YOLOv8改进 | 主干篇 | 2024.5全新的移动端网络MobileNetV4改进YOLOv8(含MobileNetV4全部版本改进)

news2024/11/26 16:48:26

一、本文介绍

本文给大家带来的改进机制是MobileNetV4其发布时间是2024.5月。MobileNetV4是一种高度优化的神经网络架构,专为移动设备设计。它最新的改动总结主要有两点,采用了通用反向瓶颈(UIB)和针对移动加速器优化的Mobile MQA注意力模块(一种全新的注意力机制)。这些创新有助于在不牺牲准确性的情况下,显著提高推理速度和计算效率。MobileNetV4作为一种移动端的网络,其实它的论文中主要是配合蒸馏技术进行改进,大家可以搭配本专栏的蒸馏进行二次创新涨点。

欢迎大家订阅我的专栏一起学习YOLO! 


目录

一、本文介绍

二、原理介绍 

三、核心代码

四、手把手教你添加MobileNetv4 

 4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四

4.5 修改五

4.6 修改六

4.7 修改七

4.8 修改八

注意!!! 额外的修改!

打印计算量问题解决方案

注意事项!!! 

五、MobileNetv4 的yaml文件

5.1 MobileNetv4 的yaml文件

5.2 训练文件的代码

六、成功运行记录 

七、本文总结


二、原理介绍 

官方论文地址: 官方论文地址点击此处即可跳转

官方代码地址: 官方代码地址点击此处即可跳转


MobileNetV4是MobileNet系列的最新版本,专为移动设备设计,引入了多种新颖且高效的架构组件。其中最关键的是通用反转瓶颈(UIB),它结合了以前模型如MobileNetV2的反转瓶颈和新元素,例如ConvNext块和视觉变换器(ViT)中的前馈网络。这种结构允许在不过度复杂化架构搜索过程的情况下,适应性地并有效地扩展模型到各种平台。

此外,MobileNetV4还包括一种名为Mobile MQA的新型注意力机制,该机制通过优化算术运算与内存访问的比率,显著提高了移动加速器上的推理速度,这是移动性能的关键因素。该架构通过精细的神经网络架构搜索(NAS)和新颖的蒸馏技术进一步优化,使得MobileNetV4能够在多种硬件平台上达到最优性能,包括移动CPU、DSP、GPU和特定的加速器,如Apple的Neural Engine和Google的Pixel EdgeTPU。

此外,MobileNetV4还引入了改进的NAS策略,通过粗粒度和细粒度搜索相结合的方法,显著提高搜索效率并改善模型质量。通过这种方法,MobileNetV4能够实现大多数情况下的Pareto最优性能,这意味着在不同设备上都能达到效率和准确性的最佳平衡。

最后,通过一种新的蒸馏技术,MobileNetV4进一步提高了准确性,其混合型大模型在ImageNet-1K数据集上达到了87%的顶级准确率,同时在Pixel 8 EdgeTPU上的运行时间仅为3.8毫秒。这些特性使MobileNetV4成为适用于移动环境中高效视觉任务的理想选择。

主要思想提取和总结:

1. 通用反转瓶颈(UIB):

MobileNetV4引入了一种名为通用反转瓶颈(UIB)的新架构组件。UIB是一个灵活的架构单元,融合了反转瓶颈(IB)、ConvNext、前馈网络(FFN),以及新颖的额外深度(ExtraDW)变体。

2. Mobile MQA注意力机制:

为了优化移动加速器的性能,MobileNetV4设计了一个特殊的注意力模块,名为Mobile MQA。这一模块针对移动设备的计算和存储限制进行了优化,提供了高达39%的推理速度提升。

3. 优化的神经架构搜索(NAS)配方:

通过改进的NAS配方,MobileNetV4能够更高效地搜索和优化网络架构,这有助于发现适合特定硬件的最优模型配置。 

4. 模型蒸馏技术:

引入了一种新的蒸馏技术,用以提高模型的准确性。通过这种技术,MNv4-Hybrid-Large模型在ImageNet-1K上达到了87%的准确率,并且在Pixel 8 EdgeTPU上的运行时间仅为3.8毫秒。

个人总结:MobileNetV4是一个专为移动设备设计的高效深度学习模型。它通过整合多种先进技术,如通用反转瓶颈(UIB)、针对移动设备优化的注意力机制(Mobile MQA),以及先进的架构搜索方法(NAS),实现了在不同硬件上的高效运行。这些技术的融合不仅大幅提升了模型的运行速度,还显著提高了准确率。特别是,它的一个变体模型在标准图像识别测试中取得了87%的准确率,运行速度极快。


三、核心代码

核心代码的使用方式看章节四!

