AIGC-音频生产十大主流模型技术原理及优缺点

news2024/11/23 11:44:48

    音频生成(Audio Generation)指的是利用机器学习和人工智能技术,从文本、语音或其他源自动生成音频的过程。

    音频生成行业是AIGC技术主要渗透的领域之一。AI音频生成行业是指利用人工智能技术和算法来生成音频内容的领域。按照输入数据类型不同可以分为:根据文字信息、音频信息、肌肉震动及视觉内容等数据进行的声音合成;按照场景的不同,可以分为非流式语音生成和流式语音生成。根据应用领域的不同,可以将AI音频生成分为语音合成、音乐生成、语音识别三个领。具体来说,语音合成技术主要应用于语音助手、语音广告、残障人士辅助工具等;音乐生成技术主要应用于音乐创作、游戏音效、电影配乐等领域;语音识别主要应用于语音搜索、智能客服、语音翻译等领域。其中,语音合成是该行业的主要应用领域,占据了近70%的市场份额。

    决定音频生成效果的关键因素是生成速度、分词的准确程度、合成语音的自然度以及语音是否有多样化的韵律和表现力。

1、技术发展的关键阶段

  • 早期的音频合成:采用规则式方法,通过预录制的音素片段组合生成语音,这种方法生成的语音生硬、缺乏自然流畅感。
  • 参数化音频合成:引入参数化建模方法,使用数学模型描述语音信号,通过调整参数生成语音。这种方法提高了合成语音的自然度,但生成速度较慢。
  • 统计音频合成:采用统计学习技术,通过机器学习训练模型自动学习语音规律,实现基于大量语音数据的语音合成,生成的语音更加自然流畅。
  • 神经网络音频合成:利用深度神经网络强大的拟合能力,通过端到端的训练实现更高质量的语音合成。常见的网络结构有循环神经网络、变分自编码器、生成对抗网络等。
  • 语音合成技术与其他领域融合:语音合成技术与机器翻译、情感计算、虚拟助手等领域技术深度融合,实现语音合成与语音交互、自然语言理解等功能的一体化。
  • 多模态音频合成:实现语音与其他模式的结合,如文本、图像、视频等,实现语音与多模态信息的融合,丰富语音交互形式。
  • 自适应音频合成:引入自适应机制,使语音合成系统能够根据用户反馈实时调整参数,实现个性化语音合成。

2、主流模型实现原理及优缺点

2.1 Tacotron系列(Google开源)

       谷歌开发的Tacotron系列,主要用于文本到语音(TTS)的转换。这些模型基于端到端的序列到序列(Seq2Seq)架构,能够直接从文本中生成自然听起来的语音。Tacotron系列是基于神经网络的自回归语音合成模型,通过编码器-解码器结构,将文本转化为语音波形。Tacotron2引入了WaveNet作为解码器,提高了语音的自然度和质量。

2.1.1 技术原理及架构图

  • Tacotron模型的核心是一个带有注意力机制的seq2seq模型。这意味着它可以处理输入的文本序列,并生成对应的语音特征,如声谱图。
  • 在Tacotron模型中,首先使用一个编码器(encoder)来理解输入的文本数据,然后通过一个基于注意力的解码器(decoder)来预测或生成语音的声谱图。最后,通过后处理网络(post-processing network)进一步优化生成的声谱图,以便更好地反映实际的语音特征。
  • Tacotron2引入了改进的WaveNet作为声码器,用于从预测的声谱图中生成时域波形样本,这使得模型在语音质量上有所提升。

2.1.2 优点及缺点

    Tacotron系列模型,包括原始的Tacotron和其改进版本Tacotron2,是基于深度学习的端到端语音合成模型。

Tacotron系列优点:

端到端学习: Tacotron系列模型实现了从文本到语音的直接转换,无需复杂的特征工程,这简化了流程并减少了工程压力。

性能优越: 在frame-level合成语音方面,Tacotron系列模型表现出色,能够处理各种起始点的训练。

自然音质: 经过改良后,Tacotron2的输出非常接近人类的自然语音。

减少误差累积: 相对于传统系统,Tacotron通过避免多模块误差累计,提高了合成质量。

Tacotron系列缺点:

RNN的问题: 原始的Tacotron使用RNN模型,存在短期记忆和梯度消失的问题,这影响了信号合成效果。

端到端不彻底: 尽管Tacotron系列模型在很多方面表现出色,但仍有评论指出其端到端学习并不完全彻底,可能会影响最终的输出质量。

计算资源需求高: 虽然Tacotron可以直接将文本转换为语音波形,但Wavenet作为其组成部分,其训练过程需要大量的计算资源。

2.2 Transformer-TTS(Google开源)

     Transformer-TTS利用Transformer的注意力机制,通过编码器-解码器结构实现语音合成。该模型相比Tacotron系列有更高的并行计算能力和更好的长距离依赖建模。

2.2.1 技术原理及架构图

     Transformer-TTS主要通过将Transformer模型与Tacotron2系统结合来实现文本到语音的转换。在这种结构中,原始的Transformer模型在输入阶段和输出阶段进行了适当的修改,以更好地处理语音数据。具体来说,Transformer-TTS利用自注意力机制来处理序列数据,这使得模型能够并行处理输入序列,从而提高训练效率。此外,Transformer-TTS还采用了自回归误差方法来优化模型性能。

2.2.2 优点及缺点

优点:

  • 训练速度:与基于RNN的模型相比,Transformer-TTS显著提高了训练速度。这是因为Transformer允许并行处理输入序列,而不是依赖于逐步前向传播。
  • 性能提升:在多个严格的真人测试中,Transformer-TTS显示出了最先进的性能。
  • 并行训练:由于移除了RNN结构,Transformer-TTS可以实现真正的并行训练,这进一步加快了训练过程。

缺点

  • 生成质量问题:尽管Transformer-TTS在训练速度和性能上有所提升,但在某些情况下,其生成的语音质量可能不如其他一些模型。例如,与FastSpeech2相比,Transformer-TTS在生成效果上存在不足。
  • 推理阶段的依赖性:虽然Transformer-TTS在训练阶段表现出色,但在推理阶段,它仍然需要依赖于先前生成的mel-spectrogram帧来生成当前时刻的输出,这可能限制了其灵活性和适应性。

2.3 FastSpeech系列(微软&浙大开源)

FastSpeech通过引入速度控制机制,实现快速可控的语音合成,同时保持了较高的语音质量。该模型通过预测语音持续时间,实现了快速的语音合成。

详见另外一篇文章:FastSpeech 2整体结构、模块配置及优化

2.4 Whisper(OpenAI开源)

      OpenAI开发并开源的一个自动语音识别系统,主要用于将语音转换为文本。Whisper模型采用了Transformer序列到序列模型,这是一种深度学习技术,特别适合处理序列数据,如语音信号。在这个架构中,输入的音频被分割成30秒的片段,并转换为log-Mel频谱图,然后输入到编码器中。解码器则预测相应的文本标题,并使用特殊的令牌来指导单一模型执行任务。

2.4.1 技术原理及架构

Whisper自动语音识别系统的技术原理主要基于深度学习和神经网络技术。它通过训练大量的音频数据,让模型学习到从音频波形中提取语音特征的能力。具体来说,Whisper采用了编码器-解码器的架构,这是一种端到端的方法,可以直接将语音信号转化为文本。

2.4.2优点及缺点

优点

多语言支持:Whisper支持多种语言,包括但不限于98种语言,这使得它在跨语言交流和多语言应用场景中具有很大的优势。

高准确性:基于深度学习技术,Whisper展现出高准确性的语音识别能力。它已经在真实数据以及其他模型上使用的数据以及弱监督下进行了训练,显示出惊人的准确性。

多任务学习能力:Whisper不仅能执行语音识别,还能进行语音翻译和语言识别等多任务处理,这增加了其应用的灵活性和实用性。

缺点:

资源消耗:大规模的深度学习模型需要大量的计算资源,这可能导致运行成本较高。

对复杂环境的适应性问题:虽然Whisper在多种语言和复杂场景中表现出色,但在极端噪音或非标准发音的情况下,其准确率可能会受到影响。

依赖于大量标注数据:为了达到高准确率,Whisper需要在大规模的多样化音频数据集上进行训练,这意味着需要大量的人工标注工作。

局限于特定领域的应用:虽然Whisper的多语言支持使其在全球范围内有广泛的应用前景,但其性能可能在特定的行业或专业领域(如法律、医学)中需要进一步优化和调整。

2.5 WavLM(微软&Azure开源)

   WavLM(WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing)是微软提出的一个大规模自监督预训练模型,主要用于全栈语音处理任务。该模型基于HuBERT框架构建,专注于口语内容建模和说话人身份保护。

