segment anythin 新标注工具 paddleocr训练自己的数据

news2024/11/16 17:37:25

快递单ocr检测

  • 1.总结
  • 2.需求
  • 3.方案
  • 4.面单定位
    • 4.1反转图片扩充数据集
    • 4.2新的标注方式
    • 4.3json2yolo
    • 4.4yolov5推理
  • 5.paddleocr
    • 5.1 数据标注
    • 5.2 文本检测训练
    • 5.3 文本识别训练
    • 检测结果

1.总结

按照惯例,先吐槽一下。反正也没人看我比比歪歪。做事全部藏着掖着,真有你们的。如果需求都不对技术开放,那还要技术干嘛,自己玩不是更好??一天天的耍猴一样的耍我玩,真是够够的

2.需求

快递单的关键字ocr识别,那简单啊,直接使用paddleocr的代码不就好了。但是客户的需求显然没那么简单,不然也轮不到我。。。,总结下来难点有4个。
1.大视野
2.关键字提取
3.多种模版
4.多面单
在这里插入图片描述

3.方案

这么大的事业完全送去做ocr不现实,一个是速度太慢,二是精度不高。所以只能先分割面单,然后在ocr,最后再关键字匹配。
1.yolov5 面单定位
2.paddleocr 字符识别
大的技术架构就是这样,具体的细节下面再说

4.面单定位

老生常谈的yolov5,就不在过多的介绍。数据集需要的可以自取面单数据
因为我的使用的相机是2000w的所以,图片分辨率是5440*2800。所以选择的模型是yolov5n6
image_size =1280

4.1反转图片扩充数据集

import json
import os.path
import numpy as np
from labelme import utils
import cv2
file_path=r'G:\sick\420_1'
file_path2=r'G:\sick\420_2'

for file_name in os.listdir(file_path):
    if file_name.endswith('.json'):
        file_num=file_name.split('.')[0]+'_1'
        json_path=os.path.join(file_path,file_name)
        json_data = json.load(open(json_path))
        main_coord = np.array([5440, 2800])

        # 如果'points'是NumPy数组,先转换为列表
        json_data['shapes'][0]['points'] = (main_coord - json_data['shapes'][0]['points']).tolist()
        json_data['shapes'][0]['label'] = 'flip_order'



        img = utils.img_b64_to_arr(json_data['imageData'])
        mask_img = cv2.rotate(img, cv2.ROTATE_180)
        save_image_name = file_num+'.jpg'
        save_json_name = file_num+'.json'
        cv2.imwrite(os.path.join(file_path2,save_image_name),mask_img)
        json_data['imageData']=utils.img_arr_to_b64(mask_img)
        with open(os.path.join(file_path2,save_json_name), 'w') as json_file:
            json.dump(json_data, json_file)



4.2新的标注方式

segment anything 使用这个分割模型检测图片上所有的物体,然后通过长宽比和面积大小筛选我们需要的面单,生成对应json

# -*- coding: utf-8 -*-


import os

import cv2
import sys
import numpy as np
import base64
import json
import os.path as osp
import PIL.Image
import io
sys.path.append("..")
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor

def load_image_file(filename):
    try:
        image_pil = PIL.Image.open(filename)
    except IOError:
        return

    with io.BytesIO() as f:
        ext = osp.splitext(filename)[1].lower()
        if ext in [".jpg", ".jpeg"]:
            format = "JPEG"
        else:
            format = "PNG"
        image_pil.save(f, format=format)
        f.seek(0)
        return f.read()


def show_anns(anns, file_name):
    if len(anns) == 0:
        return
    sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)

    image = load_image_file(os.path.join(file_path, file_name))
    image_base64_str = base64.b64encode(image).decode('utf-8')
    shapes = []
    # 创建保存图片的字典
    data = {"version": "4.5.6", "flags": {}, 'shapes': shapes, "imagePath": file_name, "imageHeight": 2800,
            "imageWidth": 5440,
            "imageData": image_base64_str}
    for ann in sorted_anns:
        if ann['area'] > 20000 and ann['area'] < 30000:

            mask_array = ann['segmentation']
            # 寻找轮廓
            # 将布尔类型数组转换为灰度图像
            mask = np.uint8(mask_array) * 255
            contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

