Pytorch实现图片异常检测

news2025/1/2 0:30:03

图片异常检测

异常检测指的是在正常的图片中找到异常的数据,由于无法通过规则进行识别判断,这样的应用场景通常都是需要人工进行识别,比如残次品的识别,图片异常识别模型的目标是可以代替或者辅助人工进行识别异常图片。

AnoGAN 模型

由于正常图片的数据量远大于异常图片,可能只有 1/100 的图片是异常图片,甚至更小。通过图片分类模型很难实现异常图片的识别,因为无法找到足够的异常数据进行训练。因此,只能通过正常图片去构建异常检测模型。如何通过正常的图片实现检测异常图片的模型,可以使用之前用的对抗网络,通过识别网络进行检测,图片是正常数据还是伪造数据。AnoGAN 模型是用于识别异常图片的模型,如果只用GAN 模型中的识别网络进行判别,效果并不好,所以 AnoGAN 网络不光依靠识别网络,生成网络在其中也发挥重要的作用。

对于AnoGAN,对于输入的数据,AnoGAN 网络首先会对图片生成噪声 Z。通过噪声 Z 输入生成网络生成可以被识别的图片,如果训练集中不存在这样的图片,例如异常图片,那么生成网络是无法生成的,这类图片就是异常图片。

噪声 Z 的生成方式,初始状态噪声是随机生成的,随后噪声通过网络生成图片,把生成的图片训练集作比较,比较的方式是通过像素差值的绝对值求和,最后算出损失值,最后通过网络进行训练以减少损失值。

上述的这种损失值在AutoGen 中被称为 Residual Loss,如果只有 Residual Loss,模型效果有限。所以,AnoGAN 这里也利用了判别网络,将测试图像和生成图像输入到判别网络,并对判别网络的输出特征进行差值计算,这个差值称为 Discrimination loss。最后通过 Discrimination Loss 和 Residual Loss 合并组成损失函数。

数据准备
import os
import urllib.request
import zipfile
import tarfile

import matplotlib.pyplot as plt
%matplotlib inline
from PIL import Image
import numpy as np

#不存在“data”文件夹时创建
data_dir = "./data/"
if not os.path.exists(data_dir):
    os.mkdir(data_dir)

import sklearn
# 下载并读取MNIST的手写数字图像。
from sklearn.datasets import fetch_openml

mnist = fetch_openml('mnist_784', version=1, data_home="./data/")  #data_home指定保存地址。

# 数据的提取
X = mnist.data
y = mnist.target

# 将MNIST的第一个数据可视化
plt.imshow(np.array(X.iloc[0]).reshape(28, 28), cmap='gray')
print("这个图像数据的标签是{}".format(y[0]))

#在文件夹“data”下创建文件夹“img_78”
data_dir_path = "./data/img_78/"
if not os.path.exists(data_dir_path):
    os.mkdir(data_dir_path)

#从MNIST将数字7、8的图像作为图像保存到“img_78”文件夹中
count7=0
count8=0
max_num=200  # 每制作200张图片

for i in range(len(X)):
    
    # 图像7的制作
    if (y[i] == "7") and (count7<max_num):
        file_path="./data/img_78/img_7_"+str(count7)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28×28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f = pil_img_f.resize((64, 64), Image.BICUBIC)  # 扩大到64×64
        pil_img_f.save(file_path)  # 保存
        count7+=1 
    
    #图像8的制作
    if (y[i] == "8") and (count8<max_num):
        file_path="./data/img_78/img_8_"+str(count8)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28*28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f = pil_img_f.resize((64, 64), Image.BICUBIC)  # 扩大到64×64
        pil_img_f.save(file_path)  # 保存
        count8+=1
        
    # 制作200张7和8之后,break
    if (count7>=max_num) and (count8>=max_num):
        break


# 在文件夹“data”下面创建文件夹“test”
data_dir_path = "./data/test/"
if not os.path.exists(data_dir_path):
    os.mkdir(data_dir_path)

# 在上述制作7,8图像时使用的index的最终值
i_start = i+1
print(i_start)

# 从MNIST将数字7、8的图像作为图像保存到“img_78”文件夹中
count2=0
count7=0
count8=0
max_num=5  #每制作五张图片

for i in range(i_start,len(X)):  # 从i_start开始
    
    #图像2的制作
    if (y[i] == "2") and (count2<max_num):
        file_path="./data/test/img_2_"+str(count2)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28×28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f = pil_img_f.resize((64, 64), Image.BICUBIC)  # 扩大到64×64
        pil_img_f.save(file_path)  # 保存
        count2+=1
    
    # 图像7的制作
    if (y[i] == "7") and (count7<max_num):
        file_path="./data/test/img_7_"+str(count7)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  #将图像变形为28×28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f = pil_img_f.resize((64, 64), Image.BICUBIC)  # 6扩大到64×64
        pil_img_f.save(file_path)  # 保存
        count7+=1 
    
    # 图像8的制作
    if (y[i] == "8") and (count8<max_num):
        file_path="./data/test/img_8_"+str(count8)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28*28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f = pil_img_f.resize((64, 64), Image.BICUBIC)  # 扩大到64×64
        pil_img_f.save(file_path)  # 保存
        count8+=1 


# 在文件夹“data”下创建文件夹“img_78_28size”
data_dir_path = "./data/img_78_28size/"
if not os.path.exists(data_dir_path):
    os.mkdir(data_dir_path)

# 从MNIST将数字7、8的图像作为图像保存到“img_78_28size”文件夹中
count7=0
count8=0
max_num=200  # 每制作200张图片

for i in range(len(X)):
    
    # 图像7的制作
    if (y[i] == "7") and (count7<max_num):
        file_path="./data/img_78_28size/img_7_"+str(count7)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28×28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f.save(file_path)  # 保存
        count7+=1 
    
