vector介绍与使用【C++】

news2025/1/10 3:18:17

C++ vector

  • 前言
  • 一、vector的介绍
    • c++文档介绍
    • 简介
  • 二、vector的定义和使用
    • vector的定义
      • vector代码演示
    • vector的使用
      • vector iterator 的使用
      • vector 空间增长问题
      • vector 增删查改
      • vector 迭代器失效问题
        • 引起底层空间改变
        • erase
        • g++与vs检测比较
        • string迭代器失效
      • vector 在OJ中的使用
        • 只出现一次的数字
        • 杨辉三角
        • 练习题
  • 三、vector深度剖析及模拟实现
    • std::vector的核心框架接口的模拟实现bit::vector
    • 使用memcpy拷贝问题
        • 问题分析
    • 动态二维数组理解


前言

C++中的vector是一个动态数组,它可以根据需要自动调整大小。它存储在连续的内存块中,提供了快速的随机访问和插入操作,但删除操作可能导致内存的移动。vector是STL(标准模板库)的一部分,可以容纳任何类型的元素,包括内置类型和用户定义的类型。使用vector时,需要包含头文件,并通过std命名空间访问。vector还提供了许多成员函数,如push_back()pop_back()size()等,以支持各种操作。


一、vector的介绍

c++文档介绍

c++文档

简介

  1. vector是表示可变大小数组的序列容器。
  2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
  3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
  4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
  5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
  6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起listforward_list统一的迭代器和引用更好。

二、vector的定义和使用

vector学习时一定要学会查看文档,vector在实际中非常的重要,在实际中我们熟悉常见的接口就可以,下面列出了哪些接口是要重点掌握的。

c++文档

vector的定义

(constructor)构造函数声明接口说明
vector()(重点)无参构造
vectorsize_type n, const value_type& val = value_type()构造并初始化n个val
vector (const vector& x);(重点) 拷贝构造
vector (InputIterator first, InputIterator last);使用迭代器进行初始化构造

vector代码演示

#define _CRT_SECURE_NO_WARNINGS

#include <iostream>
using namespace std;
#include <vector>


//    vector的构造

int TestVector1()
{
    // constructors used in the same order as described above:
    vector<int> first;                                // empty vector of ints
    vector<int> second(4, 100);                       // four ints with value 100
    vector<int> third(second.begin(), second.end());  // iterating through second
    vector<int> fourth(third);                       // a copy of third

    // 下面涉及迭代器初始化的部分,我们学习完迭代器再来看这部分
    // the iterator constructor can also be used to construct from arrays:
    int myints[] = { 16,2,77,29 };
    vector<int> fifth(myints, myints + sizeof(myints) / sizeof(int));

    cout << "The contents of fifth are:";
    for (vector<int>::iterator it = fifth.begin(); it != fifth.end(); ++it)
        cout << ' ' << *it;
    cout << '\n';

    return 0;
}



//  vector的迭代器

void PrintVector(const vector<int>& v)
{
	// const对象使用const迭代器进行遍历打印
	vector<int>::const_iterator it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

void TestVector2()
{
	// 使用push_back插入4个数据
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);

	// 使用迭代器进行遍历打印
	vector<int>::iterator it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	// 使用迭代器进行修改
	it = v.begin();
	while (it != v.end())
	{
		*it *= 2;
		++it;
	}

	// 使用反向迭代器进行遍历再打印
	// vector<int>::reverse_iterator rit = v.rbegin();
	auto rit = v.rbegin();
	while (rit != v.rend())
	{
		cout << *rit << " ";
		++rit;
	}
	cout << endl;

	PrintVector(v);
}


//  vector的resize 和 reserve

// reisze(size_t n, const T& data = T())
// 将有效元素个数设置为n个,如果时增多时,增多的元素使用data进行填充
// 注意:resize在增多元素个数时可能会扩容
void TestVector3()
{
	vector<int> v;

	// set some initial content:
	for (int i = 1; i < 10; i++)
		v.push_back(i);

	v.resize(5);
	v.resize(8, 100);
	v.resize(12);

	cout << "v contains:";
	for (size_t i = 0; i < v.size(); i++)
		cout << ' ' << v[i];
	cout << '\n';
}

