fb设备驱动框架分析

news2024/11/20 8:46:29

一、字符设备注册过程:

归根到底,fb设备也是一个字符设备,所以逃不开常规的字符设备驱动框架:
在这里插入图片描述

Linux内核中编写字符设备驱动通常遵循以下步骤:

①、定义主设备号

在Linux中,每个字符设备都有一个唯一的主设备号。你可以静态地分配一个主设备号,或者动态地从内核获取一个未使用的主设备号(一般使用动态获取即可)。

#define MY_DEVICE_MAJOR 240 // 示例:静态分配的主设备号  
// 或者使用动态分配,通过alloc_chrdev_region在运行时获取主设备号

②、构造file_operations结构体

file_operations结构体定义了设备驱动程序提供的操作接口。需要根据不同设备需求实现相应的函数,如open, read, write, release等。

static const struct file_operations fops = {  
    .owner = THIS_MODULE,  
    .open = my_device_open,  
    .read = my_device_read,  
    .write = my_device_write,  
    .release = my_device_release,  
    // 还可以实现其他的函数接口,如ioctl, mmap等  具体查看file_operation结构体定义
};

③、注册驱动

使用register_chrdev函数来注册你的字符设备驱动。注册驱动的时候需要主设备号、设备名称和file_operations结构体作为参数。

static int __init my_device_init(void) {  
    int result;  
      
    // 如果是动态分配主设备号,使用alloc_chrdev_region()  
    // alloc_chrdev_region(&dev, 0, 1, "my_device");  
    // major = MAJOR(dev);  
  
    result = register_chrdev(MY_DEVICE_MAJOR, "my_device", &fops);  
    if (result < 0) {  
        printk(KERN_ALERT "Registering char device failed with %d\n", result);  
        return result;  
    }  
    // 其他初始化代码,如创建设备节点等  
    return 0;  
}

④、注册入口函数

入口函数是模块的初始化函数,在模块加载时被调用(比如insmod(加载驱动)的时候就会调用了)。

module_init(my_device_init);

⑤、注册出口函数

出口函数是模块的清理函数,在模块卸载时被调用。一般用来注销设备驱动并释放所有相关资源。

static void __exit my_device_exit(void) {  
    unregister_chrdev(MY_DEVICE_MAJOR, "my_device");  
    // 如果是动态分配的主设备号,还需要释放它  
    // unregister_chrdev_region(dev, 1);  
    // 其他清理代码  
}  
module_exit(my_device_exit);

最后添加模块描述、版本和许可证信息。

MODULE_LICENSE("GPL"); // 或你选择的许可证类型  
MODULE_AUTHOR("Your Name"); // 作者名  
MODULE_DESCRIPTION("A simple character device driver"); // 模块描述  
MODULE_VERSION("1.0"); // 模块版本

上述过程就是编写一个字符设备驱动的整体过程,现在对应到LCD设备是怎么处理的呢?

二、 Framebuffer驱动程序框架

分析fb_mem.c文件(路径drivers\video\fbdev\core\fbmem.c):

在这里插入图片描述

可以看到在fbmem.c文件中使用了上文所讲述的字符设备注册过程。首先通过register_chrdev函数注册主设备号为29的字符设备,注册的字符设备中的ops变量实现了很多fb操作函数。

其中fb_read函数做了大概得调用关系总结,fb_read函数首先会获取fb_info结构体,fb_info结构体里面实现了硬件的参数设置和具体的硬件操作。所以fb_read函数的核心就是调用fb_info结构体里面注册的read函数。

注:其他fb操作函数都类似,都是先获取info结构体,进而调用里面注册的底层硬件操作函数。

调用关系:

例子1:
app:  open("/dev/fb0", ...)   主设备号: 29, 次设备号: 0
--------------------------------------------------------------
kernel:
         fb_open
         	int fbidx = iminor(inode);
         	struct fb_info *info = = registered_fb[0];


例子2:
app:  read()
---------------------------------------------------------------
kernel:
		fb_read
			int fbidx = iminor(inode);
			struct fb_info *info = registered_fb[fbidx];
			if (info->fbops->fb_read)
				return info->fbops->fb_read(info, buf, count, ppos);
         	
			src = (u32 __iomem *) (info->screen_base + p);
			dst = buffer;
			*dst++ = fb_readl(src++);
			copy_to_user(buf, buffer, c)         	

2.3、fb设备驱动框架总结:

