【数据结构(邓俊辉)学习笔记】栈与队列01——栈应用(栈混洗、前缀后缀表达式、括号匹配)

news2025/1/14 2:03:46

文章目录

  • 0. 概述
  • 1. 操作与接口
  • 2. 操作实例
  • 3. 实现
  • 4. 栈与递归
  • 5. 应用
    • 5.1 逆序输出
      • 5.1.1 进制转换
        • 5.1.1.1 思路
        • 5.1.1.2 算法实现
    • 5.2 递归嵌套
      • 5.2.1 栈混洗
        • 5.2.1.1 混洗
        • 5.2.1.2 计数
        • 5.2.1.3 甄别
      • 5.2.2 括号匹配
        • 5.2.2.1 构思
        • 5.2.2.2 实现
        • 5.2.2.3 实例
    • 5.3 延迟缓冲
      • 5.3.1 中缀表达式
        • 5.3.1.1 表达式求值
        • 5.3.1.2 优先级表
        • 5.3.1.3 求值算法
      • 5.3.2 逆波兰表达式(后缀表达式)
        • 5.3.2.1 RPN
        • 5.3.2.2 RPN实例
        • 5.3.2.3 infix 到postfix 转换

0. 概述

介绍下栈的接口与应用。

1. 操作与接口

在这里插入图片描述

2. 操作实例

在这里插入图片描述

3. 实现

在这里插入图片描述
基于向量

#include "Vector/Vector.h" //以向量为基类,派生出栈模板类
template <typename T> 
class Stack: public Vector<T> { //将向量的首/末端作为栈底/顶
public: //原有接口一概沿用
   void push ( T const& e ) { insert ( e ); } //入栈:等效于将新元素作为向量的末元素插入
   T pop() { return remove ( size() - 1 ); } //出栈:等效于删除向量的末元素
   T& top() { return ( *this ) [size() - 1]; } //取顶:直接返回向量的末元素
};

基于列表

#include "List/List.h" //以列表为基类,派生出栈模板类
template <typename T> 
class Stack: public List<T> { //将列表的首/末端作为栈底/顶
public: //原有接口一概沿用
   void push ( T const& e ) { insertAsLast ( e ); } //入栈:等效于将新元素作为列表的末元素插入
   T pop() { return remove ( last() ); } //出栈:等效于删除列表的末元素
   T& top() { return last()->data; } //取顶:直接返回列表的末元素
};

4. 栈与递归

在这里插入图片描述

5. 应用

典型应用场合
在这里插入图片描述

5.1 逆序输出

5.1.1 进制转换

5.1.1.1 思路

在这里插入图片描述
在这里插入图片描述

5.1.1.2 算法实现
  1. 递归实现
void convert ( Stack<char>& S, __int64 n, int base ) { //十进制数n到base进制的转换(递归版)
	static char digit[] //0 < n, 1 < base <= 16,新进制下的数位符号,可视base取值范围适当扩充
	= { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
	if ( 0 < n ) { //在尚有余数之前,不断
		convert ( S, n / base, base ); //通过递归得到所有更高位
		S.push ( digit[n % base] ); //输出低位
	}
} //新进制下由高到低的各数位,自顶而下保存于栈S中
  1. 迭代实现

优化点:
这里的静态数位符号表在全局只需保留一份,但与一般的递归函数一样,该函数在递归调用栈中的每一帧都仍需记录参数S、n和base。将它们改为全局变量固然可以节省这部分空间,但依然不能彻底地避免因调用栈操作而导致的空间和时间消耗。

改写成迭代版将空间消耗降至O(1)。

void convert ( Stack<char>& S, __int64 n, int base ) { //十进制数n到base进制的转换(迭代版)
	static char digit[] //0 < n, 1 < base <= 16,新进制下的数位符号,可视base取值范围适当扩充
	= { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
	while ( n > 0 ) { //由低到高,逐一计算出新进制下的各数位
		int remainder = ( int ) ( n % base ); S.push ( digit[remainder] ); //余数(当前位)入栈
		n /= base; //n更新为其对base的除商
	}
} //新进制下由高到低的各数位,自顶而下保存于栈S中