// 测试vector的默认扩容机制
// vs:按照1.5倍方式扩容
// linux:按照2倍方式扩容
void TestVectorExpand()
{
	size_t sz;
	vector<int> v;
	sz = v.capacity();
	cout << "making v grow:\n";
	for (int i = 0; i < 100; ++i) 
	{
		v.push_back(i);
		if (sz != v.capacity()) 
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}

// 往vecotr中插入元素时,如果大概已经知道要存放多少个元素
// 可以通过reserve方法提前将容量设置好,避免边插入边扩容效率低
void TestVectorExpandOP()
{
	vector<int> v;
	size_t sz = v.capacity();
	v.reserve(100);   // 提前将容量设置好,可以避免一遍插入一遍扩容
	cout << "making bar grow:\n";
	for (int i = 0; i < 100; ++i) 
	{
		v.push_back(i);
		if (sz != v.capacity())
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}


//  vector的增删改查

// 尾插和尾删:push_back/pop_back
void TestVector4()
{
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);

	auto it = v.begin();
	while (it != v.end()) 
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	v.pop_back();
	v.pop_back();

	it = v.begin();
	while (it != v.end()) 
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

// 任意位置插入:insert和erase,以及查找find
// 注意find不是vector自身提供的方法,是STL提供的算法
void TestVector5()
{
	// 使用列表方式初始化,C++11新语法
	vector<int> v{ 1, 2, 3, 4 };

	// 在指定位置前插入值为val的元素,比如:3之前插入30,如果没有则不插入
	// 1. 先使用find查找3所在位置
	// 注意:vector没有提供find方法,如果要查找只能使用STL提供的全局find
	auto pos = find(v.begin(), v.end(), 3);
	if (pos != v.end())
	{
		// 2. 在pos位置之前插入30
		v.insert(pos, 30);
	}

	vector<int>::iterator it = v.begin();
	while (it != v.end()) 
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	pos = find(v.begin(), v.end(), 3);
	// 删除pos位置的数据
	v.erase(pos);

	it = v.begin();
	while (it != v.end()) {
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

// operator[]+index 和 C++11中vector的新式for+auto的遍历
// vector使用这两种遍历方式是比较便捷的。
void TestVector6()
{
	vector<int> v{ 1, 2, 3, 4 };

	// 通过[]读写第0个位置。
	v[0] = 10;
	cout << v[0] << endl;

	// 1. 使用for+[]小标方式遍历
	for (size_t i = 0; i < v.size(); ++i)
		cout << v[i] << " ";
	cout << endl;

	vector<int> swapv;
	swapv.swap(v);

	cout << "v data:";
	for (size_t i = 0; i < v.size(); ++i)
		cout << v[i] << " ";
	cout << endl;

	// 2. 使用迭代器遍历
	cout << "swapv data:";
	auto it = swapv.begin();
	while (it != swapv.end())
	{
		cout << *it << " ";
		++it;
	}

	// 3. 使用范围for遍历
	for (auto x : v)
		cout << x << " ";
	cout << endl;
}

vector的使用

vector iterator 的使用

iterator的使用接口说明
begin + end(重点)获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置的iterator/const_iterator
rbegin + rend获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的reverse_iterator

在这里插入图片描述
在这里插入图片描述

vector 空间增长问题

容量空间接口说明
size获取数据个数
capacity获取容量大小
empty判断是否为空
resize(重点)改变vectorsize
reserve (重点)改变vectorcapacity
  • capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的。这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义的。vs是PJ版本STL,g++是SGI版本STL。
  • reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。
  • resize在开空间的同时还会进行初始化,影响size
// 测试vector的默认扩容机制
void TestVectorExpand()
{
 size_t sz;
 vector<int> v;
 sz = v.capacity();
 cout << "making v grow:\n";
 for (int i = 0; i < 100; ++i) 
 {
 v.push_back(i);
 if (sz != v.capacity()) 
 {
 sz = v.capacity();
 cout << "capacity changed: " << sz << '\n';
 }
 }
}
vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 3
capacity changed: 4
capacity changed: 6
capacity changed: 9
capacity changed: 13
capacity changed: 19
capacity changed: 28
capacity changed: 42
capacity changed: 63
capacity changed: 94
capacity changed: 141
 