    # 图像8的制作
    if (y[i] == "8") and (count8<max_num):
        file_path="./data/img_78_28size/img_8_"+str(count8)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28*28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 画像变成PIL
        pil_img_f.save(file_path)  # 保存
        count8+=1
    
    if (count7>=max_num) and (count8>=max_num):
        break



# 在文件夹“data”下面创建文件夹“test”
data_dir_path = "./data/test_28size/"
if not os.path.exists(data_dir_path):
    os.mkdir(data_dir_path)

# 在上述制作7,8图像时使用的index的最终值
i_start = i+1
print(i_start)

# 从MNIST将数字7、8的图像作为图像保存到“img_78”文件夹中
count2=0
count7=0
count8=0
max_num=5  # 每制作五张图片

for i in range(i_start,len(X)):  #从i_start开始
    
    # 图像2的制作
    if (y[i] == "2") and (count2<max_num):
        file_path="./data/test_28size/img_2_"+str(count2)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28×28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f.save(file_path)  # 保存
        count2+=1 
    
    # 画像7的制作
    if (y[i] == "7") and (count7<max_num):
        file_path="./data/test_28size/img_7_"+str(count7)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28×28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f.save(file_path)  # 保存
        count7+=1 
    
    # 图像8的制作
    if (y[i] == "8") and (count8<max_num):
        file_path="./data/test_28size/img_8_"+str(count8)+".jpg"
        im_f=(np.array(X.iloc[i]).reshape(28, 28))  # 将图像变形为28*28
        pil_img_f = Image.fromarray(im_f.astype(np.uint8))  # 把图像变成PIL
        pil_img_f.save(file_path)  # 保存
        count8+=1 



AnoGAN 实现

AnoGAN 网络实现以及训练、验证

# 导入软件包
import random
import math
import time
import pandas as pd
import numpy as np
from PIL import Image

import torch
import torch.utils.data as data
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

from torchvision import transforms

# Setup seeds
torch.manual_seed(1234)
np.random.seed(1234)
random.seed(1234)

class Generator(nn.Module):

    def __init__(self, z_dim=20, image_size=64):
        super(Generator, self).__init__()

        self.layer1 = nn.Sequential(
            nn.ConvTranspose2d(z_dim, image_size * 8,
                               kernel_size=4, stride=1),
            nn.BatchNorm2d(image_size * 8),
            nn.ReLU(inplace=True))

        self.layer2 = nn.Sequential(
            nn.ConvTranspose2d(image_size * 8, image_size * 4,
                               kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(image_size * 4),
            nn.ReLU(inplace=True))

        self.layer3 = nn.Sequential(
            nn.ConvTranspose2d(image_size * 4, image_size * 2,
                               kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(image_size * 2),
            nn.ReLU(inplace=True))

        self.layer4 = nn.Sequential(
            nn.ConvTranspose2d(image_size * 2, image_size,
                               kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(image_size),
            nn.ReLU(inplace=True))

        self.last = nn.Sequential(
            nn.ConvTranspose2d(image_size, 1, kernel_size=4,
                               stride=2, padding=1),
            nn.Tanh())
        #注意 :由于是黑白图像,因此输出通道数量为1

    def forward(self, z):
        out = self.layer1(z)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = self.last(out)

        return out

# 动作确认
import matplotlib.pyplot as plt
%matplotlib inline

G = Generator(z_dim=20, image_size=64)

# 输入的随机数
input_z = torch.randn(1, 20)

# 将张量尺寸变形为(1,20,1,1)
input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1)

# 输出假图像
fake_images = G(input_z)

img_transformed = fake_images[0][0].detach().numpy()
plt.imshow(img_transformed, 'gray')
plt.show()

class Discriminator(nn.Module):

    def __init__(self, z_dim=20, image_size=64):
        super(Discriminator, self).__init__()

        self.layer1 = nn.Sequential(
            nn.Conv2d(1, image_size, kernel_size=4,
                      stride=2, padding=1),
            nn.LeakyReLU(0.1, inplace=True))
        #注意 :由于是黑白图像,因此输出通道数量为1

        self.layer2 = nn.Sequential(
            nn.Conv2d(image_size, image_size*2, kernel_size=4,
                      stride=2, padding=1),
            nn.LeakyReLU(0.1, inplace=True))

        self.layer3 = nn.Sequential(
            nn.Conv2d(image_size*2, image_size*4, kernel_size=4,
                      stride=2, padding=1),
            nn.LeakyReLU(0.1, inplace=True))

        self.layer4 = nn.Sequential(
            nn.Conv2d(image_size*4, image_size*8, kernel_size=4,
                      stride=2, padding=1),
            nn.LeakyReLU(0.1, inplace=True))

        self.last = nn.Conv2d(image_size*8, 1, kernel_size=4, stride=1)

    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)

        feature = out  #最后将通道集中到一个特征量中
        feature = feature.view(feature.size()[0], -1)  #转换为二维

        out = self.last(out)

        return out, feature

# 确认程序执
D = Discriminator(z_dim=20, image_size=64)

#生成伪造图像
input_z = torch.randn(1, 20)
input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1)
fake_images = G(input_z)

#将伪造的图像输入判别器D中
d_out = D(fake_images)

# 将输出值d_out乘以Sigmoid函数,将其转换成0~1的值
print(nn.Sigmoid()(d_out[0]))

# feature
print(d_out[1].shape)

def make_datapath_list():
    """制作用于学习、验证的图像数据和标注数据的文件路径表。 """

    train_img_list = list()  # 保存图像文件路径

    for img_idx in range(200):
        img_path = "./data/img_78/img_7_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

        img_path = "./data/img_78/img_8_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

    return train_img_list

class ImageTransform():
    """图像的预处理类"""

    def __init__(self, mean, std):
        self.data_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean, std)
        ])

    def __call__(self, img):
        return self.data_transform(img)
class GAN_Img_Dataset(data.Dataset):
    """图像的Dataset类。继承PyTorch的Dataset类"""

    def __init__(self, file_list, transform):
        self.file_list = file_list
        self.transform = transform

    def __len__(self):
        '''返回图像的张数'''
        return len(self.file_list)

    def __getitem__(self, index):
        '''获取经过预处理后的图像的张量格式的数据'''

        img_path = self.file_list[index]
        img = Image.open(img_path)  # [高][宽]黑白

        #图像的预处理
        img_transformed = self.transform(img)

        return img_transformed

#创建DataLoader并确认操作

#创建文件列表
train_img_list=make_datapath_list()

