线程安全的概念及原因

news2025/1/10 23:23:38

1.观察线程不安全

public class ThreadDemo {

    static class Counter {
        public int count = 0;

        void increase() {
            count++;
        }
    }

    public static void main(String[] args) throws InterruptedException {
        final Counter counter = new Counter();

        Thread t1 = new Thread(() -> {
            for (int i = 0; i < 50000; i++) {
                counter.increase();
            }
        });
        Thread t2 = new Thread(() -> {
            for (int i = 0; i < 50000; i++) {
                counter.increase();
            }
        });
        t1.start();
        t2.start();
        t1.join();
        t2.join();

        System.out.println(counter.count);
    }
}

运行结果:

结果不像我们一开始预想的那样,两个线程执行increase方法得到的结果为100000

说明这个线程是不安全的

2.线程安全的概念

想给出一个线程安全的确切定义是复杂的,但我们可以这样认为:

如果多线程环境下代码运行的结果是符合我们预期的,即在单线程环境应该的结果,则说这个程序是线程安全的。

3.线程不安全的原因

3.1修改共享数据

上面的线程不安全代码中,涉及到多个线程针对count变量进行修改,此时这个count是一个多个线程都能访问到的“共享数据”

count变量在堆上,因此可以被多个线程共享访问

3.2原子性

什么是原子性:

我们把一段代码想象成一间厕所,每个线程就是要进入这个厕所的人,如果没有任何机制保证,A进入厕所之后还没出来,B是否也可以进入厕所,打断A在厕所里的隐私,这个就不具备原子性

那我们应该如何解决这个问题呢?是不是只要给厕所加一把锁, A 进去就把门锁上,其他人是不是就进不来了。这样就保证了这段代码的原子性了。

有时也把这个现象叫做同步互斥,表示操作是互相排斥的。

一条 java 语句不一定是原子的,也不一定只是一条指令

比如刚才我们看到的count++ ,其实是由三步操作组成的:

1. 从内存把数据读到 CPU

2. 进行数据更新

3. 把数据写回到 CPU

不保证原子性会给多线程带来什么问题

如果一个线程正在对一个变量操作,中途其他线程插入进来了,如果这个操作被打断了,结果就可能是错误的。

这点也和线程的抢占式调度密切相关. 如果线程不是 "抢占" 的, 就算没有原子性, 也问题不大.

3.3可见性

可见性指, 一个线程对共享变量值的修改,能够及时地被其他线程看到.

Java 内存模型 (JMM): Java虚拟机规范中定义了Java内存模型.

目的是屏蔽掉各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的并发效果.

线程之间的共享变量存在主内存 (Main Memory).

每一个线程都有自己的 "工作内存" (Working Memory) .

当线程要读取一个共享变量的时候, 会先把变量从主内存拷贝到工作内存, 再从工作内存读取数据.

当线程要修改一个共享变量的时候, 也会先修改工作内存中的副本, 再同步回主内存.

由于每个线程有自己的工作内存, 这些工作内存中的内容相当于同一个共享变量的 "副本". 此时修改线程 1 的工作内存中的值, 线程2 的工作内存不一定会及时变化.

1) 初始情况下, 两个线程的工作内存内容一致.

2) 一旦线程1 修改了 a 的值, 此时主内存不一定能及时同步. 对应的线程2 的工作内存的 a 的值也不一定 能及时同步. 

这个时候代码中就容易出现问题. 

此时引入了两个问题:

1.为啥要这么多内存?

2.为啥要这么麻烦的拷来拷去?

1) 为啥整这么多内存?

实际并没有这么多 " 内存". 这只是 Java 规范中的一个术语, 是属于 "抽象" 的叫法.

所谓的 "主内存" 才是真正硬件角度的 " 内存". 而所谓的 "工作内存", 则是指 CPU 的寄存器和高速缓存.

2) 为啥要这么麻烦的拷来拷去?

因为 CPU 访问自身寄存器的速度以及高速缓存的速度, 远远超过访问内存的速度(快了 3 - 4 个数量级,  就是几千倍, 上万倍).

比如某个代码中要连续 10 次读取某个变量的值, 如果 10 次都从内存读, 速度是很慢的. 但是如果只是第一次从内存读, 读到的结果缓存到 CPU 的某个寄存器中, 那么后 9 次读数据就不必直接访问内存了. 效率就大大提高了.

那么接下来问题又来了, 既然访问寄存器速度这么快, 还要内存干啥??

答案就是一个字:

值的一提的是, 快和慢都是相对的. CPU 访问寄存器速度远远快于内存, 但是内存的访问速度又远 远快于硬盘.

对应的, CPU 的价格最贵, 内存次之, 硬盘最便宜.