from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F

__all__ = ['MobileNetV4ConvLarge', 'MobileNetV4ConvSmall', 'MobileNetV4ConvMedium', 'MobileNetV4HybridMedium', 'MobileNetV4HybridLarge']

MNV4ConvSmall_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 32, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [32, 32, 3, 2],
            [32, 32, 1, 1]
        ]
    },
    "layer2": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [32, 96, 3, 2],
            [96, 64, 1, 1]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 6,
        "block_specs": [
            [64, 96, 5, 5, True, 2, 3],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 3, 0, True, 1, 4],
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 6,
        "block_specs": [
            [96,  128, 3, 3, True, 2, 6],
            [128, 128, 5, 5, True, 1, 4],
            [128, 128, 0, 5, True, 1, 4],
            [128, 128, 0, 5, True, 1, 3],
            [128, 128, 0, 3, True, 1, 4],
            [128, 128, 0, 3, True, 1, 4],
        ]
    },
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [128, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}

MNV4ConvMedium_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 32, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "fused_ib",
        "num_blocks": 1,
        "block_specs": [
            [32, 48, 2, 4.0, True]
        ]
    },
    "layer2": {
        "block_name": "uib",
        "num_blocks": 2,
        "block_specs": [
            [48, 80, 3, 5, True, 2, 4],
            [80, 80, 3, 3, True, 1, 2]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 8,
        "block_specs": [
            [80,  160, 3, 5, True, 2, 6],
            [160, 160, 3, 3, True, 1, 4],
            [160, 160, 3, 3, True, 1, 4],
            [160, 160, 3, 5, True, 1, 4],
            [160, 160, 3, 3, True, 1, 4],
            [160, 160, 3, 0, True, 1, 4],
            [160, 160, 0, 0, True, 1, 2],
            [160, 160, 3, 0, True, 1, 4]
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 11,
        "block_specs": [
            [160, 256, 5, 5, True, 2, 6],
            [256, 256, 5, 5, True, 1, 4],
            [256, 256, 3, 5, True, 1, 4],
            [256, 256, 3, 5, True, 1, 4],
            [256, 256, 0, 0, True, 1, 4],
            [256, 256, 3, 0, True, 1, 4],
            [256, 256, 3, 5, True, 1, 2],
            [256, 256, 5, 5, True, 1, 4],
            [256, 256, 0, 0, True, 1, 4],
            [256, 256, 0, 0, True, 1, 4],
            [256, 256, 5, 0, True, 1, 2]
        ]
    },
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [256, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}

MNV4ConvLarge_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 24, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "fused_ib",
        "num_blocks": 1,
        "block_specs": [
            [24, 48, 2, 4.0, True]
        ]
    },
    "layer2": {
        "block_name": "uib",
        "num_blocks": 2,
        "block_specs": [
            [48, 96, 3, 5, True, 2, 4],
            [96, 96, 3, 3, True, 1, 4]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 11,
        "block_specs": [
            [96,  192, 3, 5, True, 2, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 5, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 3, 0, True, 1, 4]
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 13,
        "block_specs": [
            [192, 512, 5, 5, True, 2, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 3, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 3, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4]
        ]
    },
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [512, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}

def mhsa(num_heads, key_dim, value_dim, px):
    if px == 24:
        kv_strides = 2
    elif px == 12:
        kv_strides = 1
    query_h_strides = 1
    query_w_strides = 1
    use_layer_scale = True
    use_multi_query = True
    use_residual = True
    return [
        num_heads, key_dim, value_dim, query_h_strides, query_w_strides, kv_strides,
        use_layer_scale, use_multi_query, use_residual
    ]

MNV4HybridConvMedium_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 32, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "fused_ib",
        "num_blocks": 1,
        "block_specs": [
            [32, 48, 2, 4.0, True]
        ]
    },
    "layer2": {
        "block_name": "uib",
        "num_blocks": 2,
        "block_specs": [
            [48, 80, 3, 5, True, 2, 4],
            [80, 80, 3, 3, True, 1, 2]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 8,
        "block_specs": [
            [80,  160, 3, 5, True, 2, 6],
            [160, 160, 0, 0, True, 1, 2],
            [160, 160, 3, 3, True, 1, 4],
            [160, 160, 3, 5, True, 1, 4, mhsa(4, 64, 64, 24)],
            [160, 160, 3, 3, True, 1, 4, mhsa(4, 64, 64, 24)],
            [160, 160, 3, 0, True, 1, 4, mhsa(4, 64, 64, 24)],
            [160, 160, 3, 3, True, 1, 4, mhsa(4, 64, 64, 24)],
            [160, 160, 3, 0, True, 1, 4]
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 12,
        "block_specs": [
            [160, 256, 5, 5, True, 2, 6],
            [256, 256, 5, 5, True, 1, 4],
            [256, 256, 3, 5, True, 1, 4],
            [256, 256, 3, 5, True, 1, 4],
            [256, 256, 0, 0, True, 1, 2],
            [256, 256, 3, 5, True, 1, 2],
            [256, 256, 0, 0, True, 1, 2],
            [256, 256, 0, 0, True, 1, 4, mhsa(4, 64, 64, 12)],
            [256, 256, 3, 0, True, 1, 4, mhsa(4, 64, 64, 12)],
            [256, 256, 5, 5, True, 1, 4, mhsa(4, 64, 64, 12)],
            [256, 256, 5, 0, True, 1, 4, mhsa(4, 64, 64, 12)],
            [256, 256, 5, 0, True, 1, 4]
        ]
    },
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [256, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}