# 创建Dataset
mean = (0.5,)
std = (0.5,)
train_dataset = GAN_Img_Dataset(
    file_list=train_img_list, transform=ImageTransform(mean, std))

# 创建DataLoader
batch_size = 64

train_dataloader = torch.utils.data.DataLoader(
    train_dataset, batch_size=batch_size, shuffle=True)

#确认执行结果
batch_iterator = iter(train_dataloader)  # 转换成迭代器
imges = next(batch_iterator)   #取出位于第一位的元素
print(imges.size())  # torch.Size([64, 1, 64, 64])

#网络的初始化
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        #Conv2d和ConvTranspose2d的初始化
        nn.init.normal_(m.weight.data, 0.0, 0.02)
        nn.init.constant_(m.bias.data, 0)
    elif classname.find('BatchNorm') != -1:
        # BatchNorm2d的初始化
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)


# 初始化的实施
G.apply(weights_init)
D.apply(weights_init)

print("网络已经成功地完成了初始化")

# 创建一个函数来学习模型


def train_model(G, D, dataloader, num_epochs):

    #确认是否可以使用GPU
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("使用设备:", device)

    # 优化方法的设定
    g_lr, d_lr = 0.0001, 0.0004
    beta1, beta2 = 0.0, 0.9
    g_optimizer = torch.optim.Adam(G.parameters(), g_lr, [beta1, beta2])
    d_optimizer = torch.optim.Adam(D.parameters(), d_lr, [beta1, beta2])

    # 定义误差函数
    criterion = nn.BCEWithLogitsLoss(reduction='mean')

    # 使用硬编码的参数
    z_dim = 20
    mini_batch_size = 64

    #将网络变成GPU
    G.to(device)
    D.to(device)

    G.train()  # 将模型转换为训练模式
    D.train()  # 将模型转换为训练模式

    #如果网络相对固定,则开启加速
    torch.backends.cudnn.benchmark = True

    # 图像的张数
    num_train_imgs = len(dataloader.dataset)
    batch_size = dataloader.batch_size

    # 设置了迭代计数器
    iteration = 1
    logs = []

    #epoch循环
    for epoch in range(num_epochs):

        # 保存开始时间
        t_epoch_start = time.time()
        epoch_g_loss = 0.0  # epoch损失总和
        epoch_d_loss = 0.0  # epoch损失总和

        print('-------------')
        print('Epoch {}/{}'.format(epoch, num_epochs))
        print('-------------')
        print('(train)')

        # 以minibatch为单位从数据加载器中读取数据的循环
        for imges in dataloader:

            # --------------------
            # 1. 判别器D的学习
            # --------------------
            # 如果小批次的尺寸设置为1,会导致批次归一化处理产生错误,因此需要避免
            if imges.size()[0] == 1:
                continue

             #如果能使用GPU,则将数据送入GPU中
            imges = imges.to(device)

            #创建正确答案标签和伪造数据标签
           #在epoch最后的迭代中,小批次的数量会减少
            mini_batch_size = imges.size()[0]
            label_real = torch.full((mini_batch_size,), 1).to(device)
            label_fake = torch.full((mini_batch_size,), 0).to(device)

           #对真正的图像进行判定
            d_out_real, _ = D(imges)

             #生成伪造图像并进行判定
            input_z = torch.randn(mini_batch_size, z_dim).to(device)
            input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1)
            fake_images = G(input_z)
            d_out_fake, _ = D(fake_images)

            #计算误差
            d_loss_real = criterion(d_out_real.view(-1), label_real.float())
            d_loss_fake = criterion(d_out_fake.view(-1), label_fake.float())
            d_loss = d_loss_real + d_loss_fake

            #反向传播处理
            g_optimizer.zero_grad()
            d_optimizer.zero_grad()

            d_loss.backward()
            d_optimizer.step()

            # --------------------
            # 2.生成器G的学习
            # --------------------
           #生成伪造图像并进行判定
            input_z = torch.randn(mini_batch_size, z_dim).to(device)
            input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1)
            fake_images = G(input_z)
            d_out_fake, _ = D(fake_images)

            #计算误差
            g_loss = criterion(d_out_fake.view(-1), label_real.float())

           #反向传播处理
            g_optimizer.zero_grad()
            d_optimizer.zero_grad()
            g_loss.backward()
            g_optimizer.step()

            # --------------------
            # 3. 记录结果
            # --------------------
            epoch_d_loss += d_loss.item()
            epoch_g_loss += g_loss.item()
            iteration += 1

        #epoch的每个phase的loss和准确率
        t_epoch_finish = time.time()
        print('-------------')
        print('epoch {} || Epoch_D_Loss:{:.4f} ||Epoch_G_Loss:{:.4f}'.format(
            epoch, epoch_d_loss/batch_size, epoch_g_loss/batch_size))
        print('timer:  {:.4f} sec.'.format(t_epoch_finish - t_epoch_start))
        t_epoch_start = time.time()

    
    print("总迭代次数:", iteration)

    return G, D

# 进行训练和验证
num_epochs = 300
G_update, D_update = train_model(
    G, D, dataloader=train_dataloader, num_epochs=num_epochs)

# 将生成图像和训练数据可视化

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 输入的随机数生成
batch_size = 8
z_dim = 20
fixed_z = torch.randn(batch_size, z_dim)
fixed_z = fixed_z.view(fixed_z.size(0), fixed_z.size(1), 1, 1)
fake_images = G_update(fixed_z.to(device))

