政安晨:【Keras机器学习示例演绎】(三十九)—— 使用 FNet 进行文本分类

news2025/1/11 11:07:45

目录

简介

模型

设置

加载数据集

对数据进行标记

格式化数据集

建立模型

训练我们的模型

与变换器模型比较


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:使用 keras_nlp.layers.FNetEncoder 层对 IMDb 数据集进行文本分类。

简介


在本例中,我们将演示 FNet 在文本分类任务中取得与 vanilla Transformer 模型相当的结果的能力。我们将使用 IMDb 数据集,该数据集收集了贴有正面或负面标签的电影评论(情感分析)。

我们将使用 KerasNLP 中的组件来构建标记符和模型等。KerasNLP 让想要构建 NLP 管道的人的生活变得更轻松!:)

模型


基于变换器的语言模型(LM),如 BERT、RoBERTa、XLNet 等,已经证明了自注意机制在计算输入文本的丰富嵌入方面的有效性。然而,自注意机制是一种昂贵的操作,其时间复杂度为 O(n^2),其中 n 是输入中的标记数。因此,人们一直在努力降低自注意机制的时间复杂度,并在不影响结果质量的前提下提高性能。

2020 年,一篇名为《FNet:FNet: Mixing Tokens with Fourier Transforms》的论文,用一个简单的傅立叶变换层取代了 BERT 中的自我注意层,进行 "标记混合"。

这样做的结果是准确率相当,训练速度也加快了。论文中的几个要点尤为突出:

作者称,FNet 在 GPU 上比 BERT 快 80%,在 TPU 上比 BERT 快 70%。速度提升的原因有两个方面:a)傅立叶变换层是非参数化的,它没有任何参数;b)作者使用了快速傅立叶变换(FFT);这将时间复杂度从 O(n^2)(在自我关注的情况下)降低到 O(n log n)。
在 GLUE 基准测试中,FNet 的准确率达到了 BERT 的 92-97%。

设置


在开始执行之前,我们先导入所有必要的软件包。

!pip install -q --upgrade keras-nlp
!pip install -q --upgrade keras  # Upgrade to Keras 3.
import keras_nlp
import keras
import tensorflow as tf
import os

keras.utils.set_random_seed(42)

我们还要定义超参数。

BATCH_SIZE = 64
EPOCHS = 3
MAX_SEQUENCE_LENGTH = 512
VOCAB_SIZE = 15000

EMBED_DIM = 128
INTERMEDIATE_DIM = 512

加载数据集


首先,让我们下载并提取 IMDB 数据集。

!wget http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
!tar -xzf aclImdb_v1.tar.gz
--2023-11-22 17:59:33--  http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
Resolving ai.stanford.edu (ai.stanford.edu)... 171.64.68.10
Connecting to ai.stanford.edu (ai.stanford.edu)|171.64.68.10|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 84125825 (80M) [application/x-gzip]
Saving to: ‘aclImdb_v1.tar.gz’
aclImdb_v1.tar.gz   100%[===================>]  80.23M  93.3MB/s    in 0.9s    
2023-11-22 17:59:34 (93.3 MB/s) - ‘aclImdb_v1.tar.gz’ saved [84125825/84125825]

样本以文本文件的形式存在。让我们来看看该目录的结构。

print(os.listdir("./aclImdb"))
print(os.listdir("./aclImdb/train"))
print(os.listdir("./aclImdb/test"))
['README', 'imdb.vocab', 'imdbEr.txt', 'train', 'test']
['neg', 'unsup', 'pos', 'unsupBow.feat', 'urls_unsup.txt', 'urls_neg.txt', 'urls_pos.txt', 'labeledBow.feat']
['neg', 'pos', 'urls_neg.txt', 'urls_pos.txt', 'labeledBow.feat']

该目录包含两个子目录:train 和 test。

每个子目录又包含两个文件夹:pos 和 neg,分别代表正面和负面评论。在加载数据集之前,我们先删除 ./aclImdb/train/unsup 文件夹,因为其中有未标记的样本。

!rm -rf aclImdb/train/unsup

我们将使用 keras.utils.text_dataset_from_directory 实用程序从文本文件生成标有 tf.data.Dataset 的数据集。

train_ds = keras.utils.text_dataset_from_directory(
    "aclImdb/train",
    batch_size=BATCH_SIZE,
    validation_split=0.2,
    subset="training",
    seed=42,
)
val_ds = keras.utils.text_dataset_from_directory(
    "aclImdb/train",
    batch_size=BATCH_SIZE,
    validation_split=0.2,
    subset="validation",
    seed=42,
)
test_ds = keras.utils.text_dataset_from_directory("aclImdb/test", batch_size=BATCH_SIZE)
Found 25000 files belonging to 2 classes.
Using 20000 files for training.
Found 25000 files belonging to 2 classes.
Using 5000 files for validation.
Found 25000 files belonging to 2 classes.