            # 获取最大轮廓
            max_contour = max(contours, key=cv2.contourArea)

            # 获取最小外接矩形
            rect = cv2.minAreaRect(max_contour)

            # 获取矩形的四个顶点
            box = cv2.boxPoints(rect)
            box = np.intp(box)
            box_abs = np.abs(box)  # 使用绝对值将坐标转换为正数
            # 将顶点坐标按比例缩放回原始图像大小
            box_restored = np.round(box_abs * [scale_y,scale_x]).astype(np.int32)

            box = {
                "label": "order",
                "points": box_restored.tolist(),
                "group_id": None,
                "shape_type": "polygon",
                "flags": {}
            }
            shapes.append(box)

    # 将字典保存为 JSON 文件
    with open(file_name.split('.')[0]+'.json', 'w') as json_file:
        json.dump(data, json_file)


# 加载模型
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"

device = "cuda"

sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)

mask_generator = SamAutomaticMaskGenerator(sam)

file_path = 'sick_ocr'

file_names = os.listdir(file_path)
scale_x = 4
scale_y = 4
# 单张图片推理
for file_name in file_names:
    if file_name.endswith('jpg'):
        image_file = os.path.join(file_path, file_name)
        image = cv2.imread(image_file)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        image_resize = cv2.resize(image, (1024, 1024))
        # 计算缩放比例

        masks = mask_generator.generate(image_resize)
        show_anns(masks,  file_name)
    # 筛选area为制定大小

4.3json2yolo

'''
Created on Aug 18, 2021

@author: xiaosonh
'''
import os
import sys
import argparse
import shutil
import math
from collections import OrderedDict

import json
import cv2
import PIL.Image

from sklearn.model_selection import train_test_split
from labelme import utils


class Labelme2YOLO(object):

    def __init__(self, json_dir, to_seg=False):
        self._json_dir = json_dir

        self._label_id_map = self._get_label_id_map(self._json_dir)
        self._to_seg = to_seg

        i = 'YOLODataset'
        i += '_seg/' if to_seg else '/'
        self._save_path_pfx = os.path.join(self._json_dir, i)

    def _make_train_val_dir(self):
        self._label_dir_path = os.path.join(self._save_path_pfx, 'labels/')
        self._image_dir_path = os.path.join(self._save_path_pfx, 'images/')

        for yolo_path in (os.path.join(self._label_dir_path + 'train/'),
                          os.path.join(self._label_dir_path + 'val/'),
                          os.path.join(self._image_dir_path + 'train/'),
                          os.path.join(self._image_dir_path + 'val/')):
            if os.path.exists(yolo_path):
                shutil.rmtree(yolo_path)

            os.makedirs(yolo_path)

    def _get_label_id_map(self, json_dir):
        label_set = set()

        for file_name in os.listdir(json_dir):
            if file_name.endswith('json'):
                json_path = os.path.join(json_dir, file_name)
                data = json.load(open(json_path))
                for shape in data['shapes']:
                    label_set.add(shape['label'])

        return OrderedDict([(label, label_id) \
                            for label_id, label in enumerate(label_set)])

    def _train_test_split(self, folders, json_names, val_size):
        if len(folders) > 0 and 'train' in folders and 'val' in folders:
            train_folder = os.path.join(self._json_dir, 'train/')
            train_json_names = [train_sample_name + '.json' \
                                for train_sample_name in os.listdir(train_folder) \
                                if os.path.isdir(os.path.join(train_folder, train_sample_name))]

            val_folder = os.path.join(self._json_dir, 'val/')
            val_json_names = [val_sample_name + '.json' \
                              for val_sample_name in os.listdir(val_folder) \
                              if os.path.isdir(os.path.join(val_folder, val_sample_name))]

            return train_json_names, val_json_names

        train_idxs, val_idxs = train_test_split(range(len(json_names)),
                                                test_size=val_size)
        train_json_names = [json_names[train_idx] for train_idx in train_idxs]
        val_json_names = [json_names[val_idx] for val_idx in val_idxs]

        return train_json_names, val_json_names

    def convert(self, val_size):
        json_names = [file_name for file_name in os.listdir(self._json_dir) \
                      if os.path.isfile(os.path.join(self._json_dir, file_name)) and \
                      file_name.endswith('.json')]
        folders = [file_name for file_name in os.listdir(self._json_dir) \
                   if os.path.isdir(os.path.join(self._json_dir, file_name))]
        train_json_names, val_json_names = self._train_test_split(folders, json_names, val_size)

        self._make_train_val_dir()