3.4代码顺序性

什么是代码重排序

一段代码是这样的:

1. 去前台取下 U 

2. 去教室写 10 分钟作业

3. 去前台取下快递

如果是在单线程情况下,  JVMCPU指令集会对其进行优化,比如,按 1->3->2方式执行,也是没问题,可以少跑一次前台。这种叫做指令重排序

编译器对于指令重排序的前提是 "保持逻辑不发生变化". 这一点在单线程环境下比较容易判断, 但是在多线程环境下就没那么容易了, 多线程的代码执行复杂程度更高, 编译器很难在编译阶段对代码的执行效果进行预测, 因此激进的重排序很容易导致优化后的逻辑和之前不等价.

4 解决之前的线程不安全问题

public class ThreadDemo {

    static class Counter {
        public int count = 0;

        synchronized void increase() {
            count++;
        }
    }

    public static void main(String[] args) throws InterruptedException {
        final Counter counter = new Counter();

        Thread t1 = new Thread(() -> {
            for (int i = 0; i < 50000; i++) {
                counter.increase();
            }
        });
        Thread t2 = new Thread(() -> {
            for (int i = 0; i < 50000; i++) {
                counter.increase();
            }
        });
        t1.start();
        t2.start();
        t1.join();
        t2.join();

        System.out.println(counter.count);
    }
}

synchronized关键字在下一篇详细解释~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1656873.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ES:聚合查询语法

基础查询结构&#xff1a; GET http://ip:prot/textbook/_search { "query" : { ...query子句... }, "aggs" : { "agg_name":{ "agg_type": { "agg_arg": agg_arg_value } } }, "sort" : { ..sor…

Cesium--加载天地图

背景&#xff1a;vue-admin-temlate cesium 天地图 天地图地址&#xff1a;国家地理信息公共服务平台 天地图 步骤一&#xff1a;申请成为天地图开发者&#xff0c;创建应用 1,天地图使用方法&#xff08;点击开发资源即可看到此页面&#xff09; 2,点击控制台-登录账号 …

13:HAL---SPI

目录 一:SPL通信 1:简历 2:硬件电路 3:移动数据图 4:SPI时序基本单元 A : 开/ 终条件 B:SPI时序基本单元 A:模式0 B:模式1 C:模式2 D:模式3 C:SPl时序 A:发送指令 B: 指定地址写 C:指定地址读 5&#xff1a;NSS(CS) 6&#xff1a;时钟 二: W25Q64 1:简历 2…

Star-CCM+通过将所有部件创建一个区域的方式分配至区域后子区域的分离,子区域材料属性的赋值,以及物理连续体的创建方法介绍

前言 上次介绍了将零部件分配至区域的方法与各个方法之间的区别&#xff0c;本文将继续上次的讲解&#xff0c;将其中的“将所有部件分配至一个区域”的应用进行补充。 如下图所示&#xff0c;按照将所有部件创建一个区域的方式分配至区域后&#xff0c;在区域下就会有一个区域…

springboot+vue实现登录注册,短信注册以及微信扫描登录

说明&#xff1a;微信扫描登录需要微信注册--要钱&#xff0c;感谢尚硅谷提供的免费接口&#xff1b;短信注册需要阿里云的注册很麻烦并且短信费&#xff0c;没有接口&#xff0c;所以不打算实现&#xff0c;不过能做出效果。 目录 一、建立数据库 二、后端idea实现接口 1.…

全球首发:抗量子、以太坊兼容测试网正式上线

量子计算机将有能力破解目前互联网上使用的主要加密算法&#xff0c;影响的领域包括银行应用程序、电子邮件服务和社交媒体平台。 2023年5月7日&#xff0c;QANplatform推出了全球首个兼容以太坊的抗量子区块链测试网&#xff0c;此举将使开发者能够使用任何编程语言来编写智能…

thinkphp6使用layui分页组件做分页效果

博主用的是layui2.9.8的版本&#xff0c;但这个版本的分页组件是动态效果的&#xff0c;但我需要的是静态分页&#xff0c;所以我自己封装了一个生成layui的分页代码生成代码。代码如下&#xff1a; 1、先创建文件&#xff0c;路径是extent/layui/LayuiPage.php&#xff0c;加…

Java实战:验证改进的哥德巴赫猜想

改进的哥德巴赫猜想&#xff08;Improved Goldbach’s Conjecture&#xff09;声称每个大于5的奇数都可以表示为三个素数之和。这个猜想是对原始哥德巴赫猜想的扩展&#xff0c;针对奇数的情况。原始哥德巴赫猜想是指每个大于2的偶数都可以表示为两个素数之和。尽管改进的哥德巴…