# 训练数据
batch_iterator = iter(train_dataloader) #转换成迭代器
imges = next(batch_iterator) #提取第1个要素


#图像的可视化处理
fig = plt.figure(figsize=(15, 6))
for i in range(0, 5):
    #上层显示测试图像
    plt.subplot(2, 5, i+1)
    plt.imshow(imges[i][0].cpu().detach().numpy(), 'gray')

    #下层显示生成图像
    plt.subplot(2, 5, 5+i+1)
    plt.imshow(fake_images[i][0].cpu().detach().numpy(), 'gray')
    
def Anomaly_score(x, fake_img, D, Lambda=0.1):

    #求测试图像x和生成图像fake_img的像素级差的绝对值,并对每个迷你批求和
    residual_loss = torch.abs(x-fake_img)
    residual_loss = residual_loss.view(residual_loss.size()[0], -1)
    residual_loss = torch.sum(residual_loss, dim=1)

    # 将测试图像x和生成图像fake_img输入到识别器D,取出特征量
    _, x_feature = D(x)
    _, G_feature = D(fake_img)

    # 求测试图像x和生成图像fake_img的特征量之差的绝对值,对每个迷你批次求和
    discrimination_loss = torch.abs(x_feature-G_feature)
    discrimination_loss = discrimination_loss.view(
        discrimination_loss.size()[0], -1)
    discrimination_loss = torch.sum(discrimination_loss, dim=1)

    # 将两种损失对每个迷你批进行加法运算
    loss_each = (1-Lambda)*residual_loss + Lambda*discrimination_loss

    #求迷你批的全部损失
    total_loss = torch.sum(loss_each)

    return total_loss, loss_each, residual_loss

# 创建测试用的DataLoader


def make_test_datapath_list():
    """制作用于学习、验证的图像数据和标注数据的文件路径表。 """

    train_img_list = list()  # 保存图像文件路径

    for img_idx in range(5):
        img_path = "./data/test/img_7_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

        img_path = "./data/test/img_8_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

        img_path = "./data/test/img_2_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

    return train_img_list


# 制作文件列表
test_img_list = make_test_datapath_list()

# 制作Dataset
mean = (0.5,)
std = (0.5,)
test_dataset = GAN_Img_Dataset(
    file_list=test_img_list, transform=ImageTransform(mean, std))

# 制作DataLoader
batch_size = 5

test_dataloader = torch.utils.data.DataLoader(
    test_dataset, batch_size=batch_size, shuffle=False)

# 测试数据的确认
batch_iterator = iter(test_dataloader)  # 转换成迭代器
imges = next(batch_iterator)  

# 取出第一个迷你批次

fig = plt.figure(figsize=(15, 6))
for i in range(0, 5):
    plt.subplot(2, 5, i+1)
    plt.imshow(imges[i][0].cpu().detach().numpy(), 'gray')

# 想检测异常的图像
x = imges[0:5]
x = x.to(device)

# 用于生成想要异常检测的图像的初始随机数
z = torch.randn(5, 20).to(device)
z = z.view(z.size(0), z.size(1), 1, 1)

# 変将requires_grad设为True,使得变量z可以求导数
z.requires_grad = True

#求z的优化函数,以便能够更新变量z
z_optimizer = torch.optim.Adam([z], lr=1e-3)


#求z
for epoch in range(5000+1):
    fake_img = G_update(z)
    loss, _, _ = Anomaly_score(x, fake_img, D_update, Lambda=0.1)

    z_optimizer.zero_grad()
    loss.backward()
    z_optimizer.step()

    if epoch % 1000 == 0:
        print('epoch {} || loss_total:{:.0f} '.format(epoch, loss.item()))

# 生成图像
fake_img = G_update(z)

# 要求损失
loss, loss_each, residual_loss_each = Anomaly_score(
    x, fake_img, D_update, Lambda=0.1)

#损失的计算总损失
loss_each = loss_each.cpu().detach().numpy()
print("total loss:", np.round(loss_each, 0))

# 图像可视化
fig = plt.figure(figsize=(15, 6))
for i in range(0, 5):
    # 把测试数据放在上层
    plt.subplot(2, 5, i+1)
    plt.imshow(imges[i][0].cpu().detach().numpy(), 'gray')

    # 在下层显示生成数据
    plt.subplot(2, 5, 5+i+1)
    plt.imshow(fake_img[i][0].cpu().detach().numpy(), 'gray')

可以看 2 的损失值最高,由此可判断 2 为异常图片。
在这里插入图片描述

Efficient GAN

AnoGAN 模型中,最重要的是 z 的取值,对z 的取值也有新的方法,其中一种就是 Efficient GAN,它优化了z 值的更新和学习时间。Efficient GAN是通过编码器的方式来对 z 值进行计算,Encoder通过 BiGAN 机制将图像于其关联在一起。

Efficient GAN 实现

通过 Efficient GAN 实现网络,并进行训练和验证。

# 导入软件包
import random
import math
import time
import pandas as pd
import numpy as np
from PIL import Image

import torch
import torch.utils.data as data
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

from torchvision import transforms

# Setup seeds
torch.manual_seed(1234)
torch.cuda.manual_seed(1234)
np.random.seed(1234)
random.seed(1234)

class Generator(nn.Module):

    def __init__(self, z_dim=20):
        super(Generator, self).__init__()

        self.layer1 = nn.Sequential(
            nn.Linear(z_dim, 1024),
            nn.BatchNorm1d(1024),
            nn.ReLU(inplace=True))

        self.layer2 = nn.Sequential(
            nn.Linear(1024, 7*7*128),
            nn.BatchNorm1d(7*7*128),
            nn.ReLU(inplace=True))

        self.layer3 = nn.Sequential(
            nn.ConvTranspose2d(in_channels=128, out_channels=64,
                               kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True))

        self.last = nn.Sequential(
            nn.ConvTranspose2d(in_channels=64, out_channels=1,
                               kernel_size=4, stride=2, padding=1),
            nn.Tanh())
        #注意 :由于是黑白图像,因此输出通道数量为 1

    def forward(self, z):
        out = self.layer1(z)
        out = self.layer2(out)