        # convert labelme object to yolo format object, and save them to files
        # also get image from labelme json file and save them under images folder
        for target_dir, json_names in zip(('train/', 'val/'),
                                          (train_json_names, val_json_names)):
            for json_name in json_names:
                json_path = os.path.join(self._json_dir, json_name)
                json_data = json.load(open(json_path))

                print('Converting %s for %s ...' % (json_name, target_dir.replace('/', '')))

                img_path = self._save_yolo_image(json_data,
                                                 json_name,
                                                 self._image_dir_path,
                                                 target_dir)

                yolo_obj_list = self._get_yolo_object_list(json_data, img_path)
                self._save_yolo_label(json_name,
                                      self._label_dir_path,
                                      target_dir,
                                      yolo_obj_list)

        print('Generating dataset.yaml file ...')
        self._save_dataset_yaml()

    def convert_one(self, json_name):
        json_path = os.path.join(self._json_dir, json_name)
        json_data = json.load(open(json_path))

        print('Converting %s ...' % json_name)

        img_path = self._save_yolo_image(json_data, json_name,
                                         self._json_dir, '')

        yolo_obj_list = self._get_yolo_object_list(json_data, img_path)
        self._save_yolo_label(json_name, self._json_dir,
                              '', yolo_obj_list)

    def _get_yolo_object_list(self, json_data, img_path):
        yolo_obj_list = []

        img_h, img_w, _ = cv2.imread(img_path).shape
        for shape in json_data['shapes']:
            # labelme circle shape is different from others
            # it only has 2 points, 1st is circle center, 2nd is drag end point
            if shape['shape_type'] == 'circle':
                yolo_obj = self._get_circle_shape_yolo_object(shape, img_h, img_w)
            else:
                yolo_obj = self._get_other_shape_yolo_object(shape, img_h, img_w)

            yolo_obj_list.append(yolo_obj)

        return yolo_obj_list

    def _get_circle_shape_yolo_object(self, shape, img_h, img_w):
        label_id = self._label_id_map[shape['label']]
        obj_center_x, obj_center_y = shape['points'][0]

        radius = math.sqrt((obj_center_x - shape['points'][1][0]) ** 2 +
                           (obj_center_y - shape['points'][1][1]) ** 2)

        if self._to_seg:
            retval = [label_id]

            n_part = radius / 10
            n_part = int(n_part) if n_part > 4 else 4
            n_part2 = n_part << 1

            pt_quad = [None for i in range(0, 4)]
            pt_quad[0] = [[obj_center_x + math.cos(i * math.pi / n_part2) * radius,
                           obj_center_y - math.sin(i * math.pi / n_part2) * radius]
                          for i in range(1, n_part)]
            pt_quad[1] = [[obj_center_x * 2 - x1, y1] for x1, y1 in pt_quad[0]]
            pt_quad[1].reverse()
            pt_quad[3] = [[x1, obj_center_y * 2 - y1] for x1, y1 in pt_quad[0]]
            pt_quad[3].reverse()
            pt_quad[2] = [[obj_center_x * 2 - x1, y1] for x1, y1 in pt_quad[3]]
            pt_quad[2].reverse()

            pt_quad[0].append([obj_center_x, obj_center_y - radius])
            pt_quad[1].append([obj_center_x - radius, obj_center_y])
            pt_quad[2].append([obj_center_x, obj_center_y + radius])
            pt_quad[3].append([obj_center_x + radius, obj_center_y])

            for i in pt_quad:
                for j in i:
                    j[0] = round(float(j[0]) / img_w, 6)
                    j[1] = round(float(j[1]) / img_h, 6)
                    retval.extend(j)
            return retval

        obj_w = 2 * radius
        obj_h = 2 * radius

        yolo_center_x = round(float(obj_center_x / img_w), 6)
        yolo_center_y = round(float(obj_center_y / img_h), 6)
        yolo_w = round(float(obj_w / img_w), 6)
        yolo_h = round(float(obj_h / img_h), 6)

        return label_id, yolo_center_x, yolo_center_y, yolo_w, yolo_h

    def _get_other_shape_yolo_object(self, shape, img_h, img_w):
        label_id = self._label_id_map[shape['label']]

        if self._to_seg:
            retval = [label_id]
            for i in shape['points']:
                i[0] = round(float(i[0]) / img_w, 6)
                i[1] = round(float(i[1]) / img_h, 6)
                retval.extend(i)
            return retval

        def __get_object_desc(obj_port_list):
            __get_dist = lambda int_list: max(int_list) - min(int_list)

            x_lists = [port[0] for port in obj_port_list]
            y_lists = [port[1] for port in obj_port_list]