现在我们将文本转换为小写。

train_ds = train_ds.map(lambda x, y: (tf.strings.lower(x), y))
val_ds = val_ds.map(lambda x, y: (tf.strings.lower(x), y))
test_ds = test_ds.map(lambda x, y: (tf.strings.lower(x), y))

让我们打印几个样本。

for text_batch, label_batch in train_ds.take(1):
    for i in range(3):
        print(text_batch.numpy()[i])
        print(label_batch.numpy()[i])
b'an illegal immigrant resists the social support system causing dire consequences for many. well filmed and acted even though the story is a bit forced, yet the slow pacing really sets off the conclusion. the feeling of being lost in the big city is effectively conveyed. the little person lost in the big society is something to which we can all relate, but i cannot endorse going out of your way to see this movie.'
0
b"to get in touch with the beauty of this film pay close attention to the sound track, not only the music, but the way all sounds help to weave the imagery. how beautifully the opening scene leading to the expulsion of gino establishes the theme of moral ambiguity! note the way music introduces the characters as we are led inside giovanna's marriage. don't expect to find much here of the political life of italy in 1943. that's not what this is about. on the other hand, if you are susceptible to the music of images and sounds, you will be led into a word that reaches beyond neo-realism. by the end of the film we there are moments antonioni-like landscape that has more to do with the inner life of the characters than with real places. this is one of my favorite visconti films."
1
b'"hollywood hotel" has relationships to many films like "ella cinders" and "merton of the movies" about someone winning a contest including a contract to make films in hollywood, only to find the road to stardom either paved with pitfalls or non-existent. in fact, as i was watching it tonight, on turner classic movies, i was considering whether or not the authors of the later musical classic "singing in the rain" may have taken some of their ideas from "hollywood hotel", most notably a temperamental leading lady star in a movie studio and a conclusion concerning one person singing a film score while another person got the credit by mouthing along on screen.<br /><br />"hollywood hotel" is a fascinating example of movie making in the 1930s. among the supporting players is louella parsons, playing herself (and, despite some negative comments i\'ve seen, she has a very ingratiating personality on screen and a natural command of her lines). she is not the only real person in the script. make-up specialist perc westmore briefly appears as himself to try to make one character resemble another.<br /><br />this film also was one of the first in the career of young mr. ronald reagan, playing a radio interviewer at a movie premiere. reagan actually does quite nicely in his brief scenes - particularly when he realizes that nobody dick powell is about to take over the microphone when it should be used with more important people.<br /><br />dick powell has won a hollywood contract in a contest, and is leaving his job as a saxophonist in benny goodman\'s band. the beginning of this film, by the way, is quite impressive, as the band drives in a parade of trucks to give a proper goodbye to powell. they end up singing "hooray for hollywood". the interesting thing about this wonderful number is that a lyric has been left out on purpose. throughout the johnny mercer lyrics are references to such hollywood as max factor the make-up king, rin tin tin, and even a hint of tarzan. but the original song lyric referred to looking like tyrone power. obviously jack warner and his brothers were not going to advertise the leading man of 20th century fox, and the name donald duck was substituted. in any event the number showed the singers and instrumentalists of goodman\'s orchestra at their best. so did a later five minute section of the film, where the band is rehearsing.<br /><br />powell leaves the band and his girl friend (frances langford) and goes to hollywood, only to find he is a contract player (most likely for musicals involving saxophonists). he is met by allen joslyn, the publicist of the studio (the owner is grant mitchell). joslyn is not a bad fellow, but he is busy and he tends to slough off people unless it is necessary to speak to them. he parks powell at a room at the hollywood hotel, which is also where the studio\'s temperamental star (lola lane) lives with her father (hugh herbert), her sister (mabel todd), and her sensible if cynical assistant (glenda farrell). lane is like jean hagen in "singing in the rain", except her speaking voice is good. her version of "dan lockwood" is one "alexander dupre" (alan mowbray, scene stealing with ease several times). the only difference is that mowbray is not a nice guy like gene kelly was, and lane (when not wrapped up in her ego) is fully aware of it. having a fit on being by-passed for an out-of-the ordinary role she wanted, she refuses to attend the premiere of her latest film. joslyn finds a double for her (lola\'s real life sister rosemary lane), and rosemary is made up to play the star at the premiere and the follow-up party. but she attends with powell (joslyn wanting someone who doesn\'t know the real lola). this leads to powell knocking down mowbray when the latter makes a pest of himself. but otherwise the evening is a success, and when the two are together they start finding each other attractive.<br /><br />the complications deal with lola coming back and slapping powell in the face, after mowbray complains he was attacked by powell ("and his gang of hoodlums"). powell\'s contract is bought out. working with photographer turned agent ted healey (actually not too bad in this film - he even tries to do a jolson imitation at one point), the two try to find work, ending up as employees at a hamburger stand run by bad tempered edgar kennedy (the number of broken dishes and singing customers in the restaurant give edgar plenty of time to do his slow burns with gusto). eventually powell gets a "break" by being hired to be dupre\'s singing voice in a rip-off of "gone with the wind". this leads to the final section of the film, when rosemary lane, herbert, and healey help give powell his chance to show it\'s his voice, not mowbrays.<br /><br />it\'s quite a cute and appealing film even now. the worst aspects are due to it\'s time. several jokes concerning african-americans are no longer tolerable (while trying to photograph powell as he arrives in hollywood, healey accidentally photographs a porter, and mentions to joslyn to watch out, powell photographs too darkly - get the point?). also a bit with curt bois as a fashion designer for lola lane, who is (shall we say) too high strung is not very tolerable either. herbert\'s "hoo-hoo"ing is a bit much (too much of the time) but it was really popular in 1937. and an incident where healey nearly gets into a brawl at the premiere (this was one of his last films) reminds people of the tragic, still mysterious end of the comedian in december 1937. but most of the film is quite good, and won\'t disappoint the viewer in 2008.'
1