ROS 2边学边练(45)-- 构建一个能动的机器人模型

前言 在上篇中我们搭建了一个机器人模型(其由各个关节&#xff08;joint&#xff09;和连杆&#xff08;link&#xff09;组成)&#xff0c;此篇我们会通过设置关节类型来实现机器人的活动。 在ROS中&#xff0c;关节一般有无限旋转&#xff08;continuous&#xff09;,有限旋转…

el-dialog设置el-head固定

0 效果 1 代码 ::v-deep .adTextDetailDialogClass .el-dialog__body{max-height: calc(100vh - 150px);overflow: auto;border-top:1px solid #dfdfdf;border-bottom:1px solid #dfdfdf; } ::v-deep .adTextDetailDialogClass .el-dialog{position: fixed;height:fit-content;…

15-LINUX--线程的创建与同步

一.线程 1.线程的概念 线程是进程内部的一条执行序列或执行路径&#xff0c;一个进程可以包含多条线程。 2.线程的三种实现方式 ◼ 内核级线程&#xff1a;由内核创建&#xff0c;创建开销大&#xff0c;内核能感知到线程的存在 ◼ 用户级线程&#xff1a;线程的创建有用户空…

springboot 引入第三方bean

如何进行第三方bean的定义 参数进行自动装配

数据库中索引的底层原理和SQL优化

文章目录 关于索引B 树的特点MySQL 为什么使用 B 树&#xff1f; 索引分类聚簇索引 和 非聚簇索引覆盖索引索引的最左匹配原则索引与NULL索引的代价大表结构修改 SQL优化EXPLAIN命令选择索引列其它细节 关于索引 索引是一种用来加快查找效率的数据结构&#xff0c;可以简单粗暴…

探索黏土特效?推荐这三款软件!

在数字化时代&#xff0c;我们拥有无数的工具来释放我们的创造力和想象力。其中&#xff0c;黏土特效软件就是一种能够将你的照片或图像转化为可爱、生动的黏土动画的工具。这些软件以其独特的视觉效果和易于使用的特性&#xff0c;吸引了大量的用户。下面&#xff0c;我们将为…

gorm-sharding分表插件升级版

代码地址&#xff1a; GitHub - 137/gorm-sharding: Sharding 是一个高性能的 Gorm 分表中间件。它基于 Conn 层做 SQL 拦截、AST 解析、分表路由、自增主键填充&#xff0c;带来的额外开销极小。对开发者友好、透明&#xff0c;使用上与普通 SQL、Gorm 查询无差别.解决了原生s…

FreeRTOS学习 -- 任务相关API函数

一、任务创建和删除API函数 FreeRTOS 最基本的功能就是任务管理&#xff0c;而任务管理最基本的操作就是创建和删除任务。 FreeRTOS的任务创建和删除API函数如下&#xff1a; 1、函数 xTaskCreate() 此函数用来创建一个任务&#xff0c;任务需要 RAM 来保存于任务有关的状…

nginx的应用部署nginx

这里写目录标题 nginxnginx的优点什么是集群常见的集群什么是正向代理、反向代理、透明代理常见的代理技术正向代理反向代理透明代理 nginx部署 nginx nginx&#xff08;发音同enginex&#xff09;是一款轻量级的Web服务器/反向代理服务器及电子邮件&#xff08;IMAP/POP3&…

每日一题 第九十七期 洛谷 [NOIP2000 提高组] 方格取数

[NOIP2000 提高组] 方格取数 题目背景 NOIP 2000 提高组 T4 题目描述 设有 N N N \times N NN 的方格图 ( N ≤ 9 ) (N \le 9) (N≤9)&#xff0c;我们将其中的某些方格中填入正整数&#xff0c;而其他的方格中则放入数字 0 0 0。如下图所示&#xff08;见样例&#xf…

同步电机原理解析

同步电机 同步带年纪&#xff0c;顾名思义无论负载如何&#xff0c;都能以恒定的速度运转&#xff0c;它以高效率著称 这种恒速特性是通过恒定磁场和旋转磁场的相互作用实现的&#xff0c;与其他电机一样&#xff0c;同步电机由定子和转子组成&#xff0c;定子铁芯由硅片层叠而…

STC8增强型单片机开发 【GPIO的理解⭐⭐】

目录 一、引言 二、GPIO概述 三、GPIO的功能 1. 输入功能&#xff1a; 2. 输出功能 四、GPIO的配置方法 1. 选择GPIO端口和引脚&#xff1a; 2. 设置GPIO模式&#xff1a; 3. 配置GPIO参数&#xff1a; 五、GPIO应用实例 1. 硬件连接&#xff1a; 2. 编程实现&…