g++运行结果:linux下使用的STL基本是按照2倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 4
capacity changed: 8
capacity changed: 16
capacity changed: 32
capacity changed: 64
capacity changed: 128
// 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够
// 就可以避免边插入边扩容导致效率低下的问题了
void TestVectorExpandOP()
{
 vector<int> v;
 size_t sz = v.capacity();
 v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容
 cout << "making bar grow:\n";
 for (int i = 0; i < 100; ++i) 
 {
 v.push_back(i);
 if (sz != v.capacity())
 {
 sz = v.capacity();
 cout << "capacity changed: " << sz << '\n';
 }
 }
}

vector 增删查改

vector增删查改接口说明
push_back(重点)尾插
pop_back (重点)尾删
find查找。(注意这个是算法模块实现,不是vector的成员接口)
insertposition之前插入val
erase删除position位置的数据
swap交换两个vector的数据空间
operator[] (重点)像数组一样访问

vector 迭代器失效问题

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。

对于vector可能会导致其迭代器失效的操作有:

引起底层空间改变

会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resizereserveinsertassignpush_back等。

#include <iostream>
using namespace std;
#include <vector>
 
int main()
{
 vector<int> v{1,2,3,4,5,6};
 
 auto it = v.begin();
 
 // 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
 // v.resize(100, 8);
 
 // reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
 // v.reserve(100);
 
 // 插入元素期间,可能会引起扩容,而导致原空间被释放
 // v.insert(v.begin(), 0);
 // v.push_back(8);
 
 // 给vector重新赋值,可能会引起底层容量改变
 v.assign(100, 8);
 
 /*
 出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,
而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的
空间,而引起代码运行时崩溃。
 解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新
赋值即可。
 */
 while(it != v.end())
 {
 cout<< *it << " " ;
 ++it;
 }
 cout<<endl;
 return 0;
}
erase

指定位置元素的删除操作–erase

#include <iostream>
using namespace std;
#include <vector>
 
int main()
{
 int a[] = { 1, 2, 3, 4 };
 vector<int> v(a, a + sizeof(a) / sizeof(int));
 
 // 使用find查找3所在位置的iterator
 vector<int>::iterator pos = find(v.begin(), v.end(), 3);
 
 // 删除pos位置的数据,导致pos迭代器失效。
 v.erase(pos);
 cout << *pos << endl; // 此处会导致非法访问
 return 0;
}

erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。

以下代码的功能是删除vector中所有的偶数,请问那个代码是正确的,为什么?

#include <iostream>
using namespace std;
#include <vector>
 
int main()
{
 vector<int> v{ 1, 2, 3, 4 };
 auto it = v.begin();
 while (it != v.end())
 {
 if (*it % 2 == 0)
 v.erase(it);
 
 ++it;
 }
 
 return 0;
}
 
int main()
{
 vector<int> v{ 1, 2, 3, 4 };
 auto it = v.begin();
 while (it != v.end())
 {if (*it % 2 == 0)
 it = v.erase(it);
 else
 ++it;
 }
 
 return 0;
}
g++与vs检测比较

Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。

// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{
 vector<int> v{1,2,3,4,5};
 for(size_t i = 0; i < v.size(); ++i)
 cout << v[i] << " ";
 cout << endl;
 
 auto it = v.begin();
 cout << "扩容之前,vector的容量为: " << v.capacity() << endl;
 // 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效 
 v.reserve(100);
 cout << "扩容之后,vector的容量为: " << v.capacity() << endl;
 
 // 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会
 // 虽然可能运行,但是输出的结果是不对的
 while(it != v.end())
 {
 cout << *it << " ";
 ++it;
 }
 cout << endl;
 return 0;
}
 