对数据进行标记


我们将使用 keras_nlp.tokenizers.WordPieceTokenizer 层对文本进行标记化。keras_nlp.tokenizers.WordPieceTokenizer 接收一个 WordPiece 词汇表,并具有对文本进行标记化和对标记序列进行去标记化的函数。

在定义标记化器之前,我们首先需要在现有的数据集上对其进行训练。WordPiece 标记化算法是一种子词标记化算法;在语料库上对它进行训练,就能得到一个子词词汇表。子词标记化算法是单词标记化算法(单词标记化算法需要非常大的词汇量才能很好地覆盖输入单词)和字符标记化算法(字符并不像单词那样真正编码意义)之间的折衷方案。幸运的是,KerasNLP 使用 keras_nlp.tokenizers.compute_word_piece_vocabulary 实用程序可以非常简单地在语料库上训练 WordPiece。

注:FNet 的官方实现使用 SentencePiece Tokenizer。

def train_word_piece(ds, vocab_size, reserved_tokens):
    word_piece_ds = ds.unbatch().map(lambda x, y: x)
    vocab = keras_nlp.tokenizers.compute_word_piece_vocabulary(
        word_piece_ds.batch(1000).prefetch(2),
        vocabulary_size=vocab_size,
        reserved_tokens=reserved_tokens,
    )
    return vocab

每个词汇都有一些特殊的保留标记。我们有两个这样的标记:
"[PAD]"标记- 填充标记。当输入序列长度短于最大序列长度时,填充标记会被附加到输入序列长度上。"[UNK]" 未知标记。- 未知标记。

reserved_tokens = ["[PAD]", "[UNK]"]
train_sentences = [element[0] for element in train_ds]
vocab = train_word_piece(train_ds, VOCAB_SIZE, reserved_tokens)

我们来看看tokens!

print("Tokens: ", vocab[100:110])
Tokens:  ['à', 'á', 'â', 'ã', 'ä', 'å', 'æ', 'ç', 'è', 'é']