2.5.1 技术原理及架构

架构基础:WavLM模型沿用了HuBERT的思想,并采用了Kmeans方法将连续信号转换成离散标签,这些标签作为模型训练的目标16。此外,WavLM遵循了wav2vec 2.0的设定。

预训练任务:在预训练阶段,WavLM同时进行掩码语音预测和去噪处理。这不仅保持了通过掩码语音预测来建模语音内容的能力,还通过语音去噪提高了模型在非ASR(自动语音识别)任务上的潜力。

特征提取与应用:WavLM引入了噪声合成声音,并预测掩码部分的标签。在保持与HuBERT和wav2vec2相当的ASR性能的同时,WavLM能够抽取通用的音频特征,这些特征可以应用于多种任务。

技术创新:WavLM还采用了门控相对位置偏差(gated relative position bias)来优化Transformer模型的性能,这有助于更好地处理序列数据中的位置信息。

数据和性能:WavLM在94,000小时无监督的英文数据上进行训练,并在多个语音相关的数据集上取得了最先进的成绩。该模型已经开源,并被集成到了Hugging Face等平台中。

2.5.2 WavLM优点及缺点

    WavLM优点

高效的自监督预训练:WavLM采用了大规模的自监督预训练方法,能够在没有人工标注的情况下,从大量未标记数据中学习到丰富的语音特征和知识2。

提升多种语音处理任务的性能:研究表明,WavLM在多个代表性的语音处理基准测试中表现出色,显著提高了各种语音处理任务的性能。特别是在低资源小语种的语音识别任务中,WavLM显示出了显著的优势

适应性强:WavLM不仅适用于传统的语音识别任务,还能通过其框架“Denoising Masked Speech Modeling”扩展到17个不同的语音处理任务,显示出极好的通用性和适应性。

WavLM模型缺点:

依赖大量数据:虽然WavLM能够从大量数据中学习,但这也意味着它需要大量的数据来进行有效的预训练,这可能限制了其在数据稀缺环境中的应用。

局部关联问题:尽管WavLM能够生成包含内容信息和说话者信息的高维SSL特征,但这种方法可能导致模型过度关注局部特征,而忽视了整体语境中的重要信息。

人工标签的稀疏性:由于WavLM是基于自监督学习,其训练过程中依赖于大量未标记的数据。这就要求必须有足够的标记数据来进行微调,以确保模型能够准确地理解和执行具体任务。

2.6 文心ERNIE-SAT (百度部分开源)

百度自研的文心大模型的一个变体,专注于语音和语言的跨模态处理。该模型能够同时处理中文和英文,采用了语音-文本联合训练的方式,在多语言数据集上进行训练,使得合成的声音更加自然。

ERNIE-SAT模型的具体技术架构主要基于多任务学习策略,结合了跨语言和跨说话人的文本到语音转换技术。ERNIE-SAT模型在设计上采用了端到端的语音和文本联合预处理框架,这一框架能够联合学习语音和文本数据,从而提高模型在跨语言语音合成中的性能。

2.7 DeepVoice系列(百度未开源)

百度AI研发的一个高质量语音转文本系统,完全由深度神经网络构建。该系统的主要功能是将文本转换为语音,其技术原理基于深度学习,特别是在处理音素边界定位、字素到音素的转换、音素时长预测、基频预测和音频合成等方面

2.8 AudioLM(Google未开源)

谷歌的AudioLM采用了语言建模的方法来处理音频数据。这个模型能够根据输入的音频片段或提示,生成与之风格一致的高质量音频内容。

AudioLM的核心技术包括两个主要的分词器:Soundstream和w2v-BERT。Soundstream用于计算声学标记,而w2v-BERT则用于计算语义标记。这种结合使得AudioLM不仅能捕捉到音频的细节,还能理解其背后的语义信息,从而生成连贯且具有长期一致性的音频输出。

2.9 Make-an-audio(浙大、北大及火山语音未开源)

浙江大学、北京大学和火山语音共同开发的一种先进的文本到音频生成系统。该模型能够将自然语言描述转换为音频输出,支持多种输入模态,如文本、音频、图像和视频。

Make-An-Audio模型的技术原理主要基于深度学习和文本到音频的生成技术。该模型通过分析大量的音效数据,学习音效的生成规则和特点,从而能够根据用户输入的简单文字描述自动生成相应的音效。

用户可以通过简单的操作在官方网站上输入文字描述,然后点击“生成”按钮来使用这个模型。模型会自动合成音效,并提供多种风格供选择。此外,该模型还展示了在客观和主观基准评估中的先进性能,特别是在对比语言-音频预训练(CLAP)表示方面表现突出

