UDP多播

news2024/11/27 18:35:04

1 、多播的概念

多播,也被称为组播,是一种网络通信模式,其中数据的传输和接收仅在同一组内进行。多播具有以下特点:

  1. 多播地址标识一组接口:多播使用特定的多播地址,该地址标识一组接收数据的接口。发送到多播地址的数据包将被传递给属于该组的所有接口。

  2. 适用于广域网使用:与广播通信通常局限于局域网内不同,多播可以用于广域网环境。这使得多播成为一种在大型网络中分发数据的高效方式,因为它只将数据发送给需要的接收者。

  3. 在IPv4中是可选的:在IPv4网络中,多播支持是可选的,这意味着并非所有网络都支持多播。然而,在IPv6中,多播是强制要求的,所有IPv6网络都必须支持多播。

多播地址

IPv4的D类地址是多播地址

十进制:224.0.0.1~239.255.255.254

十六进制:E0.00.00.01~EF.FF.FF.FE

多播地址向以太网MAC地址的映射

 

2 、多播工作过程 

比起广播,多播具有可控性,只有加入多播组的接收者才可以接收数据,否则接收不到

 3 、多播流程

发送者

  1. 创建套接字:使用socket()函数创建一个数据报套接字(SOCK_DGRAM),以支持UDP通信。
  2. 发送数据:使用sendto()函数向多播地址发送数据。多播地址是一个特殊的IP地址,用于表示一组接收者。

接收者

  1. 创建套接字:与发送者一样,使用socket()函数创建一个数据报套接字(SOCK_DGRAM)。
  2. 加入多播组:使用setsockopt()函数将套接字设置为加入多播组。这通常需要设置IP_ADD_MEMBERSHIP选项,并提供要加入的多播组的地址和接口。
  3. 绑定套接字:使用bind()函数将套接字与一个本地地址和端口号绑定。这将使套接字能够接收发送到该地址和端口的数据。
  4. 接收数据:使用recvfrom()函数接收发送到绑定地址和端口的数据。该函数将返回发送者的信息,包括其IP地址和端口号。

4 、多播地址结构体

在IPv4因特网域(AF_INET)中,多播地址结构体用如下结构体ip_mreq表示

5 、多播套接口选项 

#include <sys/socket.h>

int setsockopt(int socket, int level, int option_name,
               const void *option_value, socklen_t option_len);

功能:设置一个套接字的选项(属性)。

参数:

  • socket:文件描述符,表示要设置选项的套接字。
  • level:协议层次,指定要设置选项的协议层次。对于多播组的操作,使用IPPROTO_IP表示IP层次。
  • option_name:选项的名称。对于加入多播组,使用IP_ADD_MEMBERSHIP选项。
  • option_value设置的选项的值。对于IP_ADD_MEMBERSHIP选项,需要提供一个指向struct ip_mreq结构的指针。该结构包含以下两个字段:
    • imr_multiaddr:表示要加入的多播组的IP地址。
    • imr_interface:表示要接收多播数据的主机接口地址。通常使用INADDR_ANY表示任意主机地址,系统会自动选择合适的接口。
  • option_len:表示option_value的长度,即struct ip_mreq结构的大小。

返回值:

  • 成功:返回0。
  • 失败:返回-1,并设置errno以指示错误原因。

通过调用setsockopt()函数并将option_name设置为IP_ADD_MEMBERSHIP,接收者可以加入指定的多播组,并接收发送到该多播组的数据。

6、 加入多播组示例 

发送者: 

#include <stdio.h> //printf
#include <stdlib.h> //exit
#include <sys/types.h>
#include <sys/socket.h> //socket
#include <netinet/in.h> //sockaddr_in
#include <arpa/inet.h> //htons inet_addr
#include <unistd.h> //close
#include <string.h>

int main(int argc, char const *argv[])
{
    if(argc < 3)
    {
        fprintf(stderr, "Usage: %s <ip> <port>\n", argv[0]);
        exit(1);
    }

    int sockfd; //文件描述符
    struct sockaddr_in groupcastaddr; //服务器网络信息结构体
    socklen_t addrlen = sizeof(groupcastaddr);

    //第一步:创建套接字
    if((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
    {
        perror("fail to socket");
        exit(1);
    }