现在,让我们定义标记符。我们将使用上文训练过的词汇来配置标记符。我们将定义最大序列长度,这样,如果序列长度小于指定的序列长度,所有序列都会被填充为相同长度。否则,序列将被截断。

tokenizer = keras_nlp.tokenizers.WordPieceTokenizer(
    vocabulary=vocab,
    lowercase=False,
    sequence_length=MAX_SEQUENCE_LENGTH,
)

让我们尝试对数据集中的一个样本进行标记化!为了验证文本的标记化是否正确,我们还可以将标记列表重新标记为原始文本。

input_sentence_ex = train_ds.take(1).get_single_element()[0][0]
input_tokens_ex = tokenizer(input_sentence_ex)

print("Sentence: ", input_sentence_ex)
print("Tokens: ", input_tokens_ex)
print("Recovered text after detokenizing: ", tokenizer.detokenize(input_tokens_ex))
Sentence:  tf.Tensor(b'this picture seemed way to slanted, it\'s almost as bad as the drum beating of the right wing kooks who say everything is rosy in iraq. it paints a picture so unredeemable that i can\'t help but wonder about it\'s legitimacy and bias. also it seemed to meander from being about the murderous carnage of our troops to the lack of health care in the states for ptsd. to me the subject matter seemed confused, it only cared about portraying the military in a bad light, as a) an organzation that uses mind control to turn ordinary peace loving civilians into baby killers and b) an organization that once having used and spent the bodies of it\'s soldiers then discards them to the despotic bureacracy of the v.a. this is a legitimate argument, but felt off topic for me, almost like a movie in and of itself. i felt that "the war tapes" and "blood of my brother" were much more fair and let the viewer draw some conclusions of their own rather than be beaten over the head with the film makers viewpoint. f-', shape=(), dtype=string)
Tokens:  [  145   576   608   228   140    58 13343    13   143     8    58   360
   148   209   148   137  9759  3681   139   137   344  3276    50 12092
   164   169   269   424   141    57  2093   292   144  5115    15   143
  7890    40   576   170  2970  2459  2412 10452   146    48   184     8
    59   478   152   733   177   143     8    58  4060  8069 13355   138
  8557    15   214   143   608   140   526  2121   171   247   177   137
  4726  7336   139   395  4985   140   137   711   139  3959   597   144
   137  1844   149    55  1175   288    15   140   203   137  1009   686
   608  1701    13   143   197  3979   177  2514   137  1442   144    40
   209   776    13   148    40    10   168 14198 13928   146  1260   470
  1300   140   604  2118  2836  1873  9991   217  1006  2318   138    41
    10   168  8469   146   422   400   480   138  1213   137  2541   139
   143     8    58  1487   227  4319 10720   229   140   137  6310  8532
   862    41  2215  6547 10768   139   137    61    15    40    15   145
   141    40  7738  4120    13   152   569   260  3297   149   203    13
   360   172    40   150   144   138   139   561    15    48   569   146
     3   137   466  6192     3   138     3   665   139   193   707     3
   204   207   185  1447   138   417   137   643  2731   182  8421   139
   199   342   385   206   161  3920   253   137   566   151   137   153
  1340  8845    15    45    14     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0]
Recovered text after detokenizing:  tf.Tensor(b'this picture seemed way to slanted , it \' s almost as bad as the drum beating of the right wing kooks who say everything is rosy in iraq . it paints a picture so unredeemable that i can \' t help but wonder about it \' s legitimacy and bias . also it seemed to meander from being about the murderous carnage of our troops to the lack of health care in the states for ptsd . to me the subject matter seemed confused , it only cared about portraying the military in a bad light , as a ) an organzation that uses mind control to turn ordinary peace loving civilians into baby killers and b ) an organization that once having used and spent the bodies of it \' s soldiers then discards them to the despotic bureacracy of the v . a . this is a legitimate argument , but felt off topic for me , almost like a movie in and of itself . i felt that " the war tapes " and " blood of my brother " were much more fair and let the viewer draw some conclusions of their own rather than be beaten over the head with the film makers viewpoint . f - [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]', shape=(), dtype=string)