            return min(x_lists), __get_dist(x_lists), min(y_lists), __get_dist(y_lists)

        obj_x_min, obj_w, obj_y_min, obj_h = __get_object_desc(shape['points'])

        yolo_center_x = round(float((obj_x_min + obj_w / 2.0) / img_w), 6)
        yolo_center_y = round(float((obj_y_min + obj_h / 2.0) / img_h), 6)
        yolo_w = round(float(obj_w / img_w), 6)
        yolo_h = round(float(obj_h / img_h), 6)

        return label_id, yolo_center_x, yolo_center_y, yolo_w, yolo_h

    def _save_yolo_label(self, json_name, label_dir_path, target_dir, yolo_obj_list):
        txt_path = os.path.join(label_dir_path,
                                target_dir,
                                json_name.replace('.json', '.txt'))

        with open(txt_path, 'w+') as f:
            for yolo_obj_idx, yolo_obj in enumerate(yolo_obj_list):
                yolo_obj_line = ""
                for i in yolo_obj:
                    yolo_obj_line += f'{i} '
                yolo_obj_line = yolo_obj_line[:-1]
                if yolo_obj_idx != len(yolo_obj_list) - 1:
                    yolo_obj_line += '\n'
                f.write(yolo_obj_line)

    def _save_yolo_image(self, json_data, json_name, image_dir_path, target_dir):
        img_name = json_name.replace('.json', '.png')
        img_path = os.path.join(image_dir_path, target_dir, img_name)

        if not os.path.exists(img_path):
            img = utils.img_b64_to_arr(json_data['imageData'])
            PIL.Image.fromarray(img).save(img_path)

        return img_path

    def _save_dataset_yaml(self):
        yaml_path = os.path.join(self._save_path_pfx, 'dataset.yaml')

        with open(yaml_path, 'w+') as yaml_file:
            yaml_file.write('train: %s\n' % \
                            os.path.join(self._image_dir_path, 'train/'))
            yaml_file.write('val: %s\n\n' % \
                            os.path.join(self._image_dir_path, 'val/'))
            yaml_file.write('nc: %i\n\n' % len(self._label_id_map))

            names_str = ''
            for label, _ in self._label_id_map.items():
                names_str += "'%s', " % label
            names_str = names_str.rstrip(', ')
            yaml_file.write('names: [%s]' % names_str)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--json_dir', type=str,
                        help='Please input the path of the labelme json files.')
    parser.add_argument('--val_size', type=float, nargs='?', default=0.1,
                        help='Please input the validation dataset size, for example 0.1 ')
    parser.add_argument('--json_name', type=str, nargs='?', default=None,
                        help='If you put json name, it would convert only one json file to YOLO.')
    parser.add_argument('--seg', action='store_true',
                        help='Convert to YOLOv5 v7.0 segmentation dataset')
    args = parser.parse_args(sys.argv[1:])

    convertor = Labelme2YOLO(args.json_dir, to_seg=args.seg)
    if args.json_name is None:
        convertor.convert(val_size=args.val_size)
    else:
        convertor.convert_one(args.json_name)

4.4yolov5推理

模型链接

import time
from typing import List, Optional

import cv2
import numpy as np
import onnxruntime as ort
import random
def letterbox(img: Optional[np.arange], new_shape: List = (1280, 1280), color: object = (114, 114, 114), ) -> np.arange:
    """Resize and pad image while meeting stride-multiple constraints

    Args:
        img (_type_): _description_
        new_shape (tuple, optional): _description_. Defaults to (256, 256).
        color (tuple, optional): _description_. Defaults to (114, 114, 114).

    Returns:
        _type_: _description_
    """
    shape = img.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)
    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])

    # Compute padding
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return img, r, (dw, dh)


class Model:
    def __init__(self, model_path: str, cuda: bool) -> None:
        """Load model

        Args:
            model_path (str): _description_
            cuda (str): _description_
        """
        providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
        self.session = ort.InferenceSession(model_path, providers=providers)


    def detect(self, img: Optional[np.array], shape: List[int] = None, ) -> Optional[np.array]:
        """检测

        Args:
            img (Optional[np.array]): 图片
            shape (List[int], optional): 图片大小. Defaults to None.