    //第二步:填充组播信息结构体
    groupcastaddr.sin_family = AF_INET;
    groupcastaddr.sin_addr.s_addr = inet_addr(argv[1]); //224.x.x.x - 239.x.x.x
    groupcastaddr.sin_port = htons(atoi(argv[2]));

    //第三步:进行通信
    char buf[128] = "";
    while(1)
    {
        fgets(buf, sizeof(buf), stdin);
        buf[strlen(buf) - 1] = '\0';   //"hello\n"-->"hello\0"

        if(sendto(sockfd, buf, sizeof(buf), 0, (struct sockaddr *)&groupcastaddr, addrlen) < 0)
        {
            perror("fail to sendto");
            exit(1);
        }
    }

    return 0;
}

它实现了一个多播发送者,可以向特定的多播IP地址和端口发送数据。在运行该程序时,需要提供两个命令行参数:要发送数据的多播IP地址和端口号。程序会创建一个UDP套接字,并填充一个包含目标多播地址和端口的结构体。然后,程序会进入一个无限循环,从标准输入读取数据,并将数据通过sendto函数发送到指定的多播地址和端口。需要注意的是,多播地址的范围是224.x.x.x到239.x.x.x。 

接收者:

1 #include <stdio.h> //printf
 2 #include <stdlib.h> //exit
 3 #include <sys/types.h>
 4 #include <sys/socket.h> //socket
 5 #include <netinet/in.h> //sockaddr_in
 6 #include <arpa/inet.h> //htons inet_addr
 7 #include <unistd.h> //close
 8 #include <string.h>
 9
 10 int main(int argc, char const *argv[])
 11 {
 12    if(argc < 3)
 13    {
 14        fprintf(stderr, "Usage: %s <ip> <port>\n", argv[0]);
 15        exit(1);
 16    }
 17
 18    int sockfd; //文件描述符
19    struct sockaddr_in groupcastaddr; 
20    socklen_t addrlen = sizeof(groupcastaddr);
 21
 22    //第一步:创建套接字
23    if((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
 24    {
 25        perror("fail to socket");
 26        exit(1);
 27    }
 28
 29    //第二步:设置为加入多播组
30    struct ip_mreq mreq;
 31    mreq.imr_multiaddr.s_addr = inet_addr(argv[1]);
 32    mreq.imr_interface.s_addr = INADDR_ANY;
 33    if(setsockopt(sockfd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(m
 req)) < 0)
 34    {
 35        perror("fail to setsockopt");
 36        exit(1);
 37    }
 38
 39    //第三步:填充组播信息结构体
40    groupcastaddr.sin_family = AF_INET;
 41    groupcastaddr.sin_addr.s_addr = inet_addr(argv[1]);  //224.x.x.x ‐ 2
 39.x.x.x
 42    groupcastaddr.sin_port = htons(atoi(argv[2]));
 43
 44    //第四步:将套接字与广播信息结构体绑定
45    if(bind(sockfd, (struct sockaddr *)&groupcastaddr, addrlen) < 0)
 46    {
 47        perror("fail to bind");
 48        exit(1);
 49    }
 50
 51    //第五步:进行通信
52    char text[32] = "";
 53    struct sockaddr_in sendaddr;
 54
 55    while(1)
 56    {
 57        if(recvfrom(sockfd, text, sizeof(text), 0, (struct sockaddr *)&s
 endaddr, &addrlen) < 0)
58        {
 59            perror("fail to recvfrom");
 60            exit(1);
 61        }
 62        
63        printf("[%s ‐ %d]: %s\n", inet_ntoa(sendaddr.sin_addr), ntohs(se
 ndaddr.sin_port), text);
 64    }
 65
 66    return 0;
 67 }

它实现了一个多播接收者,可以接收来自特定多播IP地址和端口的数据。在运行该程序时,需要提供两个命令行参数:要接收数据的多播IP地址和端口号。程序会创建一个UDP套接字,并使用setsockopt函数将套接字设置为加入指定的多播组。然后,程序会填充一个包含目标多播地址和端口的结构体,并将套接字绑定到该结构体上。接下来,程序会进入一个无限循环,使用recvfrom函数接收数据,并将数据的来源IP地址、端口号和内容打印出来。需要注意的是,多播地址的范围是224.x.x.x到239.x.x.x。