程序输出:
1 2 3 4 5 
扩容之前,vector的容量为: 5
扩容之后,vector的容量为: 100
0 2 3 4 5 409 1 2 3 4 5
 
// 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include <vector>
#include <algorithm>
 
int main()
{
 vector<int> v{1,2,3,4,5};
 vector<int>::iterator it = find(v.begin(), v.end(), 3);
 v.erase(it);
 cout << *it << endl;
 while(it != v.end())
 {
 cout << *it << " ";
 ++it;
 }
 cout << endl;
 return 0;
}
 
程序可以正常运行,并打印:
4
4 5
 
// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
// 此时迭代器是无效的,++it导致程序崩溃
int main()
{
 vector<int> v{1,2,3,4,5};
 // vector<int> v{1,2,3,4,5,6};
 auto it = v.begin();
 while(it != v.end())
 {
 if(*it % 2 == 0)
 v.erase(it);
 ++it;
 }
 
 for(auto e : v)
 cout << e << " ";
 cout << endl;
 return 0;
}
 
========================================================
// 使用第一组数据时,程序可以运行
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out
1 3 5 
=========================================================
// 使用第二组数据时,程序最终会崩溃
[sly@VM-0-3-centos 20220114]$ vim testVector.cpp 
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out
Segmentation fault

从上述三个例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不对,如果it不在beginend范围内,肯定会崩溃的。

string迭代器失效

vector类似,string在插入+扩容操作+erase之后,迭代器也会失效

#include <string>
void TestString()
{
 string s("hello");
 auto it = s.begin();
 
 // 放开之后代码会崩溃,因为resize到20会string会进行扩容
 // 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了
 // 后序打印时,再访问it指向的空间程序就会崩溃
 //s.resize(20, '!');
 while (it != s.end())
 {
 cout << *it;
 ++it;
 }
 cout << endl;
 
 it = s.begin();
 while (it != s.end())
 {
 it = s.erase(it);
 // 按照下面方式写,运行时程序会崩溃,因为erase(it)之后
 // it位置的迭代器就失效了
 // s.erase(it); 
 ++it;
 }
}

迭代器失效解决办法:在使用前,对迭代器重新赋值即可

vector 在OJ中的使用

只出现一次的数字

只出现一次的数字

class Solution {
public:
 int singleNumber(vector<int>& nums) {
 int value = 0;
 for(auto e : v) {value ^= e; }
 return value;
 }
};
杨辉三角

杨辉三角

// 涉及resize / operator[]
// 核心思想:找出杨辉三角的规律,发现每一行头尾都是1,中间第[j]个数等于上一行[j-1]+[j]
class Solution {
public:
 vector<vector<int>> generate(int numRows) {
 vector<vector<int>> vv(numRows);
 for(int i = 0; i < numRows; ++i)
 {
 vv[i].resize(i+1, 1);
 }
 
 for(int i = 2; i < numRows; ++i)
 {
 for(int j = 1; j < i; ++j)
 {
 vv[i][j] = vv[i-1][j] + vv[i-1][j-1];
 }
 }
 
 return vv;
 }
};

总结:通过上面的练习我们发现vector常用的接口更多是插入和遍历。遍历更喜欢用数组operator[i]的形式访问,因为这样便捷。

练习题

删除有序数组中的重复项

只出现一次的数字 II

只出现一次的数字 III

数组中出现次数超过一半的数字

电话号码的字母组合

三、vector深度剖析及模拟实现

在这里插入图片描述
在这里插入图片描述

std::vector的核心框架接口的模拟实现bit::vector

#pragma once

#include <iostream>
using namespace std;
#include <assert.h>

// 注意这里namespace大家下去就不要取名为bit了,否则被面试官看到问bit是啥就尴尬了
namespace bit
{
	template<class T>
	class vector
	{
	public:
		// Vector的迭代器是一个原生指针
		typedef T* iterator;
		typedef const T* const_iterator;