2.10 SMART-TTS(科大讯飞 未开源)

科大讯飞研究院提出的一个语音合成框架,其核心原理在于将语音合成的学习过程进行模块化拆解,并通过预训练加强各个模块的学习能力。这种方法与传统的直接从文本到声学特征的学习方式不同,更加注重于模块间的协同和优化。

3、影响模型应用的关键因素

  • 语音质量和自然度:高质量的语音是语音合成应用的关键要求,模型需要能够生成自然流畅的语音。
  • 生成速度:实时或接近实时的语音合成速度对于交互式应用至关重要。生成速度较快的模型具有更好的交互性。
  • 计算资源消耗:模型的计算资源消耗直接影响应用成本。资源消耗较少的模型具有更好的经济性。
  • 训练数据需求:高质量语音的生成需要大量标注良好的训练数据。数据获取的难易程度直接影响模型效果。
  • 模型大小和复杂度:模型大小和复杂度直接影响应用难度,较小的模型更容易部署到各种设备上。
  • 场景适应性:不同的应用场景对语音合成有不同的要求,需要选择合适的模型以适应特定场景。
  • 技术支持:模型的技术支持和维护也是应用的关键,直接关系到应用的稳定性和可持续性。
  • 知识产权问题:在使用第三方模型时,需要关注潜在的知识产权问题,以避免法律纠纷。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1646890.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

multipass launch失败:launch failed: Remote ““ is unknown or unreachable.

具体问题情况如下: C:\WINDOWS\system32>multipass launch --name my-vm 20.04launch failed: Remote "" is unknown or unreachable.​C:\WINDOWS\system32>multipass lsNo instances found.​C:\WINDOWS\system32>multipass startlaunch fail…

[信息收集]-端口扫描--Nmap

端口号 端口号的概念属于计算机网络的传输层,标识这些不同的应用程序和服务而存在的。通过使用不同的端口号,传输层可以将接收到的数据包准确地传递给目标应用程序。 80:HTTP(超文本传输协议)用于Web浏览器访问网页 …

【论文泛读】如何进行动力学重构? 神经网络自动编码器结合SINDy发现数据背后蕴含的方程

这一篇文章叫做 数据驱动的坐标发现与方程发现算法。 想回答的问题很简单,“如何根据数据写方程”。 想想牛顿的处境,如何根据各种不同物体下落的数据,写出万有引力的数学公式的。这篇文章就是来做这件事的。当然,这篇论文并没有…

一文带你了解多数企业系统都在用的 RBAC 权限管理策略

前言 哈喽你好呀,我是 嘟老板,今天我们来聊聊几乎所有企业系统都离不开的 权限管理,大家平时在做项目开发的时候,有没有留意过权限这块的设计呢?都是怎样实现的呢?如果现在脑子里对于这块儿不够清晰&#…

作为全栈工程师,如何知道package.json中需要的依赖分别需要什么版本去哪里查询?

作为前端工程师,当你需要确定package.json中依赖的具体版本时,可以通过以下方法来查询: NPM 官网查询: 访问 npm 官网,在搜索框中输入你想查询的包名。在包的页面上,你可以看到所有发布过的版本号&#xff…

[leetcode] 63. 不同路径 II

文章目录 题目描述解题方法动态规划java代码复杂度分析 相似题目 题目描述 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为…

PHP ASCII码的字符串用mb_convert_encoding 转utf-8之后不生效

检测数据类型是ascii,转码之后再检测还是utf-8没生效 private function toUTF8($str){$encode mb_detect_encoding($str, array("ASCII",UTF-8,"GB2312","GBK",BIG5,LATIN1));if ($encode ! UTF-8) {$str1 mb_convert_encoding($str, UTF-8, …

原生轮播图(下一页切换,附带指示器)

下面是目录结构&#xff1a; index.html <!DOCTYPE html> <html lang"zh"><head><meta charset"UTF-8" /><meta http-equiv"X-UA-Compatible" content"IEedge" /><meta name"viewport" c…

迅雷永久破解

链接&#xff1a;https://pan.baidu.com/s/1ZGb1ljTPPG3NFsI8ghhWbA?pwdok7s 下载后解压 以管理员身份运行绿化.bat&#xff0c;会自动生成快捷方式&#xff0c;如果没有可以在program中运行Thunder.exe

车牌检测识别功能实现(pyqt)