        #为了能置入卷积层中,需要对张量进行变形
        out = out.view(z.shape[0], 128, 7, 7)
        out = self.layer3(out)
        out = self.last(out)

        return out

#确认执行结果
import matplotlib.pyplot as plt
%matplotlib inline

G = Generator(z_dim=20)
G.train()

#输入的随机数
#由于要进行批次归一化处理,因此将小批次数设置为 2 以上
input_z = torch.randn(2, 20)

#输出伪造图像
fake_images = G(input_z)  # torch.Size([2, 1, 28, 28])
img_transformed = fake_images[0][0].detach().numpy()
plt.imshow(img_transformed, 'gray')
plt.show()

class Discriminator(nn.Module):

    def __init__(self, z_dim=20):
        super(Discriminator, self).__init__()

        #图像这边的输入处理
        self.x_layer1 = nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=4,
                      stride=2, padding=1),
            nn.LeakyReLU(0.1, inplace=True))
      #注意 :由于是黑白图像,因此输入通道数量为 1

        self.x_layer2 = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=4,
                      stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.LeakyReLU(0.1, inplace=True))

      #随机数这边的输入处理
        self.z_layer1 = nn.Linear(z_dim, 512)

        #最终的判定
        self.last1 = nn.Sequential(
            nn.Linear(3648, 1024),
            nn.LeakyReLU(0.1, inplace=True))

        self.last2 = nn.Linear(1024, 1)

    def forward(self, x, z):

        #图像这边的输入处理
        x_out = self.x_layer1(x)
        x_out = self.x_layer2(x_out)

       #随机数这边的输入处理
        z = z.view(z.shape[0], -1)
        z_out = self.z_layer1(z)

        #将x_out与z_out连接在一起,交给全连接层进行判定
        x_out = x_out.view(-1, 64 * 7 * 7)
        out = torch.cat([x_out, z_out], dim=1)
        out = self.last1(out)

        feature = out  #最后将通道集中到一个特征量中
        feature = feature.view(feature.size()[0], -1)   #转换为二维

        out = self.last2(out)

        return out, feature


#确认执行结果
D = Discriminator(z_dim=20)

#生成伪造图像
input_z = torch.randn(2, 20)
fake_images = G(input_z)

#将伪造图像输入判定器D中
d_out, _ = D(fake_images, input_z)

#将输出结果d_out乘以Sigmoid,以将其转换为0~1的值
print(nn.Sigmoid()(d_out))


class Encoder(nn.Module):

    def __init__(self, z_dim=20):
        super(Encoder, self).__init__()

        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 32, kernel_size=3,
                      stride=1),
            nn.LeakyReLU(0.1, inplace=True))
        #把图像转换成z

        self.layer2 = nn.Sequential(
            nn.Conv2d(32, 64, kernel_size=3,
                      stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.LeakyReLU(0.1, inplace=True))

        self.layer3 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=3,
                      stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.1, inplace=True))

        #到这里为止,图像的尺寸为7像素×7像素
        self.last = nn.Linear(128 * 7 * 7, z_dim)

    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = self.layer3(out)

       #为了能放入FC中,对张量进行变形
        out = out.view(-1, 128 * 7 * 7)
        out = self.last(out)

        return out


#确认执行结果
E = Encoder(z_dim=20)

#输入的图像数据
x = fake_images  #fake_images是由上面的生成器G生成的

#将图像编码为z
z = E(x)

print(z.shape)
print(z)

def make_datapath_list():
    """制作用于学习、验证的图像数据和标注数据的文件路径表。 """

    train_img_list = list()  # 保存图像文件路径

    for img_idx in range(200):
        img_path = "./data/img_78_28size/img_7_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

        img_path = "./data/img_78_28size/img_8_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

    return train_img_list

class ImageTransform():
    """图像的预处理类"""

    def __init__(self, mean, std):
        self.data_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean, std)
        ])

    def __call__(self, img):
        return self.data_transform(img)

class GAN_Img_Dataset(data.Dataset):
    """图像的Dataset类。继承PyTorch的Dataset类"""

    def __init__(self, file_list, transform):
        self.file_list = file_list
        self.transform = transform

    def __len__(self):
        '''返回图像的张数'''
        return len(self.file_list)

    def __getitem__(self, index):
        '''获取预处理图像的Tensor格式数据'''

        img_path = self.file_list[index]
        img = Image.open(img_path)  # [高][宽]黑白

        # 图像的预处理
        img_transformed = self.transform(img)

        return img_transformed

# 创建DataLoader并确认操作

#制作文件列表
train_img_list=make_datapath_list()

# Datasetを作成
mean = (0.5,)
std = (0.5,)
train_dataset = GAN_Img_Dataset(
    file_list=train_img_list, transform=ImageTransform(mean, std))

# 制作DataLoader
batch_size = 64

train_dataloader = torch.utils.data.DataLoader(
    train_dataset, batch_size=batch_size, shuffle=True)

# 动作的确认
batch_iterator = iter(train_dataloader)  # 转换成迭代器
imges = next(batch_iterator)  # 找出第一个要素
print(imges.size())  # torch.Size([64, 1, 64, 64])

#创建用于训练模型的函数


def train_model(G, D, E, dataloader, num_epochs):

    #确认是否可以使用GPU加速
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("使用设备:", device)

    #设置最优化算法
    lr_ge = 0.0001
    lr_d = 0.0001/4
    beta1, beta2 = 0.5, 0.999
    g_optimizer = torch.optim.Adam(G.parameters(), lr_ge, [beta1, beta2])
    e_optimizer = torch.optim.Adam(E.parameters(), lr_ge, [beta1, beta2])
    d_optimizer = torch.optim.Adam(D.parameters(), lr_d, [beta1, beta2])