5.2 递归嵌套

5.2.1 栈混洗

5.2.1.1 混洗

栈混洗就是按照某种约定的规则对栈中元素进行重新的排列。
在这里插入图片描述
上图采用约定尖括号<表示栈顶,方括号]表示栈底。

在遵守以上规则的前提下,同一输入序列完全可以导出不同的栈混洗序列。
在这里插入图片描述
n个元素的栈混洗总数不会超过全排列n!。

一般地对于长度为n的输入序列,每一栈混洗都对应于由栈S的n次push和n次pop构成的某一合法操作序列比如[ 3, 2,4, 1> 
即对应于操作序列: 
        {push, push, push, pop, pop, push, pop, pop } 
反之,由n次push和n次pop构成的任何操作序列,只要满足“任一前缀中的push不少于pop”这一限制,则该序列也必然对应于
某个栈混洗。
5.2.1.2 计数

在这里插入图片描述
假定输入栈A中共有n个元素,自顶向下依次编号为1,2,3 … n。将注意力放在第一个元素1上,它将被首次推入中转栈S中,若1号元素被弹出,则栈S就是空栈,此时在栈B中包括刚推入的1号元素,累计共有k个元素。那么栈A中就应该还留存有最后的n-k个元素。此时B中k个元素和A中n-k个元素它们的栈混洗是相互独立的,故1号元素作为第k个元素被推入B中的情况,累计栈混洗总数如下
在这里插入图片描述

5.2.1.3 甄别

在这里插入图片描述
在这里插入图片描述

5.2.2 括号匹配

5.2.2.1 构思

在这里插入图片描述

5.2.2.2 实现

算法思想:只要将push、pop操作分别与左、右括号相对应,则长度为n的栈混洗,必然与由n对括号组成的合法表达式彼此对应。 比如,栈混洗[ 3, 2, 4, 1 >对应于表达式"( ( ( ) ) ( ) )"。按照这一理解,借助栈结构,只需扫描一趟表达式,即可在线性时间内,判定其中的括号是否匹配。

bool paren ( const char exp[], int lo, int hi ) { //表达式括号匹配检查,可兼顾三种括号
	Stack<char> S; //使用栈记录已发现但尚未匹配的左括号
	for ( int i = lo; i <= hi; i++ ) /* 逐一检查当前字符 */
	switch ( exp[i] ) { //左括号直接进栈;右括号若与栈顶失配,则表达式必不匹配
		case '(': case '[': case '{': S.push ( exp[i] ); break;
		case ')': if ( ( S.empty() ) || ( '(' != S.pop() ) ) return false; break;
		case ']': if ( ( S.empty() ) || ( '[' != S.pop() ) ) return false; break;
		case '}': if ( ( S.empty() ) || ( '{' != S.pop() ) ) return false; break;
		default: break; //非括号字符一律忽略
	}
	return S.empty(); //整个表达式扫描过后,栈中若仍残留(左)括号,则不匹配;否则(栈空)匹配
}
5.2.2.3 实例

在这里插入图片描述

5.3 延迟缓冲

在一些应用问题中,输入可分解为多个单元并通过迭代依次扫描处理,但过程中的各步计算往往滞后于扫描的进度,需要待到必要的信息已完整到一定程度之后,才能作出判断并实施计算。在这类场合,栈结构则可以扮演数据缓冲区的角色。