分为上下两层:

  • fbmem.c:承上启下
    • 实现、注册file_operations结构体
    • 把APP的调用向下转发到具体的硬件驱动程序
  • xxx_fb.c:硬件相关的驱动程序
    • 实现、注册fb_info结构体
    • 实现硬件操作

三、Framebuffer驱动程序实现过程

3.1、明确主线任务

通过分析上述fbmem.c文件我们可以看到,我们要是想要编写一个fb设备的驱动的话,最终要就是要是先fb_info结构体。有几个重要的成员变量如下:

在这里插入图片描述

  • var这个成员包含了屏幕的可变参数,如分辨率、色深等。在驱动初始化时,应该根据硬件的能力来填充这些参数。

  • fix这个成员包含了屏幕的固定参数,如屏幕的物理尺寸、内存类型等。这些参数也应该在驱动初始化时根据硬件设置。
    在这里插入图片描述

  • fbops这是一个指向fb_ops结构体的指针,它包含了帧缓冲设备所需的操作函数,如fb_fillrectfb_copyareafb_imageblit等。这些函数是硬件相关的,必须根据具体的硬件设备来实现。

  • screen_base这是帧缓冲区的虚拟地址,它指向映射的显存区域。驱动需要设置这个指针以便用户空间可以访问显存。

  • screen_size表示映射的显存大小。这个值应该根据实际的显存大小来设置。

3.2、fb应用程序和驱动交互过程

1. open

app:  open("/dev/fb0", ...)   主设备号: 29, 次设备号: 0
--------------------------------------------------------------
kernel:
         fb_open   // fbmem.c
         	struct fb_info *info;
         	info = get_fb_info(fbidx);
			
			if (info->fbops->fb_open) {
				res = info->fbops->fb_open(info,1);   // 硬件相关的驱动
				if (res)
					module_put(info->fbops->owner);
			}         	

2. 获得可变信息(含有分辨率等)

app:  	ioctl(fd, FBIOGET_VSCREENINFO, &fb_info->var);
-------------------------------------------------------------------------
kernel:
         fb_ioctl   // fbmem.c
         	struct fb_info *info = file_fb_info(file);

         	do_fb_ioctl(info, cmd, arg);
         		var = info->var;     // 硬件相关的驱动设置的
         		ret = copy_to_user(argp, &var, sizeof(var)) ? -EFAULT : 0;

3. 获得固定信息(含有显存信息)

app:  	ioctl(fd, FBIOGET_FSCREENINFO, &fb_info->fix);
-------------------------------------------------------------------------
kernel:
         fb_ioctl   // fbmem.c
         	struct fb_info *info = file_fb_info(file);

         	do_fb_ioctl(info, cmd, arg);
         		fix = info->fix;     // 硬件相关的驱动设置的
         		ret = copy_to_user(argp, &fix, sizeof(fix)) ? -EFAULT : 0;

4. mmap

app:void *ptr = mmap(0,
			fb_info->var.yres_virtual * fb_info->fix.line_length,
			PROT_WRITE | PROT_READ,
			MAP_SHARED, fd, 0);
-------------------------------------------------------------------------
kernel:
         fb_mmap   // fbmem.c
         	struct fb_info *info = file_fb_info(file);

         	start = info->fix.smem_start;
         	len = info->fix.smem_len;
         	return vm_iomap_memory(vma, start, len);

3.2、实现"主线任务"

编写一个简单的FB设备驱动框架:

注:此处编写fb驱动只是为了更好的理解nxp官方的fb设备驱动代码。

代码如下:

#include <linux/module.h>  
#include <linux/kernel.h>  
#include <linux/platform_device.h>  
#include <linux/fb.h>  
  
static struct fb_info *my_fb_info;  
  
static struct fb_ops my_fb_ops = {  
    // .owner 应该在fb_info分配之后设置  
    // 其他操作函数根据需要进行实现  
};  
  
static int my_simple_fb_probe(struct platform_device *pdev)  
{  
    int ret;  
  
    my_fb_info = framebuffer_alloc(0, &pdev->dev);  
    if (!my_fb_info) {  
        ret = -ENOMEM;  
        dev_err(&pdev->dev, "Cannot allocate framebuffer\n");  
        return ret;  
    }  
  
    my_fb_info->fbops = &my_fb_ops;  
    my_fb_info->var.xres = 800;  
    my_fb_info->var.yres = 600;  
    // 设置其他framebuffer参数...  
  