        Returns:
            Optional[np.array]: 一个大的box和2个小的box为一组
        """

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        image = img.copy()
        if shape is None:
            shape = [1280, 1280]
        # 图片缩放
        image, ratio, dwdh = letterbox(image, shape)
        # Convert
        # img=np.repeat(img[:, :, np.newaxis], 3, axis=2)
        image = image.transpose((2, 0, 1))  # 3x416x416
        image = np.expand_dims(image, 0)
        image = np.ascontiguousarray(image)
        im = image.astype(np.float32)
        im /= 255

        outname = ['output']

        inp = {'images': im}

        outputs = self.session.run(outname, inp)[0]
        outputs = outputs[:, 1:]  # 去掉batch
        #  少于3个
        # box还原原图大小
        boxes = outputs[:, 0:4]  # xyxy
        boxes -= np.array(dwdh * 2)
        boxes /= ratio

        return outputs

5.paddleocr

5.1 数据标注

使用paddleocr提供的标注工具paddlelabel,这个是我自己标注的,我只标注了和业务相关的检测区域,这样训练可以减少时间。
面单

5.2 文本检测训练

模型:ch_PP-OCR_V3_det_student
权重:en_PP-OCRv3_det_distill_train/student.pdparams

5.3 文本识别训练

模型:en_PP-OCRv4_rec.yml
权重:en_PP-OCRv4_rec_train/best_accuracy.pdparams

检测结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1656354.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis-新数据类型-Bitmaps

新数据类型-Bitmaps 简介 在计算机中&#xff0c;用二进制&#xff08;位&#xff09;作为存储信息的基本单位&#xff0c;1个字节等于8位。 例如 “abc” 字符串是由 3 个字节组成&#xff0c;计算机存储时使用其二进制表示&#xff0c;"abc"分别对应的ASCII码是 …

苹果Mac用户下载VS Code(Universal、Intel Chip、Apple Silicon)哪个版本?

苹果macOS用户既可以下载通用版&#xff08;Universal&#xff09;&#xff0c;软件将自动检测用户的处理器并进行适配。 也可以根据型号下载对应CPU的版本&#xff1a; 使用Intel CPU的Mac电脑可下载Intel Chip版本&#xff1b; 使用苹果自研M系列CPU的Mac电脑下载Apple Si…

“漫画之家”|基于Springboot+vue的“漫画之家”系统(源码+数据库+文档)

“漫画之家”系统 目录 基于Springbootvue的“漫画之家”系统 一、前言 二、系统设计 三、系统功能设计 1系统功能模块 2后台模块 5.2.1管理员功能模块 5.2.2用户功能模块 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&a…

Final Draft 12 for Mac:高效专业剧本创作软件

对于剧本创作者来说&#xff0c;一款高效、专业的写作工具是不可或缺的。Final Draft 12 for Mac就是这样一款完美的选择。这款专为Mac用户设计的剧本创作软件&#xff0c;凭借其卓越的性能和丰富的功能&#xff0c;让您的剧本创作更加得心应手。 Final Draft 12支持多种剧本格…

完美匹配企业需求的FTP替代软件,需要具备哪些功能和价值?

FTP作为世界范围内第一个文件传输协议&#xff0c;已被广泛使用30多年&#xff0c;也是企业使用较多的一种方式。但在数字化转型的浪潮中&#xff0c;企业对文件传输的需求日益增长&#xff0c;FTP存在的弊端也逐渐成为企业发展的桎梏&#xff0c;比如安全性、稳定性、传输效率…

软件测试基础理论复习

什么是软件&#xff1f; 软件是计算机系统中与硬件相互依存的另一部分&#xff0c; 软件包括程序文档 什么是软件测试&#xff1f; &#xff08;1&#xff09;软件测试是在现有软件&#xff08;程序文档&#xff09;中寻找缺陷的过程&#xff1b; &#xff08;2&#xff0…

西部数据硬盘格式化了怎么恢复数据

在数字化时代&#xff0c;数据的重要性不言而喻。无论是个人珍贵的照片、视频&#xff0c;还是企业关键的业务文件&#xff0c;一旦丢失&#xff0c;都可能带来无法估量的损失。而硬盘作为数据存储的主要设备之一&#xff0c;其安全性与可靠性自然受到了广大用户的关注。然而&a…

会展服务预约小程序的作用是什么

年会、赛事、乐舞、招聘展览等多个场景都需要会展服务&#xff0c;商家需要将自己的服务推广出去获客转化&#xff0c;客户也需要找到合适靠谱的品牌&#xff0c;双方互相需求下&#xff0c;合理化线上运营触达非常重要。 运用【雨科】平台制作会展服务预约小程序&#xff0c;…