    #定义误差函数
    #BCEWithLogitsLoss是先将输入数据乘以Logistic,
    # 再计算二进制交叉熵
    criterion = nn.BCEWithLogitsLoss(reduction='mean')

    #对参数进行硬编码
    z_dim = 20
    mini_batch_size = 64

    #将网络载入GPU中
    G.to(device)
    E.to(device)
    D.to(device)

    G.train()  #将模型设置为训练模式
    E.train()  #将模型设置为训练模式
    D.train()  #将模型设置为训练模式

    #如果网络相对固定,则开启加速
    torch.backends.cudnn.benchmark = True

    #图像的张数
    num_train_imgs = len(dataloader.dataset)
    batch_size = dataloader.batch_size

    #设置迭代计数器
    iteration = 1
    logs = []

    # epoch循环
    for epoch in range(num_epochs):

        #保存开始时间
        t_epoch_start = time.time()
        epoch_g_loss = 0.0  #epoch的损失总和
        epoch_e_loss = 0.0  #epoch的损失总和
        epoch_d_loss = 0.0  #epoch的损失总和

        print('-------------')
        print('Epoch {}/{}'.format(epoch, num_epochs))
        print('-------------')
        print('(train)')

        #以minibatch为单位从数据加载器中读取数据的循环
        for imges in dataloader:

            #如果小批次的尺寸设置为1,会导致批次归一化处理产生错误,因此需要避免
            if imges.size()[0] == 1:
                continue

            #创建用于表示小批次尺寸为1和0的标签
            #创建正确答案标签和伪造数据标签
            #在epoch最后的迭代中,小批次的数量会减少
            mini_batch_size = imges.size()[0]
            label_real = torch.full((mini_batch_size,), 1).to(device)
            label_fake = torch.full((mini_batch_size,), 0).to(device)

            #如果能使用GPU,则将数据送入GPU中
            imges = imges.to(device)

            # --------------------
            # 1. 判别器D的学习
            # --------------------
            # 对真实的图像进行判定 
            z_out_real = E(imges)
            d_out_real, _ = D(imges, z_out_real)

            # 生成伪造图像并进行判定
            input_z = torch.randn(mini_batch_size, z_dim).to(device)
            fake_images = G(input_z)
            d_out_fake, _ = D(fake_images, input_z)

            #计算误差
            d_loss_real = criterion(d_out_real.view(-1), label_real.float())
            d_loss_fake = criterion(d_out_fake.view(-1), label_fake.float())
            d_loss = d_loss_real + d_loss_fake

            #反向传播
            d_optimizer.zero_grad()
            d_loss.backward()
            d_optimizer.step()

            # --------------------
            # 2. 生成器G的学习
            # --------------------
            #生成伪造图像并进行判定
            input_z = torch.randn(mini_batch_size, z_dim).to(device)
            fake_images = G(input_z)
            d_out_fake, _ = D(fake_images, input_z)

            #计算误差
            g_loss = criterion(d_out_fake.view(-1), label_real.float())

            #反向传播
            g_optimizer.zero_grad()
            g_loss.backward()
            g_optimizer.step()

            # --------------------
            # 3. 编码器E的学习
            # --------------------
            #对真实图像的z进行推定
            z_out_real = E(imges)
            d_out_real, _ = D(imges, z_out_real)

            #计算误差
            e_loss = criterion(d_out_real.view(-1), label_fake.float())

            #反向传播
            e_optimizer.zero_grad()
            e_loss.backward()
            e_optimizer.step()

            # --------------------
            #4.记录
            # --------------------
            epoch_d_loss += d_loss.item()
            epoch_g_loss += g_loss.item()
            epoch_e_loss += e_loss.item()
            iteration += 1

        #epoch的每个phase的loss和准确率
        t_epoch_finish = time.time()
        print('-------------')
        print('epoch {} || Epoch_D_Loss:{:.4f} ||Epoch_G_Loss:{:.4f} ||Epoch_E_Loss:{:.4f}'.format(
            epoch, epoch_d_loss/batch_size, epoch_g_loss/batch_size, epoch_e_loss/batch_size))
        print('timer:  {:.4f} sec.'.format(t_epoch_finish - t_epoch_start))
        t_epoch_start = time.time()

    print("总迭代次数:", iteration)

    return G, D, E

#网络的初始化
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
       #Conv2d和ConvTranspose2d的初始化
        nn.init.normal_(m.weight.data, 0.0, 0.02)
        nn.init.constant_(m.bias.data, 0)
    elif classname.find('BatchNorm') != -1:
       # BatchNorm2d的初始化
        nn.init.normal_(m.weight.data, 0.0, 0.02)
        nn.init.constant_(m.bias.data, 0)
    elif classname.find('Linear') != -1:
        #全连接层Linear的初始化
        m.bias.data.fill_(0)


#开始初始化
G.apply(weights_init)
E.apply(weights_init)
D.apply(weights_init)

print("网络已经成功地完成了初始化")

# 进行训练和验证
num_epochs = 1500
G_update, D_update, E_update = train_model(
    G, D, E, dataloader=train_dataloader, num_epochs=num_epochs)

#对生成图像与训练数据的可视化处理
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

#生成输入的随机数
batch_size = 8
z_dim = 20
fixed_z = torch.randn(batch_size, z_dim)
fake_images = G_update(fixed_z.to(device))

#训练数据
batch_iterator = iter(train_dataloader)  #转换成迭代器
imges = next(batch_iterator)  #取出最开头的元素


#输出
fig = plt.figure(figsize=(15, 6))
for i in range(0, 5):
    #在上层中显示训练数据
    plt.subplot(2, 5, i+1)
    plt.imshow(imges[i][0].cpu().detach().numpy(), 'gray')

    #在下层中显示生成数据
    plt.subplot(2, 5, 5+i+1)
    plt.imshow(fake_images[i][0].cpu().detach().numpy(), 'gray')