    my_fb_ops.owner = THIS_MODULE;  
    // 设置其他fb_ops函数指针...  
  
    ret = register_framebuffer(my_fb_info);  
    if (ret < 0) {  
        dev_err(&pdev->dev, "Cannot register framebuffer\n");  
        goto err_register_fb;  
    }  
  
    platform_set_drvdata(pdev, my_fb_info);  
  
    dev_info(&pdev->dev, "Simple framebuffer driver loaded\n");  
    return 0;  
  
err_register_fb:  
    framebuffer_release(my_fb_info);  
    return ret;  
}  
  
static int my_simple_fb_remove(struct platform_device *pdev)  
{  
    struct fb_info *info = platform_get_drvdata(pdev);  
  
    if (info) {  
        unregister_framebuffer(info);  
        framebuffer_release(info);  
    }  
  
    return 0;  
}  
  
#ifdef CONFIG_OF  
static const struct of_device_id my_simple_fb_of_match[] = {  
    { .compatible = "vendor,my_simple_fb", },  
    {},  
};  
MODULE_DEVICE_TABLE(of, my_simple_fb_of_match);  
#endif  
  
static struct platform_driver my_simple_fb_driver = {  
    .probe = my_simple_fb_probe,  
    .remove = my_simple_fb_remove,  
    .driver = {  
        .name = "my_simple_fb",  
        .of_match_table = of_match_ptr(my_simple_fb_of_match),  
    },  
};  
  
module_platform_driver(my_simple_fb_driver);  
  
MODULE_DESCRIPTION("Simple Framebuffer Platform Driver");  
MODULE_LICENSE("GPL");

三、浅析NXP自己的LCD控制器的驱动程序

①、nxp自己的驱动程序分析
在这里插入图片描述

注:相关的fbops结构体中函数指针所指向的函数都是通过配置寄存器实现的,需要对照寄存器手册。其实就是配置寄存器进而设置lcdif(imx6ull)工作需要的一些配置。

②、imx6ull的lcd控制器dts分析

上面只是浅析了.c文件的大概实现,下面查看一下设备树的实现,直接查看他们自己的evk板子的设备树。

&lcdif {
	pinctrl-names = "default";
	pinctrl-0 = <&pinctrl_lcdif_dat
		     &pinctrl_lcdif_ctrl
		     &pinctrl_lcdif_reset>;
	display = <&display0>;
	status = "okay";

	display0: display {
		bits-per-pixel = <16>;
		bus-width = <24>;

		display-timings {
			native-mode = <&timing0>;
			timing0: timing0 {
			clock-frequency = <9200000>;
			hactive = <480>;
			vactive = <272>;
			hfront-porch = <8>;
			hback-porch = <4>;
			hsync-len = <41>;
			vback-porch = <2>;
			vfront-porch = <4>;
			vsync-len = <10>;

			hsync-active = <0>;
			vsync-active = <0>;
			de-active = <1>;
			pixelclk-active = <0>;
			};
		};
	};
};

pinctrl_lcdif_dat: lcdifdatgrp {
			fsl,pins = <
				MX6UL_PAD_LCD_DATA00__LCDIF_DATA00  0x79
				......
				MX6UL_PAD_LCD_DATA23__LCDIF_DATA23  0x79
			>;
		};

		pinctrl_lcdif_ctrl: lcdifctrlgrp {
			fsl,pins = <
				MX6UL_PAD_LCD_CLK__LCDIF_CLK	    0x79
				MX6UL_PAD_LCD_ENABLE__LCDIF_ENABLE  0x79
				MX6UL_PAD_LCD_HSYNC__LCDIF_HSYNC    0x79
				MX6UL_PAD_LCD_VSYNC__LCDIF_VSYNC    0x79
			>;
		};
		pinctrl_lcdif_reset: lcdifresetgrp {
                        fsl,pins = <
                                /* used for lcd reset */
                                MX6ULL_PAD_SNVS_TAMPER9__GPIO5_IO09  0x79
                        >;
         };
 };

①、 &lcdif 节点:

  • pinctrl-namespinctrl-0:这两个属性用于配置LCD接口的引脚控制(pinctrl)。pinctrl-names 指定了控制组的名称(“default”),而 pinctrl-0 则引用了三个pinctrl组,分别用于数据(pinctrl_lcdif_dat)、控制信号(pinctrl_lcdif_ctrl)和复位信号(pinctrl_lcdif_reset)。
  • display:此属性引用了一个名为 display0 的子节点,该子节点包含了显示器的具体配置。
  • status:表示此设备的状态为 “okay”,意味着这个设备是激活和可用的。

