.buffer)

3.6 处理输出

输出框被视为 BoudingBox 类。这是一个具有类别、框和置信度级别的类。其中x1,y1 是起始点。x2, y2 是终点,cx, cy 是中心。w 宽度,h 是高度。

data class BoundingBox(
    val x1: Float,
    val y1: Float,
    val x2: Float,
    val y2: Float,
    val cx: Float,
    val cy: Float,
    val w: Float,
    val h: Float,
    val cnf: Float,
    val cls: Int,
    val clsName: String
)

提取置信度高于置信度阈值的框,在重叠的框中,留下置信度最高的框。(nms)

private fun bestBox(array: FloatArray) : List<BoundingBox>? {
    val boundingBoxes = mutableListOf<BoundingBox>()
    for (c in 0 until numElements) {
        var maxConf = -1.0f        var maxIdx = -1        var j = 4        var arrayIdx = c + numElements * j
        while (j < numChannel){
            if (array[arrayIdx] > maxConf) {
                maxConf = array[arrayIdx]
                maxIdx = j - 4
            }
            j++
            arrayIdx += numElements
        }
        if (maxConf > CONFIDENCE_THRESHOLD) {
            val clsName = labels[maxIdx]
            val cx = array[c] // 0            val cy = array[c + numElements] // 1            val w = array[c + numElements * 2]
            val h = array[c + numElements * 3]
            val x1 = cx - (w/2F)
            val y1 = cy - (h/2F)
            val x2 = cx + (w/2F)
            val y2 = cy + (h/2F)
            if (x1 < 0F || x1 > 1F) continue            if (y1 < 0F || y1 > 1F) continue            if (x2 < 0F || x2 > 1F) continue            if (y2 < 0F || y2 > 1F) continue
            boundingBoxes.add(
                BoundingBox(
                    x1 = x1, y1 = y1, x2 = x2, y2 = y2,
                    cx = cx, cy = cy, w = w, h = h,
                    cnf = maxConf, cls = maxIdx, clsName = clsName
                )
            )
        }
    }
    if (boundingBoxes.isEmpty()) return null    return applyNMS(boundingBoxes)
}

private fun applyNMS(boxes: List<BoundingBox>) : MutableList<BoundingBox> {
    val sortedBoxes = boxes.sortedByDescending { it.cnf }.toMutableList()
    val selectedBoxes = mutableListOf<BoundingBox>()
    while(sortedBoxes.isNotEmpty()) {
        val first = sortedBoxes.first()
        selectedBoxes.add(first)
        sortedBoxes.remove(first)
        val iterator = sortedBoxes.iterator()
        while (iterator.hasNext()) {
            val nextBox = iterator.next()
            val iou = calculateIoU(first, nextBox)
            if (iou >= IOU_THRESHOLD) {
                iterator.remove()
            }
        }
    }
    return selectedBoxes
}

private fun calculateIoU(box1: BoundingBox, box2: BoundingBox): Float {
    val x1 = maxOf(box1.x1, box2.x1)
    val y1 = maxOf(box1.y1, box2.y1)
    val x2 = minOf(box1.x2, box2.x2)
    val y2 = minOf(box1.y2, box2.y2)
    val intersectionArea = maxOf(0F, x2 - x1) * maxOf(0F, y2 - y1)
    val box1Area = box1.w * box1.h
    val box2Area = box2.w * box2.h
    return intersectionArea / (box1Area + box2Area - intersectionArea)
}

将获得 yolov8 的输出。

val bestBoxes = bestBox(output.floatArray)

将输出框绘制到图像上

fun drawBoundingBoxes(bitmap: Bitmap, boxes: List<BoundingBox>): Bitmap {
    val mutableBitmap = bitmap.copy(Bitmap.Config.ARGB_8888, true)
    val canvas = Canvas(mutableBitmap)
    val paint = Paint().apply {
        color = Color.RED
        style = Paint.Style.STROKE
        strokeWidth = 8f
    }
    val textPaint = Paint().apply {
        color = Color.WHITE
        textSize = 40f
        typeface = Typeface.DEFAULT_BOLD
    }
    for (box in boxes) {
        val rect = RectF(
            box.x1 * mutableBitmap.width,
            box.y1 * mutableBitmap.height,
            box.x2 * mutableBitmap.width,
            box.y2 * mutableBitmap.height
        )
        canvas.drawRect(rect, paint)
        canvas.drawText(box.clsName, rect.left, rect.bottom, textPaint)
    }
    return mutableBitmap
}

