众所周知,GPT可以认为是一个离线的软件的,对于一些实时性有要求的功能是完全不行,比如实时信息检索,再比如我们今天要实现个一个日程管理的功能,这个功能你纯依赖于ChatGPT或者其他大语言模型(后文简称llm),是完全实现不了的,比如你这次让他帮你记录个日程,你要是和他聊的内容过多,历史聊天记录滚动覆盖了就找不回来了。 你要是换个聊天窗口,之前的日程信息你就更找不回来了,其根本原因是目前所有的llm都是无状态的,每轮对话必须携带所有历史聊天记录才能实现多轮对话,而所有的llm都有输入长度限制,比如gpt4目前是128k。
存储设计
所以,如果要实现日程记录永不丢失我们就需要用第三方存储来记录所有的日程信息,这里为了简单,我直接使用了sqlite3(用mysql或者其他存储都是可以的),我创建了一个非常简单的日程表,只有一个时间和描述,整体代码如下:
py
复制代码
# 连接到 SQLite 数据库
# 如果文件不存在,会自动在当前目录创建一个名为 'langchain.db' 的数据库文件
import sqlite3
conn = sqlite3.connect('langchain.db')
# 创建一个 Cursor 对象并通过它执行 SQL 语句
c = conn.cursor()
# 创建表
c.execute('''
create table if not exists schedules
(
id INTEGER primary key autoincrement,
start_time TEXT default (strftime('%Y-%m-%d %H:%M:%S', 'now', 'localtime')) not null,
description text default '' not null
);
''')
conn.commit()
conn.close()
print("数据库和表已成功创建!")
定义工具
那么接下来的问题就是如何让GPT能够查询和操作这个表了。这里我们直接使用了LangChain的@tool装饰器,讲schedules表的基本操作设置为GPT可以识别的接口,当然使用OpenAI的纯原始接口也是可以实现的(参加我之前的文章OpenAI的多函数调用),就是代码量相对会多很多。具体的代码如下,这里我定义了对schedules表的增、删、查的功能。
py
复制代码
def connect_db():
""" 连接到数据库 """
conn = sqlite3.connect('langchain.db')
return conn
@tool
def add_schedule(start_time : str, description : str) -> str:
""" 新增日程,比如2024-05-03 20:00:00, 周会 """
conn = connect_db()
cursor = conn.cursor()
cursor.execute("""
INSERT INTO schedules (start_time, description) VALUES (?, ?);
""", (start_time, description,))
conn.commit()
conn.close()
return "true"
@tool
def delete_schedule_by_time(start_time : str) -> str:
""" 根据时间删除日程 """
conn = connect_db()
cursor = conn.cursor()
cursor.execute("""
DELETE FROM schedules WHERE start_time = ?;
""", (start_time,))
conn.commit()
conn.close()
return "true"
@tool
def get_schedules_by_date(query_date : str) -> str:
""" 根据日期查询日程,比如 获取2024-05-03的所有日程 """
conn = connect_db()
cursor = conn.cursor()
cursor.execute("""
SELECT start_time, description FROM schedules WHERE start_time LIKE ?;
""", (f"{query_date}%",))
schedules = cursor.fetchall()
conn.close()
return str(schedules)
创建llm
到这里,所以依赖的逻辑就已经完成了,接下来就是创建agent了,首先就是想定义好llm,这里我还是选用了OpenAI的gpt3.5,(个人认为这是目前性价比最高的模型),注意llm必须要调用bind_tools方法绑定好我们上面声明好的工具。
py
复制代码
## 创建llm
llm = ChatOpenAI(model="gpt-3.5-turbo", max_tokens=4096)
tools = [add_schedule, delete_schedule_by_time, get_schedules_by_date]
llm_with_tools = llm.bind_tools(tools)
提示词模板
然后就是创建提示词模板,这里额外提一下,因为目前所有的llm都不具备对时间的感知能力,所以这里必须在模板里将当前时间传给llm,方便llm去做时间的计算。
py
复制代码
## 创建提示词模板
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"你是一个日程管理助手",
),
("placeholder", "{chat_history}"),
("user", "{input} \n\n 当前时间为:{current_time}"),
("placeholder", "{agent_scratchpad}"),
]
)
创建Agent
之后就是创建agent和执行器了,这里自己创建一个一遍,又直接使用了LangChain封装好的方法创建了一遍,二者功能上没有区别,区别就是直接用别人的方法,自己可以少写两行代码。
py
复制代码
## agent创建方式1
from langchain.agents.format_scratchpad.openai_tools import (
format_to_openai_tool_messages,
)
agent = (
{
"current_time": lambda x: x["current_time"],
"input": lambda x: x["input"],
"agent_scratchpad": lambda x: format_to_openai_tool_messages(
x["intermediate_steps"]
),
}
| prompt
| llm_with_tools
| OpenAIToolsAgentOutputParser()
)
## agent创建方式2
agent = create_tool_calling_agent(llm_with_tools, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=False)
执行
用如下的方式就可以执行agent验证功能是否可以正常了。
py
复制代码
invoke(
{
"input": "查询下我明天有啥安排?",
"current_time": datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') # 当前时间必须传
}
)
这里我简单实现了一个多轮对话用来验证各功能是否正常。
py
复制代码
def ask(question):
res = agent_executor.invoke(
{
"input": question,
"current_time": datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}
)
return res["output"]
while True:
question = input(">")
if question.lower() == '退出':
break
print(ask(question))
bash
复制代码
> 删除今天所有的日程
已成功删除今天所有的日程。
> 创建一套明天晚上6点的日程,开周会
日程已成功创建,明天晚上6点有周会安排。
> 我明天第一条日程是啥?
您明天的第一条日程是沟通会,时间为2024-05-05 09:00:00。祝您顺利!
> 看下我明天早上10点有没有安排?
明天早上10点没有安排,您的日程是:
- 09:00:00 沟通会
- 18:00:00 周会
> 把我明天早上9点的会议改到10点
已成功将您明天早上9点的会议改到10点。
总结
日程管理的能力本质上还是建立在llm的函数调用能力,说白了其实你告诉llm有什么样的函数可以调用,然后让llm自行决策是否需要调用,这也是当下llm智能的体现。使用LangChain其实也只是将函数的定义、调用以及结果返回的流程简化而已。这里额外说下,上面代码中,我并未给llm提供修改日程的方法,但后续测试工程中我让它修改某个日程,它居然修改成功了,你猜它是怎么实现的?
备注:本文完整示例代码已放在Github github.com/xindoo/lang…。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