MNV4HybridConvLarge_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 24, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "fused_ib",
        "num_blocks": 1,
        "block_specs": [
            [24, 48, 2, 4.0, True]
        ]
    },
    "layer2": {
        "block_name": "uib",
        "num_blocks": 2,
        "block_specs": [
            [48, 96, 3, 5, True, 2, 4],
            [96, 96, 3, 3, True, 1, 4]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 11,
        "block_specs": [
            [96,  192, 3, 5, True, 2, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 5, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
            [192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
            [192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
            [192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
            [192, 192, 3, 0, True, 1, 4]
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 14,
        "block_specs": [
            [192, 512, 5, 5, True, 2, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 3, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 3, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4, mhsa(8, 64, 64, 12)],
            [512, 512, 5, 0, True, 1, 4, mhsa(8, 64, 64, 12)],
            [512, 512, 5, 0, True, 1, 4, mhsa(8, 64, 64, 12)],
            [512, 512, 5, 0, True, 1, 4, mhsa(8, 64, 64, 12)],
            [512, 512, 5, 0, True, 1, 4]
        ]
    },
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [512, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}

MODEL_SPECS = {
    "MobileNetV4ConvSmall": MNV4ConvSmall_BLOCK_SPECS,
    "MobileNetV4ConvMedium": MNV4ConvMedium_BLOCK_SPECS,
    "MobileNetV4ConvLarge": MNV4ConvLarge_BLOCK_SPECS,
    "MobileNetV4HybridMedium": MNV4HybridConvMedium_BLOCK_SPECS,
    "MobileNetV4HybridLarge": MNV4HybridConvLarge_BLOCK_SPECS
}


def make_divisible(
        value: float,
        divisor: int,
        min_value: Optional[float] = None,
        round_down_protect: bool = True,
) -> int:
    """
    This function is copied from here
    "https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_layers.py"

    This is to ensure that all layers have channels that are divisible by 8.

    Args:
        value: A `float` of original value.
        divisor: An `int` of the divisor that need to be checked upon.
        min_value: A `float` of  minimum value threshold.
        round_down_protect: A `bool` indicating whether round down more than 10%
        will be allowed.

    Returns:
        The adjusted value in `int` that is divisible against divisor.
    """
    if min_value is None:
        min_value = divisor
    new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if round_down_protect and new_value < 0.9 * value:
        new_value += divisor
    return int(new_value)


def conv_2d(inp, oup, kernel_size=3, stride=1, groups=1, bias=False, norm=True, act=True):
    conv = nn.Sequential()
    padding = (kernel_size - 1) // 2
    conv.add_module('conv', nn.Conv2d(inp, oup, kernel_size, stride, padding, bias=bias, groups=groups))
    if norm:
        conv.add_module('BatchNorm2d', nn.BatchNorm2d(oup))
    if act:
        conv.add_module('Activation', nn.ReLU6())
    return conv


class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride, expand_ratio, act=False, squeeze_excitation=False):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]
        hidden_dim = int(round(inp * expand_ratio))
        self.block = nn.Sequential()
        if expand_ratio != 1:
            self.block.add_module('exp_1x1', conv_2d(inp, hidden_dim, kernel_size=3, stride=stride))
        if squeeze_excitation:
            self.block.add_module('conv_3x3',
                                  conv_2d(hidden_dim, hidden_dim, kernel_size=3, stride=stride, groups=hidden_dim))
        self.block.add_module('red_1x1', conv_2d(hidden_dim, oup, kernel_size=1, stride=1, act=act))
        self.use_res_connect = self.stride == 1 and inp == oup

    def forward(self, x):
        if self.use_res_connect:
            return x + self.block(x)
        else:
            return self.block(x)


