代码随想录算法训练营DAY48|C++动态规划Part9|121.买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III

news2025/2/26 8:27:19

文章目录

  • 121.买卖股票的最佳时机
    • 思路
    • CPP代码
  • 122.买卖股票的最佳时机II
    • 思路
    • CPP代码
  • 123.买卖股票的最佳时机III
    • 思路
    • CPP代码

121.买卖股票的最佳时机

力扣题目链接

文章讲解:121.买卖股票的最佳时机

视频讲解:动态规划之 LeetCode:121.买卖股票的最佳时机1

状态:非常与众不同的动态规划题,也是一类典型的动态规划题。

思路

  • dp数组的含义

dp[i][0]表示第i天持有这支股票能获得的最大现金,dp[i][1]表示第i天不持有这支股票能获得的最大现金。

最终要求的结果就是最后一天的状态:max(dp[len-1][0], dp[len-1][i])

并且应该注意的是,我们这里是第i天持有这支股票,并不代表我在第i天才买,我有可能之前就买了;同理,我们第i天不持有这支股票并不代表我第i天才卖。并且我们在最后拿结果的时候,肯定是dp[len(prices)][1],因为无论怎么着,我们不持有这支股票获利肯定都比在最后一天还持有股票来的高

  • 递推公式

    • 先讨论一下dp[i][0]

      • 首先确定do[i][0]表示第i天持有这支股票,那么dp[i-1][0]呢?其实他们两个是相等的, 因为我们前后两天都是持有股票;

        再一个,我们我们是在第i天才买入这支股票的话,那么也就是说我在i-1天是不持有这支股票的,并且在第i天花了买股票的钱所以直接dp[i][0]直接就是-price[i]

        综上所述:dp[i][0]=max(dp[i-1][0], -prices[i])

    • 再就是dp[i][1]

      • 同理,我们的前一天也可以是不持有这支股票的状态dp[i-1][1],此时的话和dp[i][1]他们两个相等
      • 那么如果,我们在第i天把这支股票给卖了变成了dp[i][1],那么此时我们现在手里的钱就是前一天持有股票的最大金额再加上今天卖股票赚的钱dp[i-1][0]+prices[i]
      • 综上所述:dp[i][1]=max(dp[i-1][1], dp[i-1][0]+prices[i])
  • dp数组的初始化

从公式可以看出来,我们的dp[0][0]dp[0][1]是我们整个递推公式的基础,那么dp[0][0]=-prices[0]dp[0][1]=0;然后其他的均初始化为多少其实都无所谓。

  • 遍历顺序

没讲究,直接从前向后遍历

  • 举例推导dp数组

以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下:

20210224225642465

CPP代码

我们从递推公式可以看出:

dp[i][0] = max(dp[i - 1][0], -prices[i]);
dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

dp[i]只与dp[i-1]的状态有关,所以完全可以用滚动数组,也就是只需要记录 当前天的dp状态和前一天的dp状态就可以了

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);
            dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);
        }
        return dp[(len - 1) % 2][1];
    }
};

122.买卖股票的最佳时机II

力扣题目链接

文章链接:122.买卖股票的最佳时机II

视频链接:动态规划,股票问题第二弹 | LeetCode:122.买卖股票的最佳时机II

状态:可以实现多次买卖,这个时候最主要的不同体现在递推公式上。如果会121.买卖股票的最佳时机,本题就比较简单

思路

本题唯一的区别就是本题的股票可以买卖多次(只有一只股票,所以再次购买前要出售掉之前的股票)

所以本题和121.买卖股票的最佳时机唯一的区别就在于递推公式,其他的地方都是一样的。首先,我们重申一下dp数组的含义:dp[i][0] 表示第i天持有股票所得现金;dp[i][1] 表示第i天不持有股票所得最多现金

  • 递推公式

在121.买卖股票的最佳时机中,由于股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]

本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润


接下来开始讨论核心代码:

那么如果第i天持有股票,如果是在第i天买入的,那么所得现金就是昨天不持有股票的现金再减去今天股票的价格,所以dp[i - 1][1] - prices[i]

如果第i天不持有股票即dp[i][1]

  1. i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  2. i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

综上所述:递推公式为

            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);

CPP代码

这里仅给出滚动数组版本的代码( 只记录当前天的dp状态和前一天的dp状态

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i % 2][0] = max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] - prices[i]);
            dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);
        }
        return dp[(len - 1) % 2][1];
    }
};

123.买卖股票的最佳时机III

力扣题目链接

文章链接:123.买卖股票的最佳时机III

视频链接:动态规划,股票至多买卖两次,怎么求? | LeetCode:123.买卖股票最佳时机III

状态:看到困难吓我一跳

本题有又变套路了,题目中谈到,至多买卖两次,这就意味着可以买卖一次、可以买卖两次、也可以不买卖。

但其实最本质的无非就是要设置的状态多多了,之前我们也就两个状态,持有和不持有

思路

  • 确定dp数组以及下标的含义

现在,我们状态比之前多多了:

  1. 没有操作 (其实我们也可以不设置这个状态)
  2. 第一次持有股票
  3. 第一次不持有股票
  4. 第二次持有股票
  5. 第二次不持有股票

dp[i][j]i表示第i天,j[0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

  • 确定递推公式
  1. 我们确定dp[i][1]的状态
    在这里插入图片描述

我们应该从两种情况里选择最大的,即dp[i][1]=max(dp[i-1][0]=prices[i], dp[i-1][1])

  1. 确定dp[i][2]的状态

在这里插入图片描述

同理dp[i][2]=max(dp[i-1][1] + prices[i], do[i-1][2])

3.确定dp[i][3]的状态

在这里插入图片描述

同理dp[i][3]=max(dp[i-1][2] + prices[i], do[i-1][3])

  1. 确定dp[i][4]的状态

在这里插入图片描述

同理dp[i][4]=max(dp[i-1][3] + prices[i], do[i-1][4])

  • dp数组的初始化

首先,我们只用初始化第0天,因为从此之后的n天都是由前一天初始化来的。

然后,dp[0][0]显然是等于0的,

每次的买入操作应当初始化为-prices[0],因为买入我们本次的钱肯定就是负数了,至于第二次买入可以理解为我们第零天先买入,再卖出,然后再买入

卖出操作应该初始化为0,因为就算再同一天买入卖出收获的钱肯定是0

vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
  • 确定遍历顺序

跟之前的一样,从左到右即可

  • 举例推导dp数组

以输入[1,2,3,4,5]为例

20201228181724295-20230310134201291

我们最终的最大利润肯定是出现在最后一天的第二次dp[4][4]

CPP代码

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
        dp[0][1] = -prices[0];
        dp[0][3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[i][0] = dp[i - 1][0];
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }
        return dp[prices.size() - 1][4];
    }
};

//空间优化(滚动数组)
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<int> dp(5, 0);
        dp[1] = -prices[0];
        dp[3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[1] = max(dp[1], dp[0] - prices[i]);
            dp[2] = max(dp[2], dp[1] + prices[i]);
            dp[3] = max(dp[3], dp[2] - prices[i]);
            dp[4] = max(dp[4], dp[3] + prices[i]);
        }
        return dp[4];
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1654059.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

由树形解空间入手,深入分析回溯、动态规划、分治算法的共同点和不同点

一、回溯、动态规划、分治 其实这三个算法就可以直接认为是一类算法&#xff0c;它们的共同点都是会涉及到递归。 更需要清楚明白的一点是&#xff0c;它们的解&#xff0c;都是基于一颗递归形式的树上得来的&#xff01;也就是——回溯、动态规划、分治的解空间是 一棵树&am…

ssm+vue的私人健身和教练预约管理系统(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频&#xff1a; ssmvue的私人健身和教练预约管理系统(有报告)。Javaee项目&#xff0c;ssm vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通…

深度学习常用优化算法笔记介绍,各种梯度下降法详细介绍

优化算法 mini-batch梯度下降法 当一个数据集其数据量非常大的时候&#xff0c;比如上百万上千万的数据集&#xff0c;如果采用普通的梯度下降法&#xff0c;那么运算速度会非常慢&#xff0c;因为如果使用梯度下降法在每一次迭代的时候&#xff0c;都需要将这整个上百万的数…

机器学习:基于TF-IDF算法、决策树,使用NLTK库对亚马逊美食评论进行情绪分析

前言 系列专栏&#xff1a;机器学习&#xff1a;高级应用与实践【项目实战100】【2024】✨︎ 在本专栏中不仅包含一些适合初学者的最新机器学习项目&#xff0c;每个项目都处理一组不同的问题&#xff0c;包括监督和无监督学习、分类、回归和聚类&#xff0c;而且涉及创建深度学…

第一天复习Qt文件读取

Qt文件操作&#xff1a; 1、QFile QTextStream操作文件案例&#xff1a; 1、打开文件 QFile file(absolute filepath | relative path); file.readLine()返回内容长度&#xff0c;如果为-1就是读取失败 file. Close()读取后关闭 file.errorString()返回文件打开发生的错误2、…

数据仓库实验三:分类规则挖掘实验

目录 一、实验目的二、实验内容和要求三、实验步骤1、创建数据库和表2、决策树分类规则挖掘&#xff08;1&#xff09;新建一个 Analysis Services 项目 jueceshu&#xff08;2&#xff09;建立数据源视图&#xff08;3&#xff09;建立挖掘结构 DST.dmm&#xff08;4&#xff…

16.接口自动化学习-编码处理与装饰器

1.编码和解码 编码&#xff1a;将自然语言翻译成计算机可以识别的语言 hello–01010 解码&#xff1a;将机器识别的语言翻译成自然语言 2.编码格式 UTF-8 GBK unicode 3.编码操作 #编码操作str1"hello呀哈哈哈"str2str1.encode(gbk)print(str2)print(type(str2))…