 执行结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1650455.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

现场面试题

这里写目录标题 1.sql1.1 只保留学生的最新成绩1.2 统计通话号码数1.3 更新地址 2.基础题2.1 请求序列第N位的值: 0, 1, 1, 2, ,3, 5, 8, 13, 21, 34.....第N位的值2.2 请写一段java代码&#xff0c;输出存在重复字母的单词 1.sql 1.1 只保留学生的最新成绩 表student中记录学…

每日一题(PTAL2):列车调度--贪心+二分

选择去维护一个最小区间 代码1&#xff1a; #include<bits/stdc.h> using namespace std; int main() {int n;cin>>n;int num;vector <int> v;int res0;for(int i0;i<n;i){cin>>num;int locv.size();int left0;int rightv.size()-1;while(left<…

C++变量的作用域与存储类型

一 变量的作用域和存储类型 1 变量的作用域(Scope) 指在源程序中定义变量的位置及其能被读写访问的范围分为局部变量(Local Variable)和全局变量(Global Variable) 1&#xff09;局部变量(Local Variable) 在语句块内定义的变量 形参也是局部变量 特点&#xff1a; 生存期是…

AIGC-3D数字人技术:高效助推各行业数字化水平升级

从“互联网”到“人工智能”&#xff0c;数字员工作为一种全新的交互形式&#xff0c;对企业有着重要的作用&#xff0c;企业、品牌通过数字人的AI语音交互、AI播报等核心功能&#xff0c;可以有效推动企业提升数字水平。 作为3D、AI虚拟数字人技术服务商及方案提供商&#xff…

为什么都喜欢用串口通讯?那为什么还用RS485,SPI和I2C?

1、为什么都喜欢用串口通讯&#xff1f; 之前在做单片机产品的时候&#xff0c;用的最多的就是串口通讯&#xff0c;凡是单片机的外设&#xff0c;优先选用带串口功能的&#xff0c;比如蓝牙模块&#xff0c;WIFI模块&#xff0c;4G模块&#xff0c;电表和显示屏等等。 为什么都…

科研学习|可视化——ggplot2版本的网络可视化

ggplot2是R语言中一个非常流行的数据可视化包&#xff0c;它也可以用于网络可视化。以下是三个基于ggplot2并专门用于网络可视化的R包&#xff1a; ggnet2: 这个包的使用方法与传统的plot函数相似&#xff0c;易于使用。更多信息可在其官方页面查看&#xff1a;ggnet2 geomnet…

KUKA机器人故障报警信息处理(一)

1、KSS00276 机器人参数不等于机器人类型 ①登录专家模式 ②示教器操作&#xff1a;【菜单】—【显示】—【变量】—【单个】 ③名称输入&#xff1a;$ROBTRAFO[] 新值&#xff1a;TRAFONAME[] ④点击【设定值】。 2、电池报警&#xff1a; ①“充电电池警告-发现老化的蓄电池…

【管理咨询宝藏93】大型制造集团数字化转型设计方案

【管理咨询宝藏93】大型制造集团数字化转型设计方案 【格式】PDF版本 【关键词】国际咨询公司、制造型企业转型、数字化转型 【核心观点】 - 235页大型制造型集团数字化转型方案设计&#xff01;细节非常详尽&#xff0c;图表丰富&#xff01; - 系统架构必须采用成熟、具有国…

Mybatis进阶4-权限管理

权限管理 1.权限 //相当于 职责 2.用户 //相当于 职员&#xff08;职员就职于一个职位&#xff09; 3.角色 //相当于 职位&#xff08;有多个职责&#xff09; 权限管理基础表&#xff1a;权限表&#xff0c;用户表&#xff0c;角色表 问题1&#xff1a;…

雷蛇笔记本数据丢失怎么恢复?提供详细指南

在数字化时代&#xff0c;笔记本电脑已成为我们日常生活和工作中不可或缺的一部分。然而&#xff0c;尽管技术不断进步&#xff0c;数据丢失的风险仍然存在。雷蛇&#xff08;Razer&#xff09;作为一家知名的电脑硬件制造商&#xff0c;其笔记本电脑也难免会遇到这样的问题。当…