格式化数据集


接下来,我们要将数据集格式化,以提供给模型。我们需要对文本进行标记化。

def format_dataset(sentence, label):
    sentence = tokenizer(sentence)
    return ({"input_ids": sentence}, label)


def make_dataset(dataset):
    dataset = dataset.map(format_dataset, num_parallel_calls=tf.data.AUTOTUNE)
    return dataset.shuffle(512).prefetch(16).cache()


train_ds = make_dataset(train_ds)
val_ds = make_dataset(val_ds)
test_ds = make_dataset(test_ds)

建立模型


现在,让我们进入激动人心的部分--定义模型!我们首先需要一个嵌入层,也就是将输入序列中的每个标记映射到一个向量的层。这个嵌入层可以随机初始化。我们还需要一个位置嵌入层,对序列中的词序进行编码。惯例是将这两个嵌入层相加,即求和。KerasNLP 有一个 keras_nlp.layers.TokenAndPositionEmbedding 层,可以为我们完成上述所有步骤。

我们的 FNet 分类模型由三个 keras_nlp.layers.FNetEncoder 层和一个 keras.layers.Dense 层组成。

注:对于 FNet,屏蔽填充标记对结果的影响微乎其微。在正式实施中,不屏蔽填充标记。

input_ids = keras.Input(shape=(None,), dtype="int64", name="input_ids")

x = keras_nlp.layers.TokenAndPositionEmbedding(
    vocabulary_size=VOCAB_SIZE,
    sequence_length=MAX_SEQUENCE_LENGTH,
    embedding_dim=EMBED_DIM,
    mask_zero=True,
)(input_ids)

x = keras_nlp.layers.FNetEncoder(intermediate_dim=INTERMEDIATE_DIM)(inputs=x)
x = keras_nlp.layers.FNetEncoder(intermediate_dim=INTERMEDIATE_DIM)(inputs=x)
x = keras_nlp.layers.FNetEncoder(intermediate_dim=INTERMEDIATE_DIM)(inputs=x)


x = keras.layers.GlobalAveragePooling1D()(x)
x = keras.layers.Dropout(0.1)(x)
outputs = keras.layers.Dense(1, activation="sigmoid")(x)

fnet_classifier = keras.Model(input_ids, outputs, name="fnet_classifier")
/home/matt/miniconda3/envs/keras-io/lib/python3.10/site-packages/keras/src/layers/layer.py:861: UserWarning: Layer 'f_net_encoder' (of type FNetEncoder) was passed an input with a mask attached to it. However, this layer does not support masking and will therefore destroy the mask information. Downstream layers will not see the mask.
  warnings.warn(

训练我们的模型


我们将使用准确率来监控验证数据的训练进度。让我们对模型进行 3 个历元的训练。

fnet_classifier.summary()
fnet_classifier.compile(
    optimizer=keras.optimizers.Adam(learning_rate=0.001),
    loss="binary_crossentropy",
    metrics=["accuracy"],
)
fnet_classifier.fit(train_ds, epochs=EPOCHS, validation_data=val_ds)
Model: "fnet_classifier"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                    ┃ Output Shape              ┃    Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ input_ids (InputLayer)          │ (None, None)              │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ token_and_position_embedding    │ (None, None, 128)         │  1,985,536 │
│ (TokenAndPositionEmbedding)     │                           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ f_net_encoder (FNetEncoder)     │ (None, None, 128)         │    132,224 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ f_net_encoder_1 (FNetEncoder)   │ (None, None, 128)         │    132,224 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ f_net_encoder_2 (FNetEncoder)   │ (None, None, 128)         │    132,224 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ global_average_pooling1d        │ (None, 128)               │          0 │
│ (GlobalAveragePooling1D)        │                           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout (Dropout)               │ (None, 128)               │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense (Dense)                   │ (None, 1)                 │        129 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 2,382,337 (9.09 MB)
 Trainable params: 2,382,337 (9.09 MB)
 Non-trainable params: 0 (0.00 B)

我们获得了约 92% 的训练准确率和约 85% 的验证准确率。此外,对于 3 个epochs,训练模型大约需要 86 秒(在 Colab 上使用 16 GB Tesla T4 GPU)。

让我们来计算一下测试精度。

fnet_classifier.evaluate(test_ds, batch_size=BATCH_SIZE)
 391/391 ━━━━━━━━━━━━━━━━━━━━ 3s 5ms/step - accuracy: 0.8412 - loss: 0.4281

