大语言模型LLM入门篇

news2024/11/24 11:32:00

大模型席卷全球,彷佛得模型者得天下。对于IT行业来说,以后可能没有各种软件了,只有各种各样的智体(Agent)调用各种各样的API。在这种大势下,笔者也阅读了很多大模型相关的资料,和很多新手一样,开始脑子里都是一团乱麻,随着相关文章越读越多,再进行内容梳理,终于理清了一条清晰的脉络。笔者希望通过三篇文章总结(入门篇、原理篇和应用篇)将思路写下来,以便跟我一样的新手读者快速了解大模型的方方面面。在这里,笔者先强调一下,本系列文章的深度有限,只是个人对大模型知识脉络的梳理,同时也会借鉴一下同行的博客内容充实本文,文末将会注明参考来源。

在开始阅读文章之前,有几个问题读者可以先思考一下:

  • 什么是大模型?
  • 大模型最终要解决的问题是什么?

大模型LLM与人工智能AI

提到大模型(全名,大语言模型,LLM,Large Language Model),绕不开人工智能(AI,Artificial Intelligence)这个概念。

目前业界对于AI的定义有很多,但有一个令我印象深刻的说法:让机器像人一样阅读、写作和交流。通过最近几年AGI的高速发展,AI不仅仅能写作了,还能进行各种各样的创作了。所以,笔者认为这个说明可以进一步完善:人工智能就是要让机器像人一样阅读、创作和交流

  • 阅读:机器能够像人一样接收各种各样的输入,并能够理解这些输入;
  • 创作:机器能够像人一样进行创作输出,不仅仅只是写作,还包括:绘画、视频创作等等;
  • 交流:在上述理解输入和创作输出的基础上,就自然而然可以实现机器像人一样交流,并且在创作输出能力上,可能比自然人更加优势。

要实现上述描述的人工智能,首先就需要让机器理解人类的输入,人类的输入方式比较多,语言和文字首当其冲。要让机器理解语言和文字,就需要进行语言建模,语言建模的输出就是语言模型LM(Language Model)。

机器通过分析学习大量人类语言和文字,最终获得一个语言模型。通过该模型,机器好像听懂了用户输入一样,对用户的输入进行对应的输出。而用户通过得到的机器输出,也感觉机器理解了自己的意思。但实际这里的听懂和理解都是机器的运算。

那么,这么厉害的模型是怎么来的呢?

大模型LLM的发展与定义

和很多有故事的人的名字一样,大模型一开始并不叫大模型。

大模型的发展经历了4个阶段:

  • 统计语言模型
    SLM,Statistical Language Model,统计语言模型,基于统计学习方法开发,其基本思想是基于马尔可夫假设建立词预测模型。这种模型常见于我们的全文检索和推荐系统中,通过统计词频等信息来做统计预测,这种模型通常受到维数灾难的困扰。

  • 神经语言模型
    NLM,Neutral Language Model,通过神经网络,如循环神经网络(RNN),来描述单词序列的概率。该模型引入了词的分布式表示这一概念,并在聚合上下文特征(即分布式词向量)的条件下构建词预测函数。word2vec提出了构建简化的浅层神经网络来学习分布式单词表示的方法,这些表示在各种NLP任务中被证明非常有效。

  • 预训练语言模型
    PLM,Pre-training Language Model,基于自注意力机制的高度并行化Transformer架构,在大规模无标签语料库上使用专门设计的预训练任务。该模型确立了“预训练和微调”学习范式。在这个范式下,通常需要对PLM进行微调以适配不同的下游任务。

  • 大语言模型
    LLM,Large Language Model。研究人员发现,扩展PLM(扩展模型大小或数据大小)通常会提高下游任务的模型性能,许多研究通过训练越来越大的PLM来探索性能极限。随后发现,当模型参数达到某一极限之后,模型在解决一系列复杂任务中展示了惊人的能力,这种能力被称为【涌现能力】。
    关于涌现能力,业界目前还有很多问题待研究解决。比如:模型参数具体达到多少涌现能力会出现?大模型为什么会突然出现涌现能力等。

通过大模型的发展阶段描述,本节最后总结一下大模型LLM的定义。
大模型是一种采用Transformer架构,模型参数达到百亿或千亿级的预训练模型。

大模型LLM的分类

目前业界涌现了非常多的大模型,也看了网上一些关于对大模型分类归纳的文章,都非常不错,本节主要是对网上的分类信息进行总结。

本节将从以下三个方面来对大模型进行分类:

根据算法原理分类

大模型的架构基本都是Transformer,而Transformer详细的结构在google发布的论文《Attention Is All You Need》中进行了描述,Transformer结构中有两个非常重要的部件:Encoder和Decoder,如下图所示:

在这里插入图片描述

根据对Transformer结构的裁剪,可以将目前的大模型分为三类:

  • Encoder-Only:裁剪了Decoder部件,代表模型BERT,到了2020年之后,这类技术基本已经不再发展。
  • Encoder-Decoder:没有裁剪任何部件,代表模型T5。
  • Decoder-Only:裁剪了Encoder部件,代表模型GPT,目前主导LLM领域的发展。

下面是一张结合了大模型出现时间以及所属架构分类的图片,分别详细阐述了各个分类有哪些代表模型,以及模型出现的时间。

在这里插入图片描述

根据输入内容分类

根据输入内容不同,可以分为以下三类:

  • 语言大模型

指在自然语言处理(Natural Language Processing,NLP)领域中的一类大模型,通常用于处理文本数据和理解自然语言。
这类大模型的主要特点是它们在大规模语料库上进行了训练,以学习自然语言的各种语法、语义和语境规则。
例如:GPT 系列(OpenAI)、Bard(Google)、文心一言(百度)。

  • 视觉大模型

指在计算机视觉(Computer Vision,CV)领域中使用的大模型,通常用于图像处理和分析。
这类模型通过在大规模图像数据上进行训练,可以实现各种视觉任务,如图像分类、目标检测、图像分割、姿态估计、人脸识别等。
例如:VIT 系列(Google)、文心UFO、华为盘古 CV、INTERN(商汤)。

  • 多模态大模型

指能够处理多种不同类型数据的大模型,例如文本、图像、音频等多模态数据。
这类模型结合了 NLP 和 CV 的能力,以实现对多模态信息的综合理解和分析,从而能够更全面地理解和处理复杂的数据。
例如:DingoDB 多模向量数据库(九章云极 DataCanvas)、DALL-E(OpenAI)、悟空画画(华为)、midjourney。

根据应用领域分类

按照应用领域,大模型主要可以分为 L0、L1、L2 三个层级:

  • 通用大模型 L0:
    是指可以在多个领域和任务上通用的大模型。
    它们利用大算力、使用海量的开放数据与具有巨量参数的深度学习算法,在大规模无标注数据上进行训练,以寻找特征并发现规律,进而形成可“举一反三”的强大泛化能力,可在不进行微调或少量微调的情况下完成多场景任务,相当于 AI 完成了“通识教育”。

  • 行业大模型 L1:
    是指那些针对特定行业或领域的大模型。
    它们通常使用行业相关的数据进行预训练或微调,以提高在该领域的性能和准确度,相当于 AI 成为“行业专家”。

  • 垂直大模型 L2:
    是指那些针对特定任务或场景的大模型。
    它们通常使用任务相关的数据进行预训练或微调,以提高在该任务上的性能和效果。

读完本文,文章开篇的两个问题应该都有答案了。感谢各位读者的关注、收藏和点赞,为后续原理篇和应用篇的编写提供动力!

参考文献

  • 大模型基本概念和分类介绍总结
  • 一张图总结大语言模型的技术分类、现状和开源情况
  • 《Attention is all you need》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1652885.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CR80清洁卡的重要性

在我们日常生活中,身份证、银行卡、信用卡等塑料卡片已经成为了不可或缺的一部分。这些卡片通常符合CR80标准,这意味着它们的尺寸和厚度符合国际标准,为了保证这些卡片的读取和使用效果,清洁维护显得尤为重要。 什么是CR80卡&…

xxl-job跨集群调度改造

这篇文章为大家提供一种在多k8s集群中部署一套xxl-job的方案。 问题背景: 公司生产环境有多套k8s集群,为保证服务可用,容器需要部署到不同集群中。单集群中容器间可直接通过本地ip访问,跨集群容器间调用需通过宿主ip映射端口访问…

脸上长斑怎么办?教你一招——如何用新型揿针治疗黄褐斑?

点击文末领取揿针的视频教程跟直播讲解 你有没有发现,女性一到了30岁,脸上总是很容易长出斑点,特别是黄褐斑。 ​ 俗话说,一白遮百丑,一斑毁所有,长斑真的让人伤不起!很多人因为黄褐斑的出现…

microsoft的azure语音,开发环境运行正常,发布到centos7线上服务器之后,无法运行

最近在做AI语音对话的功能,用到了azure的语音语音服务,开发的时候还算顺利,部署到线上后,发现在正式服上无法完成语音转文本的操作,提示: org.springframework.web.util.NestedServletException: Handler d…

Github的使用教程(下载和上传项目)

根据『教程』一看就懂!Github基础教程_哔哩哔哩_bilibili 整理。 1.项目下载 1)直接登录到源码链接页或者通过如下图的搜索 通过编程语言对搜索结果进一步筛选。 2)红框区为项目的源代码,README.md (markdown格式&…

实战 | 实时手部关键点检测跟踪(附完整源码+代码详解)

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…

排名第一的电脑监控软件,电脑监控软件就选这款了

广受好评的电脑监控软件确实有很多选择,排名第一的只有一个,以下推荐几款备受认可的电脑监控软件,它们各自具有独特的特点和优势: 第一名,安企神 特点与优势:安企神是一款功能全面的IT资产管理和电脑桌面监…

Web前端三大主流框架是什么?