运行结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1662142.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

docker搭建mysql集群实现主从复制

前言 随着业务的增长&#xff0c;一台数据服务器已经满足不了需求了&#xff0c;负载过重。这个时候就需要减压了&#xff0c;实现负载均衡和读写分离&#xff0c;一主一丛或一主多从。 主服务器只负责写&#xff0c;而从服务器只负责读&#xff0c;从而提高了效率减轻压力。 …

docker安装nginx支持ssl 实现https访问(完整版)

全文目录,一步到位 1.前言简介1.1 专栏传送门1.1.1 本文简介 2. docker安装nginx支持ssl2.0 准备ssl证书(例: 阿里云)2.0.1 配置域名解析2.0.2 找到数字证书管理服务并签发ssl证书2.0.3 选择默认证书 填写域名 创建2.0.4 提交审核, 签发成功2.0.5 解压并上传到宿主机ssl路径下 …

<网络安全>《83 微课堂<国家数据要素总体框架>》

1 总体框架 国家数据要素化总体框架由“六横两纵”共八个关键环节构成。 2 国家数据基础设施&#xff08;NDI&#xff09; 最底部第一层是国家数据基础设施&#xff08;NDI&#xff09;。国家数据基础设施&#xff08;NDI&#xff09;是经济社会进入数据要素化发展新阶段后新…

Vue面试经验2

Vue 你说你在vue项目中实现了自定义指令&#xff0c;如何实现 全局指令在main.js入口文件中实现 使用方法&#xff1a;v-指令名称 每个钩子函数都有两个参数&#xff08;ele,obj&#xff09; ele:绑定指令的元素 obj:指令的一些信息&#xff08;比如绑定指令的值&#xff0c…

Python Pendulum:用代码提升您的时间管理技能

更多Python学习内容&#xff1a;ipengtao.com Python中的Pendulum库是一个强大的日期和时间处理工具&#xff0c;提供了丰富的功能和灵活的接口&#xff0c;用于处理日期、时间、时区等相关操作。本文将全面介绍Pendulum库的主要功能、使用方法和实际应用场景&#xff0c;并给出…

基于ESP32和ESP8266的物联网开发过程(二)

在做这个项目前&#xff0c;也做了一些调研。项目的初衷是想要用于智能家居。我比较了小米IoT、阿里云、ESPHOME、巴沙云、点灯科技和ONENET等几个平台。最终选择了Onenet&#xff0c;部分原因是之前用过它的多协议版本&#xff0c;但现在这个版本已经下线了。 小米IoT的公测名…

使用FFmpeg处理RTSP视频流并搭建RTMP服务器实现图片转直播全流程

目录 一、FFmpeg安装与配置教程二、搭建并配置Nginx RTMP服务器三、从RTSP视频流提取帧并保存为图片四、将图片序列转换为视频五、将视频推送为直播流六、将图片序列推送为直播流 在实时音视频领域&#xff0c;我们经常需要处理从各种源&#xff08;如摄像头&#xff09;获取的…

Java练手项目 个人学习等选题参考

难度系数说明&#xff1a; 难度系数用来说明项目本身进行分析设计的难度 难度系数大于1的项目是非常值得反复学习的&#xff0c;从项目中成长 前言 大家好&#xff0c;我是二哈喇子&#xff0c;此博文整理了各种项目需求 要从本篇文章下的项目中学习的思路&#xff1a; 用的…

【架构】MVC架构模式 三层架构

1 不使用MVC架构模式完成银行账户转账 <% page contentType"text/html;charsetUTF-8" language"java" %> <html><head><base href"${pageContext.request.scheme}://${pageContext.request.serverName}:${pageContext.request.…

[MRCTF2020]Ez_bypass1 and [网鼎杯 2020 青龙组]AreUSerialz1()php语言基础学习,以及序列化概念的基本了解

1.[MRCTF2020]Ez_bypass1 &#xff08;1&#xff09;打开环境后它是一串很长并且看起来非常混乱的代码&#xff0c;看不懂那咱就先不管&#xff0c;直接查看源码 &#xff08;2&#xff09;看了之后可以发现它涉及到很多东西 首先就是要进行一个仔细的代码审计&#xff0c;分…

网络基础-ICMP协议

ICMP&#xff08;Internet Control Message Protocol&#xff0c; Internet控制消息协议&#xff09; ICMP协议是IP协议的辅助协议&#xff0c;用于在IP网络上发送控制消息&#xff0c;它通常被用于诊断网络故障、执行网络管理任务以及提供一些错误报告&#xff1b;对于收集各…

XWiki 服务没有正确部署在tomcat中,如何尝试手动重新部署?