[0.4198716878890991, 0.8427909016609192]

与变换器模型比较


让我们将 FNet 分类器模型与 Transformer 分类器模型进行比较。

我们保持所有参数/超参数不变。例如,我们使用三个 TransformerEncoder 层。

我们将人头数量设为 2。

NUM_HEADS = 2
input_ids = keras.Input(shape=(None,), dtype="int64", name="input_ids")


x = keras_nlp.layers.TokenAndPositionEmbedding(
    vocabulary_size=VOCAB_SIZE,
    sequence_length=MAX_SEQUENCE_LENGTH,
    embedding_dim=EMBED_DIM,
    mask_zero=True,
)(input_ids)

x = keras_nlp.layers.TransformerEncoder(
    intermediate_dim=INTERMEDIATE_DIM, num_heads=NUM_HEADS
)(inputs=x)
x = keras_nlp.layers.TransformerEncoder(
    intermediate_dim=INTERMEDIATE_DIM, num_heads=NUM_HEADS
)(inputs=x)
x = keras_nlp.layers.TransformerEncoder(
    intermediate_dim=INTERMEDIATE_DIM, num_heads=NUM_HEADS
)(inputs=x)


x = keras.layers.GlobalAveragePooling1D()(x)
x = keras.layers.Dropout(0.1)(x)
outputs = keras.layers.Dense(1, activation="sigmoid")(x)

transformer_classifier = keras.Model(input_ids, outputs, name="transformer_classifier")


transformer_classifier.summary()
transformer_classifier.compile(
    optimizer=keras.optimizers.Adam(learning_rate=0.001),
    loss="binary_crossentropy",
    metrics=["accuracy"],
)
transformer_classifier.fit(train_ds, epochs=EPOCHS, validation_data=val_ds)
Model: "transformer_classifier"
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓
┃ Layer (type)        ┃ Output Shape      ┃ Param # ┃ Connected to         ┃
┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩
│ input_ids           │ (None, None)      │       0 │ -                    │
│ (InputLayer)        │                   │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ token_and_position… │ (None, None, 128) │ 1,985,… │ input_ids[0][0]      │
│ (TokenAndPositionE… │                   │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ transformer_encoder │ (None, None, 128) │ 198,272 │ token_and_position_… │
│ (TransformerEncode… │                   │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ transformer_encode… │ (None, None, 128) │ 198,272 │ transformer_encoder… │
│ (TransformerEncode… │                   │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ transformer_encode… │ (None, None, 128) │ 198,272 │ transformer_encoder… │
│ (TransformerEncode… │                   │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ not_equal_1         │ (None, None)      │       0 │ input_ids[0][0]      │
│ (NotEqual)          │                   │         │                      │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ global_average_poo… │ (None, 128)       │       0 │ transformer_encoder… │
│ (GlobalAveragePool… │                   │         │ not_equal_1[0][0]    │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ dropout_4 (Dropout) │ (None, 128)       │       0 │ global_average_pool… │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ dense_1 (Dense)     │ (None, 1)         │     129 │ dropout_4[0][0]      │
└─────────────────────┴───────────────────┴─────────┴──────────────────────┘
 Total params: 2,580,481 (9.84 MB)
 Trainable params: 2,580,481 (9.84 MB)
 Non-trainable params: 0 (0.00 B)
Epoch 1/3
 313/313 ━━━━━━━━━━━━━━━━━━━━ 14s 38ms/step - accuracy: 0.5895 - loss: 0.7401 - val_accuracy: 0.8912 - val_loss: 0.2694
Epoch 2/3
 313/313 ━━━━━━━━━━━━━━━━━━━━ 9s 29ms/step - accuracy: 0.9051 - loss: 0.2382 - val_accuracy: 0.8853 - val_loss: 0.2984
Epoch 3/3
 313/313 ━━━━━━━━━━━━━━━━━━━━ 9s 29ms/step - accuracy: 0.9496 - loss: 0.1366 - val_accuracy: 0.8730 - val_loss: 0.3607