FPGA ov5640视频以太网传输

1 实验任务 使用DFZU4EV MPSoC 开发板及双目OV5640摄像头其中一个摄像头实现图像采集&#xff0c;并通过开发板上的以太网接口发送给上位机实时显示。 2 Verilog代码 2.1 顶层模块 timescale 1ns / 1ps //以太网传输视频顶层模块module ov5640_udp_pc (input sys_cl…

在WPS表格(Excel)中,每10行增加一个特定的值

注&#xff1a;如下为WPS表格操作演示 例如1&#xff0d;15的数值是1&#xff0c;16-30就变为2&#xff0c;31-45就变为3&#xff0c;类推&#xff01; 1、在B1单元格输入一个起始值&#xff0c;B2单元格输入公式IF(MOD(ROW(),15)0,B11,B1) 然后鼠标放到B2单元格右下角小点处&…

开机弹窗找不到OpenCL.dll是怎么回事,哪种修复方法更推荐

当用户在操作电脑过程中遇到系统提示“OpenCL.dll丢失”时&#xff0c;这究竟是怎么一回事呢&#xff1f;OpenCL.dll&#xff0c;作为Open Computing Language&#xff08;开放计算语言&#xff09;的重要动态链接库文件&#xff0c;它在图形处理器&#xff08;GPU&#xff09;…

springboot整合rabbitmq的不同工作模式详解

前提是已经安装并启动了rabbitmq&#xff0c;并且项目已经引入rabbitmq&#xff0c;完成了配置。 不同模式所需参数不同&#xff0c;生产者可以根据参数不同使用重载的convertAndSend方法。而消费者均是直接监听某个队列。 不同的交换机是实现不同工作模式的关键组件.每种交换…

县供电公司员工向媒体投稿发文章用亲身经历告诉你并不难

在县供电公司的日子里,我肩负着一项至关重要的使命——信息宣传工作。这不仅仅是一份职责,更是连接公司与外界的桥梁,通过新闻稿件传递我们的声音,展示我们的成果。然而,回忆起刚刚踏入这个领域的时光,那段经历至今让我感慨万千。 初涉投稿,步履维艰 刚接手这项工作时,我的投稿…

信息化飞速发展下,源代码防泄密方案该如何选择?常见四种有效方案分享

信息化时代发展迅速&#xff0c;数据防泄露一词也频繁的出现在我们身边。无论企业或政府单位&#xff0c;无纸化办公场景越来越多&#xff0c;数据泄露的时间也层出不穷。例如&#xff1a;世界最大职业中介网站Monster遭到黑客大规模攻击&#xff0c;黑客窃取在网站注册的数百万…

Dockerfile实践java项目

目的&#xff1a;用java项目测试dockerfil部署&#xff08;前提是安装好了docker&#xff09; 部署准备文件如下 1. java项目 java项目demo地址 https://gitee.com/xiaoqu_12/dockerfileDemo.git 或者百度网盘直接下载打包好的jar包 链接&#xff1a;https://pan.baidu.com/s/…

PostgreSQL的学习心得和知识总结(一百四十一)|深入理解PostgreSQL数据库数据库角色的使用及预定义角色的原理

目录结构 注&#xff1a;提前言明 本文借鉴了以下博主、书籍或网站的内容&#xff0c;其列表如下&#xff1a; 1、参考书籍&#xff1a;《PostgreSQL数据库内核分析》 2、参考书籍&#xff1a;《数据库事务处理的艺术&#xff1a;事务管理与并发控制》 3、PostgreSQL数据库仓库…

【计算机毕业设计】基于SSM++jsp的电子竞技管理平台【源码+lw+部署文档+讲解】

目录 1 绪论 1.1 研究背景 1.2 目的和意义 1.3 论文结构安排 2 相关技术 2.1 SSM框架介绍 2.2 B/S结构介绍 2.3 Mysql数据库介绍 3 系统分析 3.1 系统可行性分析 3.1.1 技术可行性分析 3.1.2 经济可行性分析 3.1.3 运行可行性分析 3.2 系统性能分析 3.2.1 易用性指标 3.2.2 可…

您的浏览器不支持 undefined 代理认证!如有问题请联系您的浏览器支持,请勿反馈此问题给 SwitchyOmega.

一、【问题描述】 PAC 文件是一个 JavaScript 文件&#xff0c;用于定义客户端的代理规则。您可以在 PAC 文件中编写规则&#xff0c;根据不同的目标网址或其他条件&#xff0c;决定是否通过代理服务器进行访问。您可以将 PAC 文件部署到服务器上&#xff0c;并在客户端配置浏…

QT学习PCL库代码

找关键点keypoints 绿色的点就是keypoints outofcore

应用软件安全保证措施方案书

系统安全保证措施方案—word原件 软件全套资料进主页获取或者本文末个人名片直接获取。

【Docker学习】docker run的端口映射-p和-P选项

docker run的端口映射选项分为-p&#xff08;小写&#xff0c;全称--publish&#xff09;&#xff0c;-P&#xff08;大写&#xff0c;全称--publish-all&#xff09;&#xff0c;之前认为只有改变容器发布给宿主机的默认端口号才会进行-p的设置&#xff0c;而不改变默认端口号…