		///
		// 构造和销毁
		vector()
			: _start(nullptr)
			, _finish(nullptr)
			, _endOfStorage(nullptr)
		{}

		vector(size_t n, const T& value = T())
			: _start(nullptr)
			, _finish(nullptr)
			, _endOfStorage(nullptr)
		{
			reserve(n);
			while (n--)
			{
				push_back(value);
			}
		}

		/*
		* 理论上将,提供了vector(size_t n, const T& value = T())之后
		* vector(int n, const T& value = T())就不需要提供了,但是对于:
		* vector<int> v(10, 5);
		* 编译器在编译时,认为T已经被实例化为int,而10和5编译器会默认其为int类型
		* 就不会走vector(size_t n, const T& value = T())这个构造方法,
		* 最终选择的是:vector(InputIterator first, InputIterator last)
		* 因为编译器觉得区间构造两个参数类型一致,因此编译器就会将InputIterator实例化为int
		* 但是10和5根本不是一个区间,编译时就报错了
		* 故需要增加该构造方法
		*/
		vector(int n, const T& value = T())
			: _start(new T[n])
			, _finish(_start+n)
			, _endOfStorage(_finish)
		{
			for (int i = 0; i < n; ++i)
			{
				_start[i] = value;
			}
		}

		// 若使用iterator做迭代器,会导致初始化的迭代器区间[first,last)只能是vector的迭代器
		// 重新声明迭代器,迭代器区间[first,last)可以是任意容器的迭代器
		template<class InputIterator>
		vector(InputIterator first, InputIterator last)
		{
			while (first != last)
			{
				push_back(*first);
				++first;
			}
		}

		vector(const vector<T>& v)
			: _start(nullptr)
			, _finish(nullptr)
			, _endOfStorage(nullptr)
		{
			reserve(v.capacity());
			iterator it = begin();
			const_iterator vit = v.cbegin();
			while (vit != v.cend())
			{
				*it++ = *vit++;
			}
			_finish = it;
		}

		vector<T>& operator=(vector<T> v)
		{
			swap(v);
			return *this;
		}

		~vector()
		{
			if (_start)
			{
				delete[] _start;
				_start = _finish = _endOfStorage = nullptr;
			}
		}

		/
		// 迭代器相关
		iterator begin()
		{
			return _start;
		}

		iterator end()
		{
			return _finish;
		}

		const_iterator cbegin() const
		{
			return _start;
		}

		const_iterator cend() const
		{
			return _finish;
		}

		//
		// 容量相关
		size_t size() const 
		{ 
			return _finish - _start; 
		}

		size_t capacity() const 
		{ 
			return _endOfStorage - _start; 
		}

		bool empty() const 
		{ 
			return _start == _finish; 
		}

		void reserve(size_t n)
		{
			if (n > capacity())
			{
				size_t oldSize = size();
				// 1. 开辟新空间
				T* tmp = new T[n];

				// 2. 拷贝元素
		        // 这里直接使用memcpy会有问题吗?同学们思考下
		        //if (_start)
		        //	memcpy(tmp, _start, sizeof(T)*size);

				if (_start)
				{
					for (size_t i = 0; i < oldSize; ++i)
						tmp[i] = _start[i];

					// 3. 释放旧空间
					delete[] _start;
				}

				_start = tmp;
				_finish = _start + oldSize;
				_endOfStorage = _start + n;
			}
		}

		void resize(size_t n, const T& value = T())
		{
			// 1.如果n小于当前的size,则数据个数缩小到n
			if (n <= size())
			{
				_finish = _start + n;
				return;
			}

			// 2.空间不够则增容
			if (n > capacity())
				reserve(n);

			// 3.将size扩大到n
			iterator it = _finish;
			_finish = _start + n;
			while (it != _finish)
			{
				*it = value;
				++it;
			}
		}

		///
		// 元素访问
		T& operator[](size_t pos) 
		{ 
			assert(pos < size());
			return _start[pos]; 
		}

		const T& operator[](size_t pos)const 
		{ 
			assert(pos < size());
			return _start[pos]; 
		}