区块链的可扩展性三难问题

这个词是由以太坊的联合创始人Vitalik Buterin创造的&#xff0c;并提出了理想的区块链需要具备的三个特征&#xff1a;去中心化、可扩展性和安全性。 Vitalik还提出&#xff0c;区块链几乎不可能很好地实现所有这三个特征&#xff0c;所以会出现权衡。 因此&#xff0c;今天…

chatgpt快速搭建开发程序

程序开发中让GPT编写功能函数&#xff0c;懂原理的工程师只需要将GPT提供的命令码块按照项目对应的结构拆解后放置到项目文件夹对应的位置即可&#xff0c;高速高效快速搭建。 举例&#xff1a;

函数式接口-方法引用

定义 静态方法-方法引用 示例

QT功能 实现静态内容国际化实验

文章目录 第一步&#xff1a;新建一个QT工程第二步&#xff1a;添加控件第三步&#xff1a;在pro文件中添加内容第四步&#xff1a;更新文件第五步&#xff1a;打开QT的Linguist第六步&#xff1a;添加翻译内容第七步&#xff1a;回到QT Creator中添加文件第八步&#xff1a;给…

韶关市承装修试电力施工许可证五级可以承接哪些项目【资质办理指南】

韶关市承装修试电力施工许可证五级可以承接哪些项目【资质办理指南】 韶关市承装修试电力施工许可证五级可以承接的项目主要包括10千伏及以下电压等级电力设施的安装、维修或者试验活动。这意味着&#xff0c;持有五级许可证的企业可以在韶关市范围内承接包括变电站、配电站、输…

多链路聚合设备是什么

多链路聚合设备属于通信指挥装备。 乾元通多链路聚合设备&#xff0c;它能够将多个网络链路聚合成一个逻辑链路&#xff0c;以实现高速、稳定、可靠的数据传输。多链路聚合设备的核心技术包括链路聚合、负载均衡、故障切换等&#xff0c;能够智能管理和优化利用不同网络链路&a…

【国产SSL】哪家SSL证书可以保证数据不出境,是在国内验签

随着网络安全的重视&#xff0c;网站安装SSL证书已经是标配了。但是为什么目前常见的SSL证书都是国外的&#xff1f;数据受国外掌控&#xff0c;安全吗&#xff1f;那么哪家国产品牌是可以保证数据不出境的呢&#xff1f; 为什么目前常见的SSL证书都是国外的&#xff1f; 原因…

AlphaFold3(AF3)简单介绍:预测各种生物分子结构和它们之间相互作用的深度学习模型

参考: 文章地址: https://www.nature.com/articles/s41586-024-07487-w https://blog.google/technology/ai/google-deepmind-isomorphic-alphafold-3-ai-model/ AlphaFold3体验官网: https://golgi.sandbox.google.com/ 《Accurate structure prediction of biomolecula…

AI日报|苹果新款iPad Pro搭载AI芯片,DeepSeek-V2开源,百万token仅1元...

欢迎大家在 GitHub 上 Star 我们&#xff1a; 分布式全链路因果学习系统 OpenASCE: https://github.com/Open-All-Scale-Causal-Engine/OpenASCE 大模型驱动的知识图谱 OpenSPG: https://github.com/OpenSPG/openspg 大规模图学习系统 OpenAGL: https://github.com/TuGraph-…

跨越智能建筑桥梁:西门子PLC无缝对接BACnet楼宇自动化系统化

智能楼宇每一个环节的互联互通都至关重要&#xff0c;而PLC&#xff08;可编程逻辑控制器&#xff09;作为自动化领域的基石&#xff0c;其与BACnet协议的融合无疑成为了构建智能楼宇神经系统的关键节点。今天&#xff0c;让我们深入探讨如何利用先进的PLC转BACnet协议网关&…

继续SQL

主知识点六&#xff1a;having 聚合前的筛选用where&#xff0c;聚合后的筛选用having Having和where的区别是&#xff1a;运行顺序和对象不用 Having是在group by聚合后的基础上进行筛选。 ● 【例题27*】&#xff08;运行原理&#xff09;查询总人口数至少为3亿的大洲和…

ai可以做思维导图吗?当然是可以的!

ai可以做思维导图吗&#xff1f;在快节奏的现代生活中&#xff0c;思维导图作为一种高效的信息组织和表达工具&#xff0c;越来越受到人们的青睐。随着人工智能&#xff08;AI&#xff09;技术的不断发展&#xff0c;AI思维导图软件也应运而生&#xff0c;它们不仅能够帮助用户…