# ·制作测试用的Dataloader


def make_test_datapath_list():
    """制作用于学习、验证的图像数据和标注数据的文件路径表。 """

    train_img_list = list()  # ·保存图像文件路径

    for img_idx in range(5):
        img_path = "./data/test_28size/img_7_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

        img_path = "./data/test_28size/img_8_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

        img_path = "./data/test_28size/img_2_" + str(img_idx)+'.jpg'
        train_img_list.append(img_path)

    return train_img_list


#制作文件列表
test_img_list = make_test_datapath_list()

# 创建Dataset
mean = (0.5,)
std = (0.5,)
test_dataset = GAN_Img_Dataset(
    file_list=test_img_list, transform=ImageTransform(mean, std))

# 制作DataLoader
batch_size = 5

test_dataloader = torch.utils.data.DataLoader(
    test_dataset, batch_size=batch_size, shuffle=False)

#训练数据
batch_iterator = iter(test_dataloader)  #转换成迭代器
imges = next(batch_iterator)  #取出最开头的元素

fig = plt.figure(figsize=(15, 6))
for i in range(0, 5):
    #在下层中显示生成数据
    plt.subplot(2, 5, i+1)
    plt.imshow(imges[i][0].cpu().detach().numpy(), 'gray')

def Anomaly_score(x, fake_img, z_out_real, D, Lambda=0.1):

   #计算测试图像x与生成图像fake_img在像素层次上的差值的绝对值,并以小批次为单位进行求和计算
    residual_loss = torch.abs(x-fake_img)
    residual_loss = residual_loss.view(residual_loss.size()[0], -1)
    residual_loss = torch.sum(residual_loss, dim=1)

    # 将测试图像x和生成图像fake_img输入判别器D中,并取出特征量图

    _, x_feature = D(x, z_out_real)
    _, G_feature = D(fake_img, z_out_real)

    # 计算测试图像x与生成图像fake_img的特征量的差的绝对值,并以小批次为单位进行求和计算
    discrimination_loss = torch.abs(x_feature-G_feature)
    discrimination_loss = discrimination_loss.view(
        discrimination_loss.size()[0], -1)
    discrimination_loss = torch.sum(discrimination_loss, dim=1)

   #将每个小批次中的两种损失相加
    loss_each = (1-Lambda)*residual_loss + Lambda*discrimination_loss

    #对所有批次中的损失进行计算
    total_loss = torch.sum(loss_each)

    return total_loss, loss_each, residual_loss

#需要检测异常的图像
x = imges[0:5]
x = x.to(device)

#对监督数据的图像进行编码,转换成z,再用生成器G生成图像
z_out_real = E_update(imges.to(device))
imges_reconstract = G_update(z_out_real)

#计算损失值
loss, loss_each, residual_loss_each = Anomaly_score(
    x, imges_reconstract, z_out_real, D_update, Lambda=0.1)

#计算损失值,损失总和
loss_each = loss_each.cpu().detach().numpy()
print("total loss:", np.round(loss_each, 0))

#图像的可视化
fig = plt.figure(figsize=(15, 6))
for i in range(0, 5):
    #在上层中显示训练数据
    plt.subplot(2, 5, i+1)
    plt.imshow(imges[i][0].cpu().detach().numpy(), 'gray')

   #在下层中显示生成数据
    plt.subplot(2, 5, 5+i+1)
    plt.imshow(imges_reconstract[i][0].cpu().detach().numpy(), 'gray')


在这里插入图片描述

AnoGAN 模型可以进行异常图片的识别,这个例子比较简单,由于是单通道训练,随意模型训练比较快。如果是彩色图片,训练改时间会更久,在业务场景中可以调整阈值,例如Loss高于 250 为异常图片。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1645913.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

P8800 [蓝桥杯 2022 国 B] 卡牌

P8800 [蓝桥杯 2022 国 B] 卡牌 分析 “最多” -- 二分 1.二分区间&#xff08;凑齐的卡牌套数&#xff09;&#xff1a; l&#xff1a;a[]min&#xff1b;r&#xff1a;(a[]b[])max 2.check(x)&#xff1a; &#xff08;1&#xff09;for循环内&#xff1a; 判断x - a[i…

ComfyUI 基础教程(十三):ComfyUI-Impact-Pack 面部修复

SD的WebUI 中的面部修复神器 ADetailer,无法在ComfyUI 中使用。那么如何在ComfyUI中进行面部处理呢?ComfyUI 中也有几个面部修复功能,比如ComfyUI Impact Pack(FaceDetailer),以及换脸插件Reactor和IPAdapter。 ComfyUI-Impact-Pack 是一个功能强大的插件,专为 ComfyUI …

矩池云jupyter运行opengait代码 未完成版

文章目录 前言——矩池云的使用技巧1.切换源 一、下载数据集二、下载模型三、环境配置1.查看python、torch、torchvision版本2.查看一些包版本是否过高3.下载包 四、开始训练1.设置环境变量2.遇到的问题&#xff08;1&#xff09;torch.cuda.is_available()返回false&#xff0…

《第一行代码》第二版学习笔记(8)——网络技术

文章目录 一、Http1、HttpURLConnection2、OKHttp 二、解析JSON格式数据1、使用JSONObject2、使用GSON解析JSON数据 一、Http 1、HttpURLConnection public void run() {HttpURLConnection connection null;BufferedReader reader null;try {URL url new URL("http://…

springboot版本升级,及解决springsecurity漏洞问题

背景&#xff1a; 项目中要解决 Spring Security RegexRequestMatcher 认证绕过漏洞&#xff08;CVE-2022-22978&#xff09; 漏洞问题&#xff0c;并且需要将项目的版本整体升级到boot版本2.1.7&#xff0c;升级改造过程非常的痛苦&#xff0c;一方面对整个框架的代码不是很熟…