		T& front()
		{
			return *_start;
		}

		const T& front()const
		{
			return *_start;
		}

		T& back()
		{
			return *(_finish - 1);
		}

		const T& back()const
		{
			return *(_finish - 1);
		}
		/
		// vector的修改操作
		void push_back(const T& x) 
		{ 
			insert(end(), x); 
		}

		void pop_back() 
		{ 
			erase(end() - 1); 
		}

		void swap(vector<T>& v)
		{
			std::swap(_start, v._start);
			std::swap(_finish, v._finish);
			std::swap(_endOfStorage, v._endOfStorage);
		}

		iterator insert(iterator pos, const T& x)
		{
			assert(pos <= _finish);

			// 空间不够先进行增容
			if (_finish == _endOfStorage)
			{
				//size_t size = size();
				size_t newCapacity = (0 == capacity()) ? 1 : capacity() * 2;
				reserve(newCapacity);

				// 如果发生了增容,需要重置pos
				pos = _start + size();
			}

			iterator end = _finish - 1;
			while (end >= pos)
			{
				*(end + 1) = *end;
				--end;
			}

			*pos = x;
			++_finish;
			return pos;
		}

		// 返回删除数据的下一个数据
		// 方便解决:一边遍历一边删除的迭代器失效问题
		iterator erase(iterator pos)
		{
			// 挪动数据进行删除
			iterator begin = pos + 1;
			while (begin != _finish) {
				*(begin - 1) = *begin;
				++begin;
			}

			--_finish;
			return pos;
		}
	private:
		iterator _start;		// 指向数据块的开始
		iterator _finish;		// 指向有效数据的尾
		iterator _endOfStorage;  // 指向存储容量的尾
	};
}

/// /
/// 对模拟实现的vector进行严格测试
void TestBitVector1()
{
	bit::vector<int> v1;
	bit::vector<int> v2(10, 5);

	int array[] = { 1,2,3,4,5 };
	bit::vector<int> v3(array, array+sizeof(array)/sizeof(array[0]));

	bit::vector<int> v4(v3);

	for (size_t i = 0; i < v2.size(); ++i)
	{
		cout << v2[i] << " ";
	}
	cout << endl;

	auto it = v3.begin();
	while (it != v3.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	for (auto e : v4)
	{
		cout << e << " ";
	}
	cout << endl;
}

void TestBitVector2()
{
	bit::vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);
	v.push_back(5);
	cout << v.size() << endl;
	cout << v.capacity() << endl;
	cout << v.front() << endl;
	cout << v.back() << endl;
	cout << v[0] << endl;
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;

	v.pop_back();
	v.pop_back();
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;

	v.insert(v.begin(), 0);
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;

	v.erase(v.begin() + 1);
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;
}

使用memcpy拷贝问题

假设模拟实现的vector中的reserve接口中,使用memcpy进行的拷贝,以下代码会发生什么问题?

int main()
{
 bite::vector<bite::string> v;
 v.push_back("1111");
 v.push_back("2222");
 v.push_back("3333");
 return 0;
}
问题分析
  1. memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中
  2. 如果拷贝的是内置类型的元素,memcpy既高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅拷贝。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
结论:如果对象中涉及到资源管理时,千万不能使用memcpy进行对象之间的拷贝,因为memcpy是浅拷贝,否则可能会引起内存泄漏甚至程序崩溃。

动态二维数组理解

// 以杨慧三角的前n行为例:假设n为5
void test2vector(size_t n)
{
 // 使用vector定义二维数组vv,vv中的每个元素都是vector<int>
 bit::vector<bit::vector<int>> vv(n);
 
 // 将二维数组每一行中的vecotr<int>中的元素全部设置为1
 for (size_t i = 0; i < n; ++i)
 vv[i].resize(i + 1, 1);
 
 // 给杨慧三角出第一列和对角线的所有元素赋值
 for (int i = 2; i < n; ++i)
 {
 for (int j = 1; j < i; ++j)
 {
 vv[i][j] = vv[i - 1][j] + vv[i - 1][j - 1];
 }
 }
}

bit::vector<bit::vector<int>> vv(n); 构造一个vv动态二维数组,vv中总共有n个元素,每个元素都是vector类型的,每行没有包含任何元素,如果n为5时如下所示:
在这里插入图片描述

vv中元素填充完成之后,如下图所示:
在这里插入图片描述
使用标准库中vector构建动态二维数组时与上图实际是一致的。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1651398.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Cisco NX-OS System Software - ACI 16.0(5h)