中缀表达式算法的求解过程同逆波兰表达式算法,下面介绍下。

5.3.1 中缀表达式

5.3.1.1 表达式求值

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.3.1.2 优先级表

将不同运算符之间的运算优先级关系,描述为一张二维表格。
在这里插入图片描述

#define N_OPTR 9 //运算符总数
typedef enum { ADD, SUB, MUL, DIV, POW, FAC, L_P, R_P, EOE } Operator; //运算符集合
//加、减、乘、除、乘方、阶乘、左括号、右括号、起始符与终止符

const char pri[N_OPTR][N_OPTR] = { //运算符优先等级 [栈顶] [当前]
   /*              |-------------------- 当 前 运 算 符 --------------------| */
   /*              +      -      *      /      ^      !      (      )      \0 */
   /* --  + */    '>',   '>',   '<',   '<',   '<',   '<',   '<',   '>',   '>',
   /* |   - */    '>',   '>',   '<',   '<',   '<',   '<',   '<',   '>',   '>',
   /* 栈  * */    '>',   '>',   '>',   '>',   '<',   '<',   '<',   '>',   '>',
   /* 顶  / */    '>',   '>',   '>',   '>',   '<',   '<',   '<',   '>',   '>',
   /* 运  ^ */    '>',   '>',   '>',   '>',   '>',   '<',   '<',   '>',   '>',
   /* 算  ! */    '>',   '>',   '>',   '>',   '>',   '>',   ' ',   '>',   '>',
   /* 符  ( */    '<',   '<',   '<',   '<',   '<',   '<',   '<',   '=',   ' ',
   /* |   ) */    ' ',   ' ',   ' ',   ' ',   ' ',   ' ',   ' ',   ' ',   ' ',
   /* -- \0 */    '<',   '<',   '<',   '<',   '<',   '<',   '<',   ' ',   '='
};
5.3.1.3 求值算法
double evaluate ( char* S, char* RPN ) { //对(已剔除白空格的)表达式S求值,并转换为逆波兰式RPN
   Stack<double> opnd; Stack<char> optr; //运算数栈、运算符栈 /*DSA*/任何时刻,其中每对相邻元素之间均大小一致
   /*DSA*/ char* expr = S;
   optr.push ( '\0' ); //尾哨兵'\0'也作为头哨兵首先入栈
   while ( !optr.empty() ) { //在运算符栈非空之前,逐个处理表达式中各字符
      if ( isdigit ( *S ) ) { //若当前字符为操作数,则
         readNumber ( S, opnd ); append ( RPN, opnd.top() ); //读入操作数,并将其接至RPN末尾
      } else //若当前字符为运算符,则
         switch ( priority ( optr.top(), *S ) ) { //视其与栈顶运算符之间优先级高低分别处理
            case '<': //栈顶运算符优先级更低时
               optr.push ( *S ); S++; //计算推迟,当前运算符进栈
               break;
            case '=': //优先级相等(当前运算符为右括号或者尾部哨兵'\0')时
               optr.pop(); S++; //脱括号并接收下一个字符
               break;
            case '>': { //栈顶运算符优先级更高时,可实施相应的计算,并将结果重新入栈
               char op = optr.pop(); append ( RPN, op ); //栈顶运算符出栈并续接至RPN末尾
               if ( '!' == op ) //若属于一元运算符
                  opnd.push ( calcu ( op, opnd.pop() ) ); //则取一个操作数,计算结果入栈
               else { //对于其它(二元)运算符
                  double opnd2 = opnd.pop(), opnd1 = opnd.pop(); //取出后、前操作数 /*DSA*/提问:可否省去两个临时变量?
                  opnd.push ( calcu ( opnd1, op, opnd2 ) ); //实施二元计算,结果入栈
               }
               break;
            }
            default : exit ( -1 ); //逢语法错误,不做处理直接退出
         }//switch
      /*DSA*/displayProgress ( expr, S, opnd, optr, RPN );
   }//while
   return opnd.pop(); //弹出并返回最后的计算结果
}