<keras.src.callbacks.history.History at 0x7feaf9c56ad0>

训练准确率约为 94%,验证准确率约为 86.5%。模型训练耗时约 146 秒(在 Colab 上使用 16GB Tesla T4 GPU)。

让我们来计算一下测试精度。

transformer_classifier.evaluate(test_ds, batch_size=BATCH_SIZE)
 391/391 ━━━━━━━━━━━━━━━━━━━━ 4s 11ms/step - accuracy: 0.8399 - loss: 0.4579

[0.4496161639690399, 0.8423193097114563]

让我们制作一张表格,比较这两种模型。

我们可以看到,FNet 明显加快了我们的运行时间(1.7 倍),而在总体准确性方面只做出了很小的牺牲(下降了 0.75%)。

FNet ClassifierTransformer Classifier
Training Time86 seconds146 seconds
Train Accuracy92.34%93.85%
Validation Accuracy85.21%86.42%
Test Accuracy83.94%84.69%
#Params2,321,9212,520,065

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1652555.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

“中国汉字”的英语表达|柯桥考级英语生活英语商务口语培训

汉字&#xff0c;又称中文字、中国字、方块字。汉字是表意文字&#xff0c;一个汉字通常表示汉语里的一个词或一个语素&#xff0c;这就形成了音、形、义统一的特点。 我们通常用“Chinese character”表示“汉字”而不用“Chinese word”. &#x1f534; 例句&#xff1a; C…

萨科微与金航标:对标国际巨头,精进创新,打造行业新标杆

萨科微slkor&#xff08;www.slkoric.com&#xff09;对标企业包括德州仪器TI、AOS、ONsemi等国际知名企业&#xff0c;深入研究这些企业的产品定义、管理模式、技术创新和市场策略&#xff0c;为自身发展提供更多的参考和启示。金航标和萨科微在搞好产品的研发和质量管理的同时…

EXCEL数据快速上传至SAP透明表

文章目录 前言一、案例介绍/笔者需求二、备份数据三、数据处理转化 a.EXCEL转为TXT注意事项 b.EXCEL转为TXT 四、ABAP结合内表更新数据至透明表 a.代码实现 b.断点TXT上传至内表 c.查看上传结果 五、总结 前言 这篇文章…

【报错处理】ib_write_bw执行遇到Found Incompatibility issue with GID types.原因与解决办法

文章目录 拓扑现象根因解决办法解决后效果 拓扑 #mermaid-svg-zheSkw17IeCpjnVA {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-zheSkw17IeCpjnVA .error-icon{fill:#552222;}#mermaid-svg-zheSkw17IeCpjnVA .error…

【USB 3.2 Type-C】 端口实施挑战的集成解决方案 (补充一)

USB 3.2 Type-C 端口集成 补充&#xff0c;上一篇感觉还有没理解到位的一部分&#xff1b; 一、只做正反插的通信&#xff0c;已经差不多够了&#xff0c;但是这并不是完整的TYPE-C,必须要补充上PD; 参考连接&#xff1a; TYPE-C PD浅谈&#xff08;一&#xff09;https://w…

【声明ACL权限】

声明ACL权限 当应用在申请权限来访问必要的资源时&#xff0c;发现部分权限的等级比应用APL等级高&#xff0c;开发者可以选择通过ACL方式来解决等级不匹配的问题。 举例说明&#xff0c;如果应用需要使用全局悬浮窗&#xff0c;需要申请 ohos.permission.SYSTEM_FLOAT_WINDO…

pytorch实现transformer(1): 模型介绍

文章目录 1. transformer 介绍2 Position Encoding2.1 位置编码原理2.2 代码实现3 Self-attention4 前馈层FFN5 残差连接与层归一化6 编码器和解码器结构1. transformer 介绍 Transformer 模型是由谷歌在 2017 年提出并首先应用于机器翻译的神经网络模型结构。机器翻译的目标是…

生信新包|LINGER·从单细胞多组学数据推断基因调控网络

题目&#xff1a;Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data 原理 LINGER 是一个计算框架&#xff0c;旨在从单细胞多组学数据推断基因调控网络。 使用基因表达和染色质可及性的计数矩阵以及细胞类型注释作为输入&…

添砖Java之路其一——Java跨平台原理,JRE与JDK(为什么要安装)。

目录 前言&#xff1a; Java跨平台工作原理简单的理解&#xff1a; JRE与JDK&#xff1a; 前言&#xff1a; 最近又开始学Java了&#xff0c;所以又开一个板块来记录我Java的笔记。 Java跨平台工作原理简单的理解&#xff1a; 简单概括&#xff1a;简单来说Java跨平台原理…