class UniversalInvertedBottleneckBlock(nn.Module):
    def __init__(self,
                 inp,
                 oup,
                 start_dw_kernel_size,
                 middle_dw_kernel_size,
                 middle_dw_downsample,
                 stride,
                 expand_ratio
                 ):
        """An inverted bottleneck block with optional depthwises.
        Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py
        """
        super().__init__()
        # Starting depthwise conv.
        self.start_dw_kernel_size = start_dw_kernel_size
        if self.start_dw_kernel_size:
            stride_ = stride if not middle_dw_downsample else 1
            self._start_dw_ = conv_2d(inp, inp, kernel_size=start_dw_kernel_size, stride=stride_, groups=inp, act=False)
        # Expansion with 1x1 convs.
        expand_filters = make_divisible(inp * expand_ratio, 8)
        self._expand_conv = conv_2d(inp, expand_filters, kernel_size=1)
        # Middle depthwise conv.
        self.middle_dw_kernel_size = middle_dw_kernel_size
        if self.middle_dw_kernel_size:
            stride_ = stride if middle_dw_downsample else 1
            self._middle_dw = conv_2d(expand_filters, expand_filters, kernel_size=middle_dw_kernel_size, stride=stride_,
                                      groups=expand_filters)
        # Projection with 1x1 convs.
        self._proj_conv = conv_2d(expand_filters, oup, kernel_size=1, stride=1, act=False)

        # Ending depthwise conv.
        # this not used
        # _end_dw_kernel_size = 0
        # self._end_dw = conv_2d(oup, oup, kernel_size=_end_dw_kernel_size, stride=stride, groups=inp, act=False)

    def forward(self, x):
        if self.start_dw_kernel_size:
            x = self._start_dw_(x)
            # print("_start_dw_", x.shape)
        x = self._expand_conv(x)
        # print("_expand_conv", x.shape)
        if self.middle_dw_kernel_size:
            x = self._middle_dw(x)
            # print("_middle_dw", x.shape)
        x = self._proj_conv(x)
        # print("_proj_conv", x.shape)
        return x


class MultiQueryAttentionLayerWithDownSampling(nn.Module):
    def __init__(self, inp, num_heads, key_dim, value_dim, query_h_strides, query_w_strides, kv_strides,
                 dw_kernel_size=3, dropout=0.0):
        """Multi Query Attention with spatial downsampling.
        Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py

        3 parameters are introduced for the spatial downsampling:
        1. kv_strides: downsampling factor on Key and Values only.
        2. query_h_strides: vertical strides on Query only.
        3. query_w_strides: horizontal strides on Query only.

        This is an optimized version.
        1. Projections in Attention is explict written out as 1x1 Conv2D.
        2. Additional reshapes are introduced to bring a up to 3x speed up.
        """
        super().__init__()
        self.num_heads = num_heads
        self.key_dim = key_dim
        self.value_dim = value_dim
        self.query_h_strides = query_h_strides
        self.query_w_strides = query_w_strides
        self.kv_strides = kv_strides
        self.dw_kernel_size = dw_kernel_size
        self.dropout = dropout

        self.head_dim = key_dim // num_heads

        if self.query_h_strides > 1 or self.query_w_strides > 1:
            self._query_downsampling_norm = nn.BatchNorm2d(inp)
        self._query_proj = conv_2d(inp, num_heads * key_dim, 1, 1, norm=False, act=False)

        if self.kv_strides > 1:
            self._key_dw_conv = conv_2d(inp, inp, dw_kernel_size, kv_strides, groups=inp, norm=True, act=False)
            self._value_dw_conv = conv_2d(inp, inp, dw_kernel_size, kv_strides, groups=inp, norm=True, act=False)
        self._key_proj = conv_2d(inp, key_dim, 1, 1, norm=False, act=False)
        self._value_proj = conv_2d(inp, key_dim, 1, 1, norm=False, act=False)

        self._output_proj = conv_2d(num_heads * key_dim, inp, 1, 1, norm=False, act=False)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x):
        batch_size, seq_length, _, _ = x.size()
        if self.query_h_strides > 1 or self.query_w_strides > 1:
            q = F.avg_pool2d(self.query_h_stride, self.query_w_stride)
            q = self._query_downsampling_norm(q)
            q = self._query_proj(q)
        else:
            q = self._query_proj(x)
        px = q.size(2)
        q = q.view(batch_size, self.num_heads, -1, self.key_dim)  # [batch_size, num_heads, seq_length, key_dim]

        if self.kv_strides > 1:
            k = self._key_dw_conv(x)
            k = self._key_proj(k)
            v = self._value_dw_conv(x)
            v = self._value_proj(v)
        else:
            k = self._key_proj(x)
            v = self._value_proj(x)
        k = k.view(batch_size, self.key_dim, -1)  # [batch_size, key_dim, seq_length]
        v = v.view(batch_size, -1, self.key_dim)  # [batch_size, seq_length, key_dim]