在本专题前面相关博客中已经讲述了 pyqt + yolo + lprnet 实现的车牌检测识别功能。带qt界面的。 本博文将结合前面训练好的模型来实现车牌的检测与识别。并用pyqt实现界面。最终通过检测车牌检测识别功能。 1)、通过pyqt5设计界面 ui文件如下: <?xml version="1…

基于树的时间序列预测(LGBM)

在大多数时间序列预测中&#xff0c;尽管有Prophet和NeuralProphet等方便的工具&#xff0c;但是了解基于树的模型仍然具有很高的价值。尤其是在监督学习模型中&#xff0c;仅仅使用单变量时间序列似乎信息有限&#xff0c;预测也比较困难。因此&#xff0c;为了生成足够的特征…

Docker容器:Docker-Consul 的容器服务更新与发现

目录 前言 一、什么是服务注册与发现 二、 Docker-Consul 概述 1、Consul 概念 2、Consul 提供的一些关键特性 3、Consul 的优缺点 4、传统模式与自动发现注册模式的区别 4.1 传统模式 4.2 自动发现注册模式 5、Consul 核心组件 5.1 Consul-Template组件 5.2 Consu…

ICML 2024有何亮点?9473篇论文投稿,突破历史记录

会议之眼 快讯 2024年5月1日&#xff0c;第42届国际机器学习大会ICML 2024放榜啦&#xff01;录用率27.5%&#xff01;ICML 2024的录用结果受到了广泛的关注&#xff0c;本届会议的投稿量达到了9473篇&#xff0c;创下了历史新高&#xff0c;比去年的6538篇增加了近3000篇&…

C/C++开发环境配置

配置C/C开发环境 1.下载和配置MinGW-w64 编译器套件 下载地址&#xff1a;https://sourceforge.net/projects/mingw-w64/files/mingw-w64/mingw-w64-release/ 下载后解压并放至你容易管理的路径下&#xff08;我是将其放在了D盘的一个software的文件中管理&#xff09; 2.…

Nest 快速上手 —— (三)中间件 / 异常过滤器

一、 中间件&#xff08;Middleware&#xff09; 1.特点 中间件是一个在路由处理程序之前被调用的函数。中间件函数可以访问请求和响应对象&#xff0c;以及应用程序请求-响应周期中的next()中间件函数。下一个中间件函数通常由一个名为next的变量表示。 中间件函数可以执行以…

自动驾驶融合定位系列教程四:惯性导航解算

自动驾驶融合定位系列教程四&#xff1a;惯性导航解算 一、概述 惯性导航的解算是一个实现起来非常简单&#xff0c;但是理解起来要费一番功夫的东西&#xff0c;所谓“实现”就是把公式变成代码&#xff0c;所谓“理解”&#xff0c;就是要弄明白几个公式是怎么推导出来的。…

硬盘遭遇误删分区?这些恢复技巧你必须掌握!

在日常使用电脑的过程中&#xff0c;我们有时会遇到一些棘手的问题&#xff0c;其中误删分区无疑是一个令人头疼的难题。误删分区意味着我们不小心删除了硬盘上的某个分区&#xff0c;导致该分区内的所有数据瞬间消失。对于许多用户来说&#xff0c;这可能会引发极大的恐慌和焦…

[方法] Unity 实现仿《原神》第三人称跟随相机 v1.1

参考网址&#xff1a;【Unity中文课堂】RPG战斗系统Plus 在Unity游戏引擎中&#xff0c;实现类似《原神》的第三人称跟随相机并非易事&#xff0c;但幸运的是&#xff0c;Unity为我们提供了强大的工具集&#xff0c;其中Cinemachine插件便是实现这一目标的重要工具。Cinemachi…

软件测试面试问题汇总

一般软件测试的面试分为三轮&#xff1a;笔试&#xff0c;HR面试&#xff0c;技术面试。 前两轮&#xff0c;根据不同企业&#xff0c;或有或无&#xff0c;但最后一个技术面试是企业了解你“行不行”的关键环节&#xff0c;每个企业都会有的。 在平时的学习、工作中一定要善于…

【Ping】Windows 网络延迟测试 ping 、telnet、tcping 工具

ping 命令 属于网络层的ICMP协议&#xff0c;只能检查 IP 的连通性或网络连接速度&#xff0c; 无法检测IP的端口状态。 telnet telnet命令&#xff0c;属于应用层的协议&#xff0c;用于远程登录&#xff0c;也可用于检测IP的端口状态。但是功能有限&#xff0c;只能检测一时…