②、 display0 节点:

  • bits-per-pixelbus-width:分别指定了每个像素使用的位数(16位)和总线宽度(24位)。
  • display-timings:这个节点包含了显示器的时序配置。
  • timing0 中,详细定义了显示器的各种时序参数,如 clock-frequency(时钟频率)、hactivevactive(水平和垂直有效像素数)、hfront-porchhback-porchhsync-len 等(水平时序参数),以及 vback-porchvfront-porchvsync-len 等(垂直时序参数)。此外,还定义了同步信号(hsync, vsync)和像素时钟的极性。
    ③、pinctrl组节点:
  • pinctrl_lcdif_datpinctrl_lcdif_ctrlpinctrl_lcdif_reset 分别定义了LCD数据线、控制线和复位线的引脚配置。在这些节点中,fsl,pins 属性指定了具体的引脚分配和配置。例如,MX6UL_PAD_LCD_DATA00__LCDIF_DATA00 0x79 表示将 LCD_DATA00 引脚分配给 LCDIF_DATA00 功能,并设置其配置为 0x79

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1661713.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第十五届蓝桥杯python B组省赛

前言&#xff1a; 这是我第一次参加蓝桥杯&#xff0c;成绩并不理想&#xff0c;我反思了一下午&#xff0c;我的问题主要是知识点学不透&#xff0c;题目做的太少&#xff0c;而且学习的时候少数时间不专心&#xff0c;但是&#xff0c;我能感觉到我的学习能力并不弱&#xf…

Unity TileMap入门

概述 相信很多同学学习制作游戏都是从2D游戏开始制作的吧&#xff0c;瓦片地图相信大家都有接触&#xff0c;那接下来让我们学习一下这部分的内容吧&#xff01; Tilemap AnimationFrameRate:设置每帧动画的播放速率。Color:瓦片地图的颜色TileAnchor:锚点&#xff0c;&#x…

AI英语口语训练软件有哪些?这4款简单易用

AI英语口语训练软件有哪些&#xff1f;AI英语口语训练软件在现代语言学习中确实扮演着举足轻重的角色。它们凭借先进的智能算法&#xff0c;能够为我们量身定制学习方案&#xff0c;精准识别并纠正发音错误&#xff0c;模拟真实对话场景&#xff0c;使学习过程更加高效、有趣。…

Qt复习第二天

1、菜单栏工具栏状态栏 #include "mainwindow.h" #include "ui_mainwindow.h" #pragma execution_character_set("utf-8"); MainWindow::MainWindow(QWidget *parent): QMainWindow(parent), ui(new Ui::MainWindow) {ui->setupUi(this);//菜…

【C++】转换构造函数和类型转换函数

目录 转换构造函数转换构造函数调用 类型转换函数类型转换函数定义形式应用 转换构造函数 转换构造函数就是一种构造函数&#xff0c;将一个其他类型的数据转换成一个类的对象的构造函数。 类型->类对象 转换构造函数调用 &#xff08;1&#xff09;显式强制类型转换&…

抽象类基本概念

抽象类及抽象方法 概念&#xff1a;一个类中没有包含足够的信息来描绘一个具体的对象&#xff0c;这种类被定义为抽象类&#xff0c;含有抽象方法的类也被称为抽象类。 用通俗的话来说就是当一个类的某个功能&#xff08;方法&#xff09;实现不确定时&#xff0c;我们就将该…

数据挖掘(二)数据预处理

前言 基于国防科技大学 丁兆云老师的《数据挖掘》 数据挖掘 数据挖掘&#xff08;一&#xff09;数据类型与统计 2、数据预处理 2.1数据清理 缺失值处理&#xff1a; from sklearn.impute import SimpleImputer# 创建一个SimpleImputer对象&#xff0c;指定缺失值的处理策略…

信息系统项目管理基础

目录 一、项目管理概论 1、定义 2、项目管理的十二原则 3、SMART原则 4、项目经理 5、项目的生命周期 二、项目立项管理 1、项目启动过程 三、项目整合管理 1、管理基础 2、项目整合管理过程 ①制定项目章程 ②制定项目管理计划 ③指导与管理项目工作 ④管理项目…