        # calculate attn score
        attn_score = torch.matmul(q, k) / (self.head_dim ** 0.5)
        attn_score = self.dropout(attn_score)
        attn_score = F.softmax(attn_score, dim=-1)

        context = torch.matmul(attn_score, v)
        context = context.view(batch_size, self.num_heads * self.key_dim, px, px)
        output = self._output_proj(context)
        return output


class MNV4LayerScale(nn.Module):
    def __init__(self, init_value):
        """LayerScale as introduced in CaiT: https://arxiv.org/abs/2103.17239
        Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py

        As used in MobileNetV4.

        Attributes:
            init_value (float): value to initialize the diagonal matrix of LayerScale.
        """
        super().__init__()
        self.init_value = init_value

    def forward(self, x):
        gamma = self.init_value * torch.ones(x.size(-1), dtype=x.dtype, device=x.device)
        return x * gamma


class MultiHeadSelfAttentionBlock(nn.Module):
    def __init__(
            self,
            inp,
            num_heads,
            key_dim,
            value_dim,
            query_h_strides,
            query_w_strides,
            kv_strides,
            use_layer_scale,
            use_multi_query,
            use_residual=True
    ):
        super().__init__()
        self.query_h_strides = query_h_strides
        self.query_w_strides = query_w_strides
        self.kv_strides = kv_strides
        self.use_layer_scale = use_layer_scale
        self.use_multi_query = use_multi_query
        self.use_residual = use_residual

        self._input_norm = nn.BatchNorm2d(inp)
        if self.use_multi_query:
            self.multi_query_attention = MultiQueryAttentionLayerWithDownSampling(
                inp, num_heads, key_dim, value_dim, query_h_strides, query_w_strides, kv_strides
            )
        else:
            self.multi_head_attention = nn.MultiheadAttention(inp, num_heads, kdim=key_dim)

        if self.use_layer_scale:
            self.layer_scale_init_value = 1e-5
            self.layer_scale = MNV4LayerScale(self.layer_scale_init_value)

    def forward(self, x):
        # Not using CPE, skipped
        # input norm
        shortcut = x
        x = self._input_norm(x)
        # multi query
        if self.use_multi_query:
            x = self.multi_query_attention(x)
        else:
            x = self.multi_head_attention(x, x)
        # layer scale
        if self.use_layer_scale:
            x = self.layer_scale(x)
        # use residual
        if self.use_residual:
            x = x + shortcut
        return x


def build_blocks(layer_spec):
    if not layer_spec.get('block_name'):
        return nn.Sequential()
    block_names = layer_spec['block_name']
    layers = nn.Sequential()
    if block_names == "convbn":
        schema_ = ['inp', 'oup', 'kernel_size', 'stride']
        for i in range(layer_spec['num_blocks']):
            args = dict(zip(schema_, layer_spec['block_specs'][i]))
            layers.add_module(f"convbn_{i}", conv_2d(**args))
    elif block_names == "uib":
        schema_ = ['inp', 'oup', 'start_dw_kernel_size', 'middle_dw_kernel_size', 'middle_dw_downsample', 'stride',
                   'expand_ratio', 'msha']
        for i in range(layer_spec['num_blocks']):
            args = dict(zip(schema_, layer_spec['block_specs'][i]))
            msha = args.pop("msha") if "msha" in args else 0
            layers.add_module(f"uib_{i}", UniversalInvertedBottleneckBlock(**args))
            if msha:
                msha_schema_ = [
                    "inp", "num_heads", "key_dim", "value_dim", "query_h_strides", "query_w_strides", "kv_strides",
                    "use_layer_scale", "use_multi_query", "use_residual"
                ]
                args = dict(zip(msha_schema_, [args['oup']] + (msha)))
                layers.add_module(f"msha_{i}", MultiHeadSelfAttentionBlock(**args))
    elif block_names == "fused_ib":
        schema_ = ['inp', 'oup', 'stride', 'expand_ratio', 'act']
        for i in range(layer_spec['num_blocks']):
            args = dict(zip(schema_, layer_spec['block_specs'][i]))
            layers.add_module(f"fused_ib_{i}", InvertedResidual(**args))
    else:
        raise NotImplementedError
    return layers


class MobileNetV4(nn.Module):
    def __init__(self, model):
        # MobileNetV4ConvSmall  MobileNetV4ConvMedium  MobileNetV4ConvLarge
        # MobileNetV4HybridMedium  MobileNetV4HybridLarge
        """Params to initiate MobilenNetV4
        Args:
            model : support 5 types of models as indicated in
            "https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py"
        """
        super().__init__()
        assert model in MODEL_SPECS.keys()
        self.model = model
        self.spec = MODEL_SPECS[self.model]