算法思想:
        ~~~~~~~        该算法自左向右扫描表达式,并对其中字符逐一做相应的处理。那些已经扫描过但(因信息不足)尚不能处理的操作数与运算符,将分别缓冲至栈opnd和栈optr。一旦判定已缓存的子表达式优先级足够高,便弹出相关的操作数和运算符,随即执行运算,并将结果压入栈opnd。
        ~~~~~~~        请留意这里区分操作数和运算符的技巧。一旦当前字符由非数字转为数字,则意味着开始进入一个对应于操作数的子串范围。由于这里允许操作数含有多个数位,甚至可能是小数。

void readNumber ( char*& p, Stack<double>& stk ) { //将起始于p的子串解析为数值,并存入操作数栈
   stk.push ( ( double ) ( *p - '0' ) ); //当前数位对应的数值进栈
   while ( isdigit ( * ( ++p ) ) ) //若有后续数字(多位整数),则
      stk.push ( stk.pop() * 10 + ( *p - '0' ) ); //追加之(可能上溢)
   if ( '.' == *p ) { //若还有小数部分
      double fraction = 1; //则
      while ( isdigit ( * ( ++p ) ) ) //逐位
         stk.push ( stk.pop() + ( *p - '0' ) * ( fraction /= 10 ) ); //加入(可能下溢)
   }
}

根据当前字符及其后续的若干字符,利用另一个栈解析出当前的操作数。解析完毕,当前字符将再次聚焦于一个非数字字符。

不同优先级的处置如下:
调用priority ()函数,将其与栈optr的栈顶操作符做一比较之后,即可视二者的优先级高低,分三种情况相应地处置。

Operator optr2rank ( char op ) { //由运算符转译出编号
   switch ( op ) {
      case '+' : return ADD; //加
      case '-' : return SUB; //减
      case '*' : return MUL; //乘
      case '/' : return DIV; //除
      case '^' : return POW; //乘方
      case '!' : return FAC; //阶乘
      case '(' : return L_P; //左括号
      case ')' : return R_P; //右括号
      case '\0': return EOE; //起始符与终止符
      default  : exit ( -1 ); //未知运算符
   }
}

char priority ( char op1, char op2 ) //比较两个运算符之间的优先级
{ return pri[optr2rank ( op1 ) ][optr2rank ( op2 ) ]; }

将其与栈optr的栈顶操作符做一比较之后,即可视二者的优先级高低,分三种情况相应地处置。

1)若当前运算符的优先级更高,则optr中的栈顶运算符尚不能执行
2)反之,一旦栈顶运算符的优先级更高,则可以立即弹出并执行对应的运算
	一目运算符!弹出一个数,双目运算符弹出两个数。
3)当前运算符与栈顶运算符的优先级“相等”
	对右括号的上述处理方式,将在optr栈顶出现操作符'('时终止。除左、
	右括号外,还有一种优先级相等的合法情况,即pri['\0']['\0'] = '='

5.3.2 逆波兰表达式(后缀表达式)

5.3.2.1 RPN

在这里插入图片描述
在这里插入图片描述

5.3.2.2 RPN实例

在这里插入图片描述

5.3.2.3 infix 到postfix 转换

在这里插入图片描述
在这里插入图片描述
上述evaluate()算法在对表达式求值的同时,也顺便完成了从常规表达式到RPN表达式的转换。

该算法借助append()函数将各操作数和运算符适时地追加至串rpn的末尾,直至得到完整的RPN表达式。

void append ( char* rpn, double opnd ) { //将操作数接至RPN末尾
   char buf[64];
   if ( ( int ) opnd < opnd ) sprintf ( buf, "%6.2f \0", opnd ); //浮点格式,或
   else                       sprintf ( buf, "%d \0", ( int ) opnd ); //整数格式
   strcat ( rpn, buf ); //RPN加长
}

void append ( char* rpn, char optr ) { //将运算符接至RPN末尾
   int n = strlen ( rpn ); //RPN当前长度(以'\0'结尾,长度n + 1)
   sprintf ( rpn + n, "%c \0", optr ); //接入指定的运算符
}

这里,在接入每一个新的操作数或操作符之前,都要调用realloc()函数以动态地扩充RPN表达式的容量,因此会在一定程度上影响时间效率。
在十分注重这方面性能的场合,读者可以做适当的改进——比如,有必要扩容时即令容量加倍。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1659429.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

https介绍,加密解密(举例+必要性,对称/非对称加密介绍),数字摘要/指纹(介绍,应用(session id,网盘的秒传功能))