【数据结构与算法】力扣 226. 翻转二叉树

题目描述 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 示例 1&#xff1a; 输入&#xff1a; root [4,2,7,1,3,6,9] 输出&#xff1a; [4,7,2,9,6,3,1]示例 2&#xff1a; 输入&#xff1a; root [2,1,3] 输出&#xff1a; [2,3,1…

Ubuntu16.04 离线安装CDH6.2.1

1. 离线包工作 下载Cloudera Manager安装包&#xff0c;地址&#xff1a;https://archive.cloudera.com/cm6/6.2.1/repo-as-tarball/ cm6.2.1-ubuntu1604.tar.gz下载CDH6.2.1安装包&#xff0c;地址&#xff1a;https://archive.cloudera.com/cdh6/6.2.1/parcels/ CDH-6.2.1-1.…

分布式架构的演技进过程

最近看了一篇文章,觉得讲的挺不错,就借机给大家分享一下。 早期应用:早期的应用比较简单,访问人数有限,大部分的开发单机就能完成。 分离模型:在业务发展后,用户数量逐步上升,服务器的性能出现瓶颈;就需要将应用和数据分开存储,避免相互抢占资源。 缓存模式:随着系…

LeetCode746:使用最小花费爬楼梯

题目描述 给你一个整数数组 cost &#xff0c;其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用&#xff0c;即可选择向上爬一个或者两个台阶。 你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。 请你计算并返回达到楼梯顶部的最低花费。 代码 …

Qt 6.7 正式发布!

本文翻译自&#xff1a;Qt 6.7 Released! 原文作者&#xff1a;Qt Group研发总监Volker Hilsheimer 在最新发布的Qt 6.7版本中&#xff0c;我们大大小小作出了许多改善&#xff0c;以便您在构建现代应用程序和用户体验时能够享受更多乐趣。 部分新增功能已推出了技术预览版&a…

sql 注入 1

当前在email表 security库 查到user表 1、第一步&#xff0c;知道对方goods表有几列&#xff08;email 2 列 good 三列&#xff0c;查的时候列必须得一样才可以查&#xff0c;所以创建个临时表&#xff0c;select 123 &#xff09; 但是你无法知道对方goods表有多少列 用order …

操作系统之管程

目录 一. 为什么要引入管程二. 管程的定义与基本特征三. 扩展1:用管程来解决生产者和消费者问题四. 扩展2: Java中类似于管程的机制 \quad 一. 为什么要引入管程 \quad \quad 二. 管程的定义与基本特征 \quad \quad 三. 扩展1:用管程来解决生产者和消费者问题 \quad 很智能 \qu…

如何绘制厂区地图?厂区地图路线规划图怎么做的?

随着工业化的快速发展&#xff0c;工厂规模越来越大&#xff0c;厂内货车往往因路线不明兜转&#xff0c;造成物流效率低&#xff0c;甚至路线拥堵&#xff1b;其他也存在基于安全管理的人员定位&#xff0c;访客指引&#xff0c;厂区设备可视化管理等需求。这些需求都与空间位…

基于STM32的智能垃圾桶设计(论文+源码)_kaic

基于STM32的智能垃圾桶设计 摘 要 随着社会科学技术的迅猛进展&#xff0c;人们的生活质量和速度也在不断提高。然而&#xff0c;大多数传统的家庭垃圾桶已经过时且缺乏创新&#xff0c;缺乏人性化设计。它们使用起来不方便、不卫生&#xff0c;所有的生活和废物垃圾都被混合…

根据不同权限,显示不同的菜单界面

本节&#xff1a;根据不同权限&#xff0c;显示不同的菜单界面 1.写几个角色不同的路由路径配置&#xff0c;有的角色有页面的配置&#xff0c;有的角色就没那几个页面的配置。 根据提供的token来判断 2.然后进行路由比对

力扣刷题Day5——内涵动态规划讲解

题目1&#xff1a; 先来一道很简单的题目&#xff1a; 2697. 字典序最小回文串 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 为了得到字典序最小的回文字符串&#xff0c;对于回文串&#xff0c;就是需要左右的字符相等&#xff0c;而要最小的回文串&#xff…