【算法与数据结构】数组

文章目录 前言数组数组的定义数组的基本操作增加元素删除元素修改元素查找元素 C STL 中的数组arrayvector Python3 中的列表访问更改元素值遍历列表检查列表中是否存在某元素增加元素删除元素拷贝列表总结 Python3 列表的常用操作 参考资料写在最后 前言 本系列专注更新基本数…

计算机系列之数据库技术

13、数据库技术&#xff08;重点、考点&#xff09; 1、三级模式-两级映像&#xff08;考点&#xff09; 内模式&#xff1a;管理如何存储物理的数据&#xff0c;对应具体物理存储文件。 **模式&#xff1a;**又称为概念模式&#xff0c;就是我们通常使用的基本表&#xff0c…

AI算法-高数3-导数-求导法则

P16 2.2 求导法则&#xff0c;宋浩老师&#xff1a;2.2 求导法则_哔哩哔哩_bilibili 反函数求导法则&#xff1a; 复合函数求导&#xff1a;剥洋葱法。

H5 鼠标点击粒子扩散效果

&#x1f9d0;别人的博客中有这样的效果&#xff0c;于是自己就尝试实现了一下。 效果如图 源码如下 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content&quo…

一文彻底读懂信息安全等级保护:包含等保标准、等保概念、等保对象、等保流程及等保方案(附:等保相关标准文档)

1. 什么是等级保护&#xff1f; 1.1. 概念 信息安全等级保护是指根据我国《信息安全等级保护管理办法》的规定&#xff0c;对各类信息系统按照其重要程度和保密需求进行分级&#xff0c;并制定相应的技术和管理措施&#xff0c;确保信息系统的安全性、完整性、可用性。根据等…

CTFHUB-技能树-Web题-RCE(远程代码执行)-文件包含

CTFHUB-技能树-Web题-RCE&#xff08;远程代码执行&#xff09; 文件包含 文章目录 CTFHUB-技能树-Web题-RCE&#xff08;远程代码执行&#xff09;文件包含解题方法1:![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/71f7355b3c124dfe8cdf1c95e6991553.png#pic_ce…

Docker快速搭建NAS服务——NextCloud

Docker快速搭建NAS服务——NextCloud 文章目录 前言NextCloud的搭建docker-compose文件编写运行及访问 总结 前言 本文主要讲解如何使用docker在本地快速搭建NAS服务&#xff0c;这里主要写如下两种&#xff1a; FileBrowser1&#xff1a;是一个开源的Web文件管理器&#xff…

我觉得POC应该贴近实际

今天我看到一位老师给我一份测试数据。 这是三个国产数据库。算是分布式的。其中有两个和我比较熟悉&#xff0c;但是这个数据看上去并不好。看上去第一个黄色的数据库数据是这里最好的了。但是即使如此&#xff0c;我相信大部分做数据库的人都知道。MySQL和PostgreSQL平时拿出…

常用七大加密软件排行榜|好用加密文件软件分享

数据安全与隐私保护已成为我们每个人都必须面对的重要问题。 文件加密软件作为保障数据安全的关键工具&#xff0c;其重要性不言而喻。 在众多的加密软件中&#xff0c;哪些软件能够在保障数据安全的同时&#xff0c;又具备良好的易用性和稳定性呢&#xff1f; 本文将为您揭秘…

YOLO系列笔记(十)—— 基础:卷积层及其计算公式

卷积层及其计算公式 前言定义与功能计算过程与输出尺寸没有填充的情况有填充的情况 网络结构中的表示分析一&#xff1a;数字的含义分析二&#xff1a;分支的含义 前言 卷积层是在深度学习领域中非常常见、基础且重要的一种神经网络层。许多初学者可能会对卷积层的功能、其计算…

【Git】Github创建远程仓库并与本地互联

创建仓库 点击生成新的仓库 创建成功后会生成一个这样的文件 拉取到本地 首先先确保本地安装了git 可以通过终端使用 git --version来查看是否安装好了git 如果显示了版本信息&#xff0c;说明已经安装好了git&#xff0c;这时候我们就可以进入我们想要clone到问目标文件夹 …

数据库开启远程连接

服务器端添加一个允许远程连接的root用户: mysql -u root -p create user root192.168.10.20 identified by admin; //创建一个192.168.10.20地址远程连接的root用户 grant all privileges on *.* to root192.168.10.20; //赋予远程root用户所有的权…