        # conv0
        self.conv0 = build_blocks(self.spec['conv0'])
        # layer1
        self.layer1 = build_blocks(self.spec['layer1'])
        # layer2
        self.layer2 = build_blocks(self.spec['layer2'])
        # layer3
        self.layer3 = build_blocks(self.spec['layer3'])
        # layer4
        self.layer4 = build_blocks(self.spec['layer4'])
        # layer5
        self.layer5 = build_blocks(self.spec['layer5'])
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
    def forward(self, x):
        x0 = self.conv0(x)
        x1 = self.layer1(x0)
        x2 = self.layer2(x1)
        x3 = self.layer3(x2)
        x4 = self.layer4(x3)
        # x5 = self.layer5(x4)
        # x5 = nn.functional.adaptive_avg_pool2d(x5, 1)
        return [x1, x2, x3, x4]


def MobileNetV4ConvSmall():
    model = MobileNetV4('MobileNetV4ConvSmall')
    return model

def MobileNetV4ConvMedium():
    model = MobileNetV4('MobileNetV4ConvMedium')
    return model

def MobileNetV4ConvLarge():
    model = MobileNetV4('MobileNetV4ConvLarge')
    return model

def MobileNetV4HybridMedium():
    model = MobileNetV4('MobileNetV4HybridMedium')
    return model

def MobileNetV4HybridLarge():
    model = MobileNetV4('MobileNetV4HybridLarge')
    return model


if __name__ == "__main__":
    # Generating Sample image
    image_size = (1, 3, 640, 640)
    image = torch.rand(*image_size)

    # Model
    model = MobileNetV4HybridLarge()

    out = model(image)
    for i in range(len(out)):
        print(out[i].shape)


四、手把手教你添加MobileNetv4 

 4.1 修改一

第一步还是建立文件,我们找到如下ultralytics/nn/modules文件夹下建立一个目录名字呢就是'Addmodules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可


4.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。


4.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!


4.4 修改四

添加如下两行代码!!!


4.5 修改五

找到七百多行大概把具体看图片,按照图片来修改就行,添加红框内的部分,注意没有()只是函数名。

        elif m in {自行添加对应的模型即可,下面都是一样的}:
            m = m(*args)
            c2 = m.width_list  # 返回通道列表
            backbone = True


4.6 修改六

下面的两个红框内都是需要改动的。 

        if isinstance(c2, list):
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type


        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type


4.7 修改七

如下的也需要修改,全部按照我的来。

代码如下把原先的代码替换了即可。 

        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print

        save.extend(x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            if len(c2) != 5:
                ch.insert(0, 0)
        else:
            ch.append(c2)


4.8 修改八

修改八和前面的都不太一样,需要修改前向传播中的一个部分, 已经离开了parse_model方法了。

可以在图片中开代码行数,没有离开task.py文件都是同一个文件。 同时这个部分有好几个前向传播都很相似,大家不要看错了,是70多行左右的!!!,同时我后面提供了代码,大家直接复制粘贴即可,有时间我针对这里会出一个视频。

​​

代码如下->

    def _predict_once(self, x, profile=False, visualize=False, embed=None):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5:  # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1]  # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        return x

到这里就完成了修改部分,但是这里面细节很多,大家千万要注意不要替换多余的代码,导致报错,也不要拉下任何一部,都会导致运行失败,而且报错很难排查!!!很难排查!!! 


注意!!! 额外的修改!

关注我的其实都知道,我大部分的修改都是一样的,这个网络需要额外的修改一步,就是s一个参数,将下面的s改为640!!!即可完美运行!!


打印计算量问题解决方案

我们找到如下文件'ultralytics/utils/torch_utils.py'按照如下的图片进行修改,否则容易打印不出来计算量。


注意事项!!! 

如果大家在验证的时候报错形状不匹配的错误可以固定验证集的图片尺寸,方法如下 ->

找到下面这个文件ultralytics/models/yolo/detect/train.py然后其中有一个类是DetectionTrainer class中的build_dataset函数中的一个参数rect=mode == 'val'改为rect=False


五、MobileNetv4 的yaml文件

5.1 MobileNetv4 的yaml文件

复制如下yaml文件进行运行!!! 