Web前端开发领域的三大主流框架分别是Angular、React和Vue.js。它们在Web开发领域中占据着重要的地位,各自拥有独特的特点和优势。 Angular Angular是一个由Google开发的前端框架,最初版本称为AngularJS,后来升级为Angular。它是一个完整的…

ChIP-seq or CUTTag,谁能hold住蛋白质与DNA互作主战场?

DNA与蛋白质的相互作用作为表观遗传学中的一个重要领域,对理解基因表达调控、DNA复制与修复、表观遗传修饰(组蛋白修饰)及染色质结构等基本生命过程至关重要。 自1983年James Broach首次公布染色质免疫共沉淀(ChIP)技…

备战人工智能大赛!卓翼飞思实验室启动机器人挑战赛赛事培训

一.大赛培训通知 本月起,卓翼飞思实验室将针对机器人任务挑战赛(无人协同系统)赛项内容开启赛事培训计划,采用“线上线下”相结合的培训模式,围绕赛事关键技术,让您轻松应对比赛。 5月8日进行第一期培训&am…

LLM——大语言模型完整微调策略指南

1、 概述 GPT-4、LaMDA、PaLM等大型语言模型(LLMs)以其在广泛主题上的深入理解和生成高度类人文本的能力而闻名遐迩,它们在全球范围内引起了广泛关注。这些模型的预训练过程涉及对来自互联网、书籍和其他来源的数十亿词汇的海量数据集进行学…

技术分享 | 京东商品API接口|京东零售数据可视化平台产品实践与思考

导读 本次分享题目为京东零售数据可视化平台产品实践与思考。 主要包括以下四个部分: 1.京东API接口介绍 2. 平台产品能力介绍 3. 业务赋能案例分享 01 京东API接口介绍 02 平台产品能力介绍 1. 产品矩阵 数据可视化产品是一种利用数据分析和可视化技术&…

Tuxera NTFS for Mac Mac用户无缝地读写NTFS格式的硬盘和U盘

在数字化时代,数据交换和共享变得日益重要。然而,对于Mac用户来说,与Windows系统之间的文件交换可能会遇到一些挑战。这是因为Mac OS默认不支持Windows常用的NTFS文件系统。幸运的是,Tuxera NTFS for Mac为我们提供了一个优雅的解…

APP广告变现:自刷的秘密与规则

在移动互联网时代,广告已成为众多APP盈利的主要方式之一。对于开发者和运营者而言,如何通过广告变现提高收益是他们必须关注的问题。然而,在众多的变现方法中,“自刷广告”这一概念可能让一些人感到迷惑。实际上,只要在…

详细讲解lua中string.gsub的使用

string.gsub 是 Lua 标准库中的一个函数,用于全局替换字符串中的某些部分。string.gsub 是 Lua 中非常实用的一个函数,它可以用来进行字符串的处理和替换操作。 它的基本语法如下: string.gsub(s, pattern, replacement [, n])s 是要处理的…

c++11 标准模板(STL)本地化库 - 平面类别(std::numpunct) - 定义数值标点规则

本地化库 本地环境设施包含字符分类和字符串校对、数值、货币及日期/时间格式化和分析&#xff0c;以及消息取得的国际化支持。本地环境设置控制流 I/O 、正则表达式库和 C 标准库的其他组件的行为。 平面类别 定义数值标点规则 std::numpunct template< class CharT >…

【Python】一道字典题目

题目&#xff1a;输入一段文本&#xff0c;统计每个字符的个数 in_inputinput(“输入&#xff1a;”) dic{} for char in in_input: if char in dic: dic[char]1 # 字典添加键值对的方法&#xff0c;给字典给键和值的方法 else: dic[char]1 print(dic) 输出台&#xff1a;

PY计算生态是什么?

Python 的计算生态指的是与 Python 相关的广泛的软件、库、框架和工具集合. 它们为各种计算任务提供了丰富的解决方案和支持。Python 作为一种简洁、易学、功能强大的编程语言&#xff0c;在科学计算、数据分析、人工智能、机器学习等领域都有着强大的影响力。以下是 Python 计…

有哪些有效的复习方法可以帮助备考软考?

软考目前仍然是一个以记忆为主、理解为辅的考试。学过软考的朋友可能会感到困惑&#xff0c;因为软考的知识在日常工作中有许多应用场景&#xff0c;需要理解的地方也很多。但为什么我说它是理解为辅呢&#xff1f;因为这些知识点只要记住了&#xff0c;都不难理解&#xff0c;…

程序员离不开的8款开发软件(必备)

在数字化时代&#xff0c;程序员扮演着关键的角色&#xff0c;他们的工作不仅仅是编写代码&#xff0c;更是创造了无限可能的世界。而要让这个创造过程更加高效和愉悦&#xff0c;选择适合自己的开发工具和软件是至关重要的。 今天&#xff0c;我将为大家介绍一些程序员爱不释…