目录 https 引入 介绍 加密解密层 介绍 没有绝对的安全 使用ssl的弊端 加密解密 概念 加密 解密 秘钥 举例 现实中 网络中 加密的必要性 常见加密方式 对称加密 特点 非对称加密 特点 数字摘要/指纹 介绍 应用 session id 百度网盘的秒传功能 https …

设备能耗数据在线监测

在追求可持续发展和绿色经济的当下&#xff0c;企业对于设备能耗的管理愈发重视。设备能耗数据在线监测&#xff0c;不仅能帮助企业实时掌握设备的运行状况&#xff0c;还能为企业节能减排、降低运营成本提供有力支持。HiWoo Cloud平台凭借其先进的技术和丰富的经验&#xff0c…

qt操作硬件(以imx6ull为例)

下面用imx6ull的qt点灯说明&#xff0c;这里要使用c&#xff0c;c混合编程 一、完成ui界面位置 构造一个这样的简单界面即可&#xff0c;主要是实现open和close的槽函数即可。我这里分别把两个按钮改名为为openbt closebt了 二、实现逻辑功能 2.1完成led类创建 在主文件夹le…

网络演进技术演进:裸纤专线、SDH、MSTP+、OTN、PTN、IP-RAN

前言 文章主要介绍常见名词以及其在各自领域实现的功能价值。 01 裸纤 裸光纤&#xff08;裸光纤&#xff09;由运营商提供&#xff0c;是无中继的光纤线路&#xff0c;仅通过配线架连接。相比传统光纤&#xff0c;裸光纤提供纯粹的物理传输路径&#xff0c;无需额外网…

【C++】类与对象(类章节)

面向过程和面向对象 C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的步骤&#xff0c;通过函数调用逐步解决问题。 C是基于面向对象的&#xff0c;关注的是对象&#xff0c;将一件事情拆分成不同的对象&#xff0c;靠对象之间的交互完 成。 一、类 1.类…

OpenBayes 一周速览|Apple 开源大模型 OpenELM 上线;字节发布 COCONut 首个全景图像分割数据集,入选 CVPR2024

公共资源速递 This Weekly Snapshots &#xff01; 5 个数据集&#xff1a; * COCONut 大规模图像分割数据集 * THUCNews 新闻数据集 * DuConv 对话数据集 * 安徽电信知道问答数据集 * Sentiment Analysis 中文情感分析数据集 2 个模型&#xff1a; * OpenELM-3B-Inst…

面试笔记——类加载器

基础 类加载器&#xff1a;用于装载字节码文件(.class文件)运行时数据区&#xff1a;用于分配存储空间执行引擎&#xff1a;执行字节码文件或本地方法垃圾回收器&#xff1a;用于对JVM中的垃圾内容进行回收 类加载器 &#xff1a;JVM只会运行二进制文件&#xff0c;类加载器的…

Python入门系列-02 pip的安装

目录 一、pip介绍二、pip安装检查三、pip安装 一、pip介绍 pip 是 Python 包管理工具&#xff0c;该工具提供了对Python 包的查找、下载、安装、卸载的功能。 二、pip安装检查 你可以通过以下命令来判断是否已安装。 pip --version # Python2.x 版本命令 pip3 --versio…

uniapp——弹出键盘遮挡住输入框 textarea,处理方法

案例 在写输入框的时候会遇见 键盘遮挡住部分textarea框的一部分&#xff0c;使用cursor-spacing处理即可 修改后&#xff1a; 其他问题&#xff1a; 调起键盘输入时&#xff0c;不希望上方的内容被顶上去 代码 <view class"commentBox" :style"botto…

蓝桥杯EDA常见电路原理图设计和分析

目录 前言 一、常见器件及其作用 二、原理图设计题目 1.蜂鸣器原理图 2.LCD背光控制电路 3.参考电压源 4.低通滤波器电路设计 5.5-3.3电源转换电路 6.3.3V-VDD_EXT电平转换电路 7.DS18B20原理图 8.供电输出控制接口电路 9.电源检测接口电路 10.USB转串口电路 三、…