嵌入式复习重点

嵌入式系统有多种表现形式&#xff0c;包括计算机MCU、SOC片上系统、SOPC片上系统、GPU和FPGA等。 MCU(微控制器): 是最基本也是最常见的嵌入式系统形式,是集成了CPU、ROM、RAM、IO口、定时器、中断控制器等组件的单一芯片。MCU广泛用于电器电子产品的控制。SoC(系统片上芯片):…

vivado UltraScale 比特流设置

下表所示 UltraScale ™ 器件的器件配置设置可搭配 set_property <Setting> <Value> [current_design] Vivado 工具 Tcl 命令一起使用。

地下管线管网三维参数化建模软件MagicPipe3D V3.5

经纬管网建模系统MagicPipe3D&#xff08;www.magic3d.net&#xff09;自主安全可控&#xff0c;本地离线参数化构建三维管网模型&#xff08;管道、接头、附属物等&#xff09;&#xff0c;输出标准3DTiles、Obj等格式&#xff0c;支持Cesium、Unreal、Unity等引擎可视化查询分…

09_电子设计教程基础篇(电阻)

文章目录 前言一、电阻原理二、电阻种类1.固定电阻1、材料工艺1、线绕电阻2、非线绕电阻1、实心电阻1、有机实心电阻2、无机实心电阻 2、薄膜电阻&#xff08;常用&#xff09;1、碳膜电阻2、合成碳膜电阻3、金属膜电阻4、金属氧化膜电阻5、玻璃釉膜电阻 3、厚膜电阻&#xff0…

Jenkins 2.164.3 安装插件(当前官网正式版本: 2.440.3 LTS)

Jenkins 2.164.3安装插件 1. 安装jenkins1.1 宿主机安装1.2 docker安装(linux) 2. 登录jenkins3. 修改配置文件 这篇文章如果放在5、6年前写出来毫无意义&#xff0c;因为安装2.164.3之后&#xff0c;推荐的插件即可自动安装。但是在2024年&#xff0c;当前正式版本是2.440.3 L…

武汉星起航:跨境电商行业领航者,一站式孵化服务引领全球趋势

在全球化日益深入的今天&#xff0c;跨境电商作为连接各国市场的桥梁&#xff0c;其重要性日益凸显。在这一潮流中&#xff0c;武汉星起航电子商务有限公司以其前瞻性的战略眼光和丰富的运营经验&#xff0c;迅速崛起为跨境电商行业的领军者。公司不仅自营亚马逊跨境电商业务&a…

echarts柱状图实现左右横向对比

实现效果如上图 其实是两组数据&#xff0c;其中一组数据改为负数&#xff0c;然后 在展示的时候&#xff0c;在将负数取反 第一处修改坐标轴 xAxis: [{type: value,axisLabel: {formatter: function (value) {if (value < 0) {return -value;}else{return value;}}}}], 第…

书客大路灯Sun自掀起护眼新浪潮以来,纷纷直呼“真香现场”

随着科技时代与人们生活水平需求的日益增长&#xff0c;加上网课学习和居家办公的普及&#xff0c;各大灯具厂商都开始搭建起自家的生态&#xff0c;尤其是大路灯这个以外不被重视的品类&#xff0c;也开始找到了自身的定位与价值。 尤其在2024年上半年发布的——SUKER书客护眼…

截取字符串的3种方法

一、截取字符串的实现 在C语言中&#xff0c;没有直接截取字符串的库函数&#xff0c;但是咱们可以借助其他函数实现这个功能。 1&#xff0e;最简单的方法 如果只是直接输出一个字符串的子串&#xff0c;只需要一个简单的printf函数即可。 #include <stdio.h> int m…

MySQL之查询 拿下 * 。*

DQL数据查询语言 对上述的的查询操作进行代码演示&#xff08;续上一篇学生表代码进行处理&#xff09; 下面是上一篇的代码分享 下面进行简单的查询操作 字符串如果强行进行算数运算默认只为0 查询时常用的单行函数列举 未完待续

【机器学习】必会算法之:AdaBoost

AdaBoost 1、引言2、AdaBoost2.1 定义2.2 优缺点2.2.1 优点2.2.2 缺点 2.3 实现方式2.4 算法公式2.5 代码示例 3、总结 1、引言 小屌丝&#xff1a;鱼哥&#xff0c; 这五一要去哪里浪啊&#xff1f; 小鱼&#xff1a;哪也不去&#xff1f; 小屌丝&#xff1a;&#xff1f;&am…

[激光原理与应用-92]:振镜的光路图原理

目录 一、振镜的光路 二、振镜的工作原理 2.1 概述 2.2 焊接头 2.3 准直聚焦头-直吹头 2.4 准直聚焦头分类——按应用分 2.4.1 准直聚焦头分类——功能分类 2.4.2 准直聚焦头镜片 2.4.3 振镜焊接头 2.4.4 振镜分类&#xff1a; 2.4.5 动态聚焦系统演示&#xff08;素…

代码随想录第51天 | 309.最佳买卖股票时机含冷冻期

309.最佳买卖股票时机含冷冻期 309. 买卖股票的最佳时机含冷冻期 - 力扣&#xff08;LeetCode&#xff09; 代码随想录 (programmercarl.com) 动态规划来决定最佳时机&#xff0c;这次有冷冻期&#xff01;| LeetCode&#xff1a;309.买卖股票的最佳时机含冷冻期_哔哩哔哩_bi…

开发环境待

一 web开发环境搭建 1 web开发环境概述 所谓web开发,指的就是从网页中向后端程序发送请求.与后端程序进行交互. 流程图: 1,Web服务器是指驻留于因特网上某种类型计算机的程序. 2, 可以向浏览器等Web客户端提供文档&#xff0c;也可以放置网站文件&#xff0c;让全世界 浏览…

自定义类型②③——联合体和枚举

自定义类型②③——联合体和枚举 1.联合体1.1 联合体类型的声明1.2 联合体的特点1.3 相同成员结构体和联合体的对比1.4 联合体大小的计算1.5 联合体的应用①1.5 联合体的应用② 2. 枚举2.1 枚举类型的声明2.2 枚举类型的特点2.3 枚举的优点 1.联合体 1.1 联合体类型的声明 关…