Cisco NX-OS System Software - ACI 16.0(5h) 适用于 ACI 模式下的 Cisco Nexus 9000 系列交换机 请访问原文链接&#xff1a;Cisco NX-OS System Software - ACI 16.0(5h)&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org Cis…

AI预警未来:山体滑坡与塌方事故的潜在发现者

在科技日新月异的今天&#xff0c;人工智能&#xff08;AI&#xff09;的应用已经渗透到了我们生活的各个领域。而在防灾减灾的领域中&#xff0c;AI技术的引入无疑为我们打开了一扇新的大门。以梅大高速大埔往福建方向K11900m附近发生的路面塌方灾害为例&#xff0c;我们不禁思…

DockerUI安装使用

DockerUI安装使用 主机环境 [roottest01 ~]# uname -a Linux test01 3.10.0-862.el7.x86_64 #1 SMP Fri Apr 20 16:44:24 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux [roottest01 ~]# cat /etc/redhat-release CentOS Linux release 7.5.1804 (Core)安装 [roottest01 ~]# doc…

第12章 软件测试基础(第三部分)测试类型、测试工具

七、测试类型&#xff08;按工程阶段划分&#xff09; 单集系确收 &#xff08;一&#xff09;单元测试 1、单元测试/模块测试 单元就是软件中最小单位&#xff08;或模块&#xff09;。可以是一个函数、一个过程、一个类。主要依据是模块的详细设计文档。价值在于尽早发现…

MacOS快速安装FFmpeg,并使用FFmpeg转换视频

前言&#xff1a;目前正在接入flv视频流&#xff0c;但是没有一个合适的flv视频流地址。网上提供的flv也都不是H264AAC&#xff08;一种视频和音频编解码器组合&#xff09;&#xff0c;所以想通过fmpeg来将flv文件转换为H264AAC。 一、MacOS环境 博主的MacOS环境&#xff08;…

如何永久删除服务和相关文件夹

如何永久删除服务和文件夹&#xff1f; How can I remove the service and folder permanently? 以AlibabaProtect服务为例 takeown /f "C:\Program Files (x86)\AlibabaProtect sc delete AlibabaProtect我运行了上述操作&#xff0c;并通过任务管理器杀死了“阿里巴巴…

FFmpeg 音视频处理工具三剑客(ffmpeg、ffprobe、ffplay)

【导读】FFmpeg 是一个完整的跨平台音视频解决方案&#xff0c;它可以用于音频和视频的转码、转封装、转推流、录制、流化处理等应用场景。FFmpeg 在音视频领域享有盛誉&#xff0c;号称音视频界的瑞士军刀。同时&#xff0c;FFmpeg 有三大利器是我们应该清楚的&#xff0c;它们…

市场营销的酒店营销策略研究意义

在市场经济条件下&#xff0c;市场营销策略已成为企业经营管理中最重要的组成部分&#xff0c;其在企业管理中的地位日益显现出来。 然而&#xff0c;由于酒店营销环境的特殊性&#xff0c;酒店营销策略研究一直是咱们从业者研究的热点之一。 对于酒店营销策略的研究&#xf…

云计算技术发展趋势详解

云计算最全详解(图文全面总结) 云计算是技术趋势的未来&#xff0c;掌握它至关重要。从基础到高级&#xff0c;本文深入探讨云计算的方方面面&#xff0c;为您提供全面的理解。 云计算 云计算将计算转移到远程数据中心&#xff0c;让用户灵活、经济地访问资源。就像水电一样&…

【数据结构】闲谈A股实时交易的数据结构-队列

今天有点忙&#xff0c;特意早起&#xff0c;要不先写点什么。看到个股的红红绿绿&#xff0c; 突然兴起&#xff0c;要不写篇文章分析下A股交易的简易版数据结构。 在A股实时股票交易系统中&#xff0c;按照个人理解&#xff0c;大致会用队列来完成整个交易。队列&#xff08;…