Nextjs+Antd5.0打造面向AI的文档可视化引擎(最新更新)

hello&#xff0c;大家好&#xff0c;我是徐小夕。之前和大家分享了很多可视化&#xff0c;零代码和前端工程化的最佳实践&#xff0c;今天继续分享一下我开发的文档引擎 Nocode/WEP 的最新更新。 issue收集&#xff1a; https://github.com/MrXujiang/Nocode-Wep/issues 演示地…

基于51单片机ESP8266wifi控制机器人—送餐、快递

基于51单片机wifi控制机器人 &#xff08;程序&#xff0b;原理图&#xff0b;PCB&#xff0b;设计报告&#xff09; ​功能介绍 具体功能&#xff1a; 1.L298N驱动电机&#xff0c;机器人行走&#xff1b; 2.装备红外线感应检测到周围环境&#xff0c;进行行程判断&#xf…

STM32——基础篇

技术笔记&#xff01; 一、初识STM32 1.1 ARM内核系列 A 系列&#xff1a;Application缩写。高性能应用&#xff0c;比如&#xff1a;手机、电脑、电视等。 R 系列&#xff1a;Real-time缩写。实时性强&#xff0c;汽车电子、军工、无线基带等。 M 系列&#xff1a;Microcont…

抖音小店——服务体验,决定店铺生死的关键

哈喽~我是电商月月 新手做抖音小店&#xff0c;是不是觉得“选品”是整个抖店运营过程中最重要的操作 选品在前期确实非常重要&#xff0c;新店铺没有销量&#xff0c;没有评分本身就不好出单&#xff0c;你又不是厂家可以把价格压到最低做促销转化&#xff0c;想出单就只能把…

内容安全(IPS入侵检测)

入侵检测系统&#xff08; IDS &#xff09;---- 网络摄像头&#xff0c;侧重于风险管理&#xff0c;存在于滞后性&#xff0c;只能够进行风险发现&#xff0c;不能及时制止。而且早期的IDS误报率较高。优点则是可以多点进行部署&#xff0c;比较灵活&#xff0c;在网络中可以进…

分布式与一致性协议之ZAB协议(五)

ZAB协议 ZAB集群如何从故障中恢复 如果我们想把ZAB集群恢复到正常状态&#xff0c;那么新领导者就必须确立自己的领导关系&#xff0c;成为唯一有效的领导者&#xff0c;然后作为主节点"领导"各备份节点一起处理读写请求 如何确立领导关系 前面提到&#xff0c;选…

选择了软件测试,你后悔吗?

记得在求职的时候&#xff0c;面试官经常问我&#xff1a;“为什么要选择软件测试工作?”而我也会经常说一堆自己有的没的优势去应付。 工作这么久了&#xff0c;也不再浮躁&#xff0c;静下心来回忆当初选择软件测试工作的历程&#xff0c;也是对自己职业生涯的一次回顾。 下…

揭秘前端开发的“薪”机遇

众所周知&#xff0c;华为开发者大会2023&#xff0c;宣布不再兼容安卓&#xff0c;同时宣布了“鸿飞计划”&#xff0c;欲与iOS、安卓在市场三分天下&#xff0c;这对中国国产操作系统而言&#xff0c;具有划时代的意义。 最近有不少前端的开发者来咨询鸿蒙开发&#xff0c;今…

Partisia Blockchain 生态首个zk跨链DEX现已上线

在5月1日&#xff0c;由Partisia Blockchain与zkCross创建合作推出的Partisia zkCrossDEX在Partisia Blockchain生态正式上线。Partisia zkCrossDEX是Partisia Blockchain上重要的互操作枢纽&#xff0c;其融合了zkCross的zk技术跨链互操作方案&#xff0c;并利用Partisia Bloc…

Cesium学习——渲染、加载GeoJSON、调整位置

渲染概述 作者&#xff1a;当时明月在曾照彩云归 出处&#xff1a;https://www.cnblogs.com/jiujiubashiyi/p/17124717.html 1. 引言 Cesium是一款三维地球和地图可视化开源JavaScript库&#xff0c;使用WebGL来进行硬件加速图形&#xff0c;使用时不需要任何插件支持&#xf…