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs


# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  # MobileNetV4ConvSmall, MobileNetV4ConvLarge,  MobileNetV4ConvMedium,
  # MobileNetV4HybridMedium, MobileNetV4HybridLarge  支持这五种版本
  - [-1, 1, MobileNetV4ConvSmall, []]  # 4 将左面的MobileNetV4ConvSmall改为上面任意一个即替换对应的MobileNetV4版本
  - [-1, 1, SPPF, [1024, 5]]  # 5

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
  - [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4
  - [-1, 3, C2f, [512]]  # 8

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
  - [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3
  - [-1, 3, C2f, [256]]  # 11 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]] # 12
  - [[-1, 8], 1, Concat, [1]]  # 13 cat head P4
  - [-1, 3, C2f, [512]]  # 14 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]] # 15
  - [[-1, 5], 1, Concat, [1]]  # 16 cat head P5
  - [-1, 3, C2f, [1024]]  # 17 (P5/32-large)

  - [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)

5.2 训练文件的代码

可以复制我的运行文件进行运行。

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO("替换你的yaml文件地址")
    model.load('yolov8n.pt') 
    model.train(data=r'你的数据集的地址',
                cache=False,
                imgsz=640,
                epochs=150,
                batch=4,
                close_mosaic=0,
                workers=0,
                device=0,
                optimizer='SGD'
                amp=False,
                )


六、成功运行记录 

下面是成功运行的截图.


七、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1650907.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Hive读写文件机制

Hive读写文件机制 1.SerDe是什么&#xff1f; SerDe是Hive中的一个概念&#xff0c;代表着“序列化/反序列化” &#xff08;Serializer/Deserializer&#xff09;。 SerDe在Hive中是用来处理数据如何在Hive与底层存储系统&#xff08;例如HDFS&#xff09;之间进行转换的机制…

【Pytorch】3.Transforms的运用

什么是Transforms 在PyTorch中&#xff0c;transforms是用于对数据进行预处理、增强和变换的操作集合。transforms通常用于数据载入和训练过程中&#xff0c;可以包括数据的归一化、裁剪、翻转、旋转、缩放等操作&#xff0c;以及将数据转换成PyTorch可以处理的Tensor格式。 Tr…

长方形盒子能容纳定宽的长方形物体最大长度

问题 已知长方形盒子长度a和宽度b&#xff0c;放入一宽度w的长方形物体&#xff0c;求长方形物体最大长度L。 答案 MS Excel公式如下&#xff08;其中B1a&#xff0c;B2b&#xff0c;B3w&#xff09;&#xff1a; L SQRT(B1^2B2^2)-B1*B2*B3*2/(B1^2B2^2)注意 当求得 L ≤…

91、动态规划-不同的路径

思路&#xff1a; 首先我们可以使用暴力递归解法&#xff0c;无非就是每次向下或者向右看看是否有解法&#xff0c;代码如下&#xff1a; public class Solution {public int uniquePaths(int m, int n) {return findPaths(0, 0, m, n);}private int findPaths(int i, int j,…

JSP企业快信系统的设计与实现参考论文(论文 + 源码)

【免费】JSP企业快信系统.zip资源-CSDN文库https://download.csdn.net/download/JW_559/89277688 JSP企业快信系统的设计与实现 摘 要 计算机网络的出现到现在已经经历了翻天覆地的重大改变。因特网也从最早的供科学家交流心得的简单的文本浏览器发展成为了商务和信息的中心…

VS2022快捷键修改

VS2022快捷键修改 VS2022快捷键修改 VS2022快捷键修改

[Linux][网络][TCP][四][流量控制][拥塞控制]详细讲解

目录 1.流量控制2.拥塞控制0.为什么要有拥塞控制&#xff0c;不是有流量控制么&#xff1f;1.什么是拥塞窗口&#xff1f;和发送窗口有什么关系呢&#xff1f;2.怎么知道当前网络是否出现了拥塞呢&#xff1f;3.拥塞控制有哪些算法&#xff1f;4.慢启动5.拥塞避免6.拥塞发生7.快…

扫描反代Cloudflare的IP 给网站CDN加速 免费制作自己的CDN加速

Cloudflare的CDN系统基本上每个站长都家喻户晓&#xff0c;大家都知道大陆对于搭建网站的审核力度&#xff0c;以至于Cloudflare并没有大陆的泛播节点&#xff0c;有也是只有香港节点。但是这些节点对于海外是加速效果&#xff0c;对于大陆就是一个字慢&#xff0c;晚高峰的情况…

Microsoft 365 for Mac v16.84 office365全套办公软件

Microsoft 365 for Mac是一款功能丰富的办公软件套件&#xff0c;为Mac用户提供了丰富的功能和工具&#xff0c;提高了工作效率和协作能力。Microsoft 365 for Mac是一款专为Mac用户设计的订阅式办公软件套件&#xff0c;旨在提高生产力和效率。 Microsoft 365 for Mac v16.84正…