微信小程序原生组件使用

1、video组件使用 <view class"live-video"><video id"myVideo" src"{{videoSrc}}" bindplay"onPlay" bindfullscreenchange"fullScreenChange" controls object- fit"contain"> </video&g…

每日两题 / 104. 二叉树的最大深度 102. 二叉树的层序遍历(LeetCode热题100)

104. 二叉树的最大深度 - 力扣&#xff08;LeetCode&#xff09; 递归判断&#xff0c;当前节点的最大深度为1 max(左节点的最大深度&#xff0c;右节点的最大深度) /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* …

PowerPhotos for Mac:您的照片管理助手

PowerPhotos for Mac&#xff0c;作为一款专业的照片管理软件&#xff0c;为用户提供了全方位的照片管理解决方案。从照片的导入、整理到查找、编辑&#xff0c;PowerPhotos都能为您提供便捷的操作体验。 首先&#xff0c;PowerPhotos支持多库管理&#xff0c;用户可以根据需要…

Spark云计算平台Databricks使用,第一个scala程序

1) 创建Spark计算集群 Spark云计算平台Databricks使用&#xff0c;创建workspace和cluster-CSDN博客 2) 创建notebook Workspace -> Users&#xff0c;选择用户&#xff0c;点击Create -> Notebook 选择集群&#xff0c;可以修改notebook名字 修改了notebook名字 选择S…

triton之语法学习

一 基本语法 1 torch中tensor的声明 x = torch.tensor([[1,2, 1, 1, 1, 1, 1, 1],[2,2,2,2,2,2,2,2]],device=cuda) 声明的时候有的时候需要指出数据的类型,不然在kernel中数据类型无法匹配 x = torch.tensor([1,2,1,1,1,1,1,1],dtype = torch.int32,device=cuda) 2 idx id…

关于冯诺依曼体系结构 和 操作系统(Operator System)的概念讲解(冯诺依曼体系结构,操作系统的作用等)

目录 一、冯诺依曼体系结构 二、操作系统 1. 概念 2. 设计操作系统的目的 3.系统调用和库函数概念 4.总结 三、完结撒❀ 一、冯诺依曼体系结构 我们常见的计算机&#xff0c;如笔记本。我们不常见的计算机&#xff0c;如服务器&#xff0c;大部分都遵守冯诺依曼体系。 截…

酷开科技AI技术支持,酷开系统根据你的喜好量身定制节目

在当今数字化时代&#xff0c;个性化推荐已成为提升消费者体验的关键因素。酷开科技的智慧AI&#xff0c;为消费者提供了精彩的内容推荐服务&#xff0c;更大地丰富了消费者的娱乐生活。 酷开系统中的AI推荐引擎通过学习消费者的观看习惯和偏好&#xff0c;能够快速识别其兴趣…

idea java 后缀补全

ArrayList<$EXPR$> enters new ArrayList<>();for (int i 0; i < enters.size(); i) {$EXPR$ enter enters.get(i);enter$END$} 让编程效率翻倍的IDEA快捷键—自定义后缀补全_哔哩哔哩_bilibili

Navicat 干货 | 探索 PostgreSQL 中不同类型的约束

PostgreSQL 的一个重要特性之一是能够对数据实施各种约束&#xff0c;以确保数据完整性和可靠性。今天的文章中&#xff0c;我们将概述 PostgreSQL 的各种约束类型并结合免费的 "dvdrental" 示例数据库 中的例子探索他们的使用方法。 1. 检查约束&#xff1a; 检查…

winform图书销售管理系统+mysql

winform图书销售管理系统mysql数据库说明文档 运行前附加数据库.mdf&#xff08;或sql生成数据库&#xff09; 功能模块&#xff1a; 管理员:ttt 123 登陆可以操作我的 个人信息 修改密码 用户信息 添加删除用户 图书 添加删除图书信息 购物车 购买订单信息 充值 退出账户 …