PyQt 入门

Qt hello - 专注于Qt的技术分享平台 Python体系下GUI框架也多了去了&#xff0c;PyQt算是比较受欢迎的一个。如果对Qt框架熟悉&#xff0c;那掌握这套框架是很简单的。 一&#xff0c;安装 1.PyQt5 pip3 install PyQt5 2.Designer UI工具 pip3 install PyQt5-tools 3.UI…

上位机图像处理和嵌入式模块部署(树莓派4b安装dockerros)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 前面我们讨论过树莓派4b安装ros的问题&#xff0c;当时的解决方案就是利用docker来安装ros。我们都知道&#xff0c;每一个ros版本都是和特定的ubu…

基于参数化建模的3D产品组态实现

我们最近为荷兰设计师家具制造商 KILO 发布了基于网络的 3D 配置器的第一个生产版本。我们使用了 Salsita 3D 配置器&#xff0c;这是一个内部 SDK&#xff0c;使新的 3D 配置器的实施变得轻而易举。虽然它给我们带来了巨大帮助&#xff0c;但我们仍然面临一些有趣的挑战。 NSD…

LINUX 入门 6

LINUX 入门 6 day10 20240505 耗时&#xff1a;41min day10 20240506 耗时&#xff1a;155min 课程链接地址 第6章 DNS协议与请求 1 DNS协议分析与项目介绍 自己去看教程 快速扫了一下&#xff0c;还是结合实践去看概念有感觉 回答以下几个问题&#xff1a; dns作用dns分层…

python网络爬虫学习——编写一个网络爬虫

参考资料&#xff1a;用Python写网络爬虫&#xff08;第2版&#xff09; 1、编写一个函数 &#xff08;1&#xff09;用于下载网页&#xff0c;且当下载网页发生错误时能及时报错。 # 导入库 import urllib.request from urllib.error import URLError,HTTPError,ContentTooS…

Shell编程规范和变量

一.Shell脚本概述 Shell脚本的概念 将要执行的命令按顺序保存到一个文本文件给该文件可执行权限可结合各种Shell控制语句以完成更复杂的操作 Shell脚本应用场景 重复性操作交互性任务批量事务处理服务运行状态监控定时任务执行 Shell的作用 1&#xff09;介于系统内核与用…

《Fundamentals of Power Electronics》——隔离型CUK转换器、

以下是隔离型CUK转换器的相关知识点&#xff1a; Cuk电路的隔离型版本获得方式不同。基础非隔离型Cuk电路如下图所示。 将上图中电容C1分成两个串联的电容C1a和C1b&#xff0c;得到结果如下图所示。 在两个电容之间插入一个变压器&#xff0c;得到如下图所示电路。 变压器极性…

网络基础-默认网关

默认网关&#xff0c;又称缺省网关&#xff0c;缺省路由器&#xff1b;它是指在一个连接两个不同网络的设备&#xff0c;为网关设备&#xff1b;当主机需要发送数据包到另一个子网或者另一个网络时&#xff0c;它会首先检查目标地址是否在本地子网内&#xff1b;如果不在本地子…

Flask gevent启动报错UnicodeDecodeError

文章目录 环境代码报错Track解决思路 环境 acondana 24.1.2python 3.7.13 32bitflask 2.2.3gevent 21.8.0 代码 port 7236 logging.basicConfig(levellogging.INFO, # 控制台打印的日志级别filename./logs/app.log, # 将日志写入log_new.log文件中filemodea, # 模式&…

nodejs里面的 http 模块介绍和使用

Node.js的HTTP模块是一个核心模块&#xff0c;它提供了很多功能来创建HTTP服务器和发送HTTP请求。 http.Server是一个基于事件的http服务器&#xff0c;内部是由c实现的&#xff0c;接口是由JavaScript封装。 http.request是一个http客户端工具。 用户向服务器发送数据。 创…