去中心化金融与Web3:科技驱动的金融革命

随着区块链技术的发展和普及&#xff0c;去中心化金融&#xff08;DeFi&#xff09;作为其重要应用之一&#xff0c;正在成为金融领域的一场革命。结合Web3技术&#xff0c;去中心化金融正在以前所未有的方式重新定义着金融服务和产品的交付方式&#xff0c;推动着金融领域的创…

深入浅出(五)JsonCpp库

JsonCpp库 1. JsonCpp 库1.1 JsonCpp库下载 2. JsonCpp库编译与部署3. C示例 1. JsonCpp 库 JsonCpp 是一个开源的 C 库&#xff0c;用于解析、生成和操作 JSON 数据。它提供了简单易用的 API&#xff0c;使得在 C 程序中处理 JSON 数据变得方便和高效。以下是 JsonCpp 库的一…

如何使用SkyWalking收集分析分布式系统的追踪数据

Apache SkyWalking 是一个开源的观测性工具&#xff0c;用于收集、分析和展示分布式系统的追踪数据。SkyWalking 支持多种语言的追踪&#xff0c;包括但不限于 Java、.NET、Node.js 等。以下是使用 SkyWalking 工具实现数据采集的详细步骤&#xff1a; 1. 下载和安装 SkyWalkin…

开源模型应用落地-CodeQwen模型小试-探索更多使用场景(三)

一、前言 代码专家模型是基于人工智能的先进技术&#xff0c;它能够自动分析和理解大量的代码库&#xff0c;并从中学习常见的编码模式和最佳实践。这种模型可以提供准确而高效的代码建议&#xff0c;帮助开发人员在编写代码时避免常见的错误和陷阱。 通过学习代码专家模型&…

Python高级编程-DJango2

Python高级编程-DJango2 没有清醒的头脑&#xff0c;再快的脚步也会走歪&#xff1b;没有谨慎的步伐&#xff0c;再平的道路也会跌倒。 目录 Python高级编程-DJango2 1.显示基本网页 2.输入框的形式&#xff1a; 1&#xff09;文本输入框 2&#xff09;单选框 3&#xff…

[法规规划|数据概念]金融行业数据资产和安全管理系列文件解析(2)

“ 金融行业在自身数据治理和资产化建设方面一直走在前列。” 一直以来&#xff0c;金融行业由于其自身需要&#xff0c;都是国内开展信息化建设最早&#xff0c;信息化程度最高的行业。 在当今数据要素资产化的浪潮下&#xff0c;除了行业自身自身数据治理和资产化建设方面&am…

最强特征点检测算法 DeDoDe v1/v2

论文地址v1:https://arxiv.org/pdf/2308.08479 论文地址v1:https://arxiv.org/pdf/2404.08928 代码地址:GitHub - Parskatt/DeDoDe: [3DV 2024 Oral] DeDoDe 🎶 Detect, Dont Describe --- Describe, Dont Detect, for Local Feature Matching 实测确实牛X! DeDoDeV1 关…

网络安全之静态路由

以下是一个静态路由的拓扑图 Aping通B&#xff0c;C可以ping通D。 路由器转发数据需要路由表&#xff0c;但仍可以Aping通B&#xff0c;C可以ping通D&#xff0c;是因为产生了直连路由&#xff1a;产生的条件有两个&#xff0c;接口有IP&#xff0c;接口双up(物理up&#xff…

OpenGrok使用

以前都是用的find&#xff0c;或者VScode里面的浏览&#xff0c;但是到了Android这个就不行了&#xff0c;代码太多了。都在用OpenGrok&#xff0c;所以俺也用一下。 这里有两个步骤&#xff0c;一个是安装&#xff0c;是一个使用。 1 安装 大概看了一下&#xff0c;安装是to…

数据结构-线性表-应用题-2.2-9

线性表&#xff08;a1,a2,a3,...,an&#xff09;中的元素递增有序且按顺序存储于计算机内。要求设计一个算法&#xff0c;用最少的时间在表中查找数值为x的元素&#xff0c;若找到&#xff0c;则将其与后继元素位置相交换&#xff0c;若找不到&#xff0c;则将其插入表中并使表…

vue3+arco design通过动态表单方式实现自定义筛选

目录 1.说明 2.示例 3.运行截图 ​编辑 4.总结 1.说明 (1) 本文主要实现通过动态表单的方式实现自定义筛选的功能&#xff0c;用户可以自己添加筛选的项目&#xff0c;筛选条件及筛选内容。 (2) 每个项目的筛选包含筛选项目&#xff0c;筛选条件&#xff0c;筛选方式及筛选…