1. 停止 Tomcat 服务 首先&#xff0c;您需要停止正在运行的 Tomcat 服务器&#xff0c;以确保在操作文件时不会发生冲突或数据损坏&#xff1a; sudo systemctl stop tomcat2. 清空 webapps 下的 xwiki 目录和 work 目录中相关的缓存 删除 webapps 下的 xwiki 目录和 work …

回炉重造java----单列集合(List,Set)

体系结构: 集合主要分为两种&#xff0c;单列集合collection和双列集合Map&#xff0c;区别在于单列集合一次插入一条数据&#xff0c;而双列的一次插入类似于key-value的形式 单列集合collection 注:红色的表示是接口&#xff0c;蓝色的是实现类 ①操作功能: 增加: add()&am…

六级仔细阅读

画两到三个词&#xff0c;精准定位 要原文和同义都满足才选 先看题目&#xff0c;在看原文&#xff0c;不要先看选项 做不出答案就继续往下读&#xff0c;读出来了就不用继续读了 分清楚是问为什么还是是什么&#xff0c;是什么看前面&#xff0c;为什么看后面 不知道就优先…

三、配置带HybridCLR的ARCore开发环境

预告 本专栏将介绍如何使用这个支持热更的AR开发插件&#xff0c;快速地开发AR应用。 专栏&#xff1a; Unity开发AR系列 插件简介 通过热更技术实现动态地加载AR场景&#xff0c;简化了AR开发流程&#xff0c;让用户可更多地关注Unity场景内容的制作。 “EnvInstaller…”支…

Java JVM 浅析

为什么要有JVMJVM是什么&#xff1f;JVM的工作流程和组成部分JVM规范和JVM实现JVM原理详解 带着以上问题&#xff0c;我将尝试对JVM作出一些简单的介绍。 一、JVM 简介 在90年代初&#xff0c;软件开发面临一个大问题&#xff0c;即不同的操作系统和硬件架构要求开发不同的版本…

【Java代码审计】代码审计的方法及常用工具

【Java代码审计】代码审计的方法及常用工具 代码审计的常用思路代码审计辅助工具代码编辑器测试工具反编译工具Java 代码静态扫描工具 代码审计的常用思路 1、接口排查&#xff08;“正向追踪”&#xff09;&#xff1a;先找出从外部接口接收的参数&#xff0c;并跟踪其传递过…

3DGS+3D Tiles融合已成 ,更大的场景,更细腻的效果~

最近国外同行Kieran Farr发布了一个他制作的3D GussianSplatting(高斯泼溅)Google Map 3D Tiles的融合叠加的demo案例&#xff08;如下所示&#xff09;。 准确来说这是一个数据融合的实景场景&#xff0c;该实景场景使用了倾斜三维和3D GussianSplatting两种实景表达技术&…

深入理解Java TreeSet:实现与使用案例分析

哈喽&#xff0c;各位小伙伴们&#xff0c;你们好呀&#xff0c;我是喵手。运营社区&#xff1a;C站/掘金/腾讯云&#xff1b;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点&#xff0c;并以文字的形式跟大家一起交流&#xff0c;互相学习&#xff0c;一…

【WPF学习笔记(一)】WPF应用程序的组成及Window类介绍

WPF应用程序的组成及Window类介绍 WPF应用程序的组成及Window类介绍前言正文1、WPF介绍1.1 什么是WPF1.2 WPF的特点1.3 WPF的控件分类 2、XAML介绍2.1 XAML的定义2.2 XAML的特点2.3 XAML的命名空间 3、WPF应用程序组成3.1 App.config3.2 App.xaml3.3 App.xaml.cs3.4 MainWindow…