【LLM 论文】UPRISE:使用 prompt retriever 检索 prompt 来让 LLM 实现 zero-shot 解决 task

news2025/1/13 17:26:08

论文:UPRISE: Universal Prompt Retrieval for Improving Zero-Shot Evaluation
⭐⭐⭐⭐
EMNLP 2023, Microsoft
Code:https://github.com/microsoft/LMOps

一、论文速读

这篇论文提出了 UPRISE,其思路是:训练一个 prompt retriever,面对一个 task 的 input 时,可以通过 prompt retriever 从 prompt pool 中检索到一个最合适的 prompt 作为 in-context learning 中的 exemplars,然后把这些 exemplars + task input 一起输入给 LLM,从而得到 answer。

下图是一个 case:(下半部分是 UPRISE 改进后的)

在这里插入图片描述

二、Prompt Retriever

2.1 Prompt Retriever 是什么

prompt retriever 是这篇论文的关键创新点,它的提出思路是这样的:以往 prompt engineering 方法中,使用 LLM 解决每一个 downstream task 都需要预先设定一个对应的 prompt。但也有可能为某个 task 设定的 prompt 也能够泛化到其他未见过的 task 上,于是,这篇论文的工作首先构建了一个 prompt pool,里面存储了很多用于解决 downstream tasks 的 prompts,然后当一个 test input 到来时,prompt retriever 可以从中检索出最适合这个 task 的 prompt,然后把 retrieved prompt + task input 输入给 LLM 来得到 answer。

论文的关键是训练出能够满足要求的 prompt retriever,并期待它面对没有见过的 task(prompt pool 中也没有这个 task 的 prompt),也可以检索出一个合适的 prompt 并让 LLM 来回复这个 input,这也就是论文提出的 Cross-task retrieval。另外也期待这个 prompt retriever 可以用于多个不同系列的 LLM,这也是论文提出的 Cross-model retrieval

2.2 Prompt Retriever 的训练和 inference

在这里插入图片描述

分别介绍 prompt retriever 的训练和推理思路。

retriever 的训练

这里会使用一个 frozen LLM 用于 prompt retriever 的监督微调。

对于一个 prompt-input 的 pair,会将其视为 positive pair,然后更换其中的 prompt 制作出一些 negative pairs,之后:

  • 把一个 pair 给 retriever,retriever 是一个 bi-encoder 模型,prompt encoder 和 input encoder 分别对 prompt 和 input 进行编码
  • 把一个 pair 和 negative pairs 给 frozen LLM,让其输出一个 task score 来评估 prompt 的有效性

对 positive pair 和 negative pairs 都循环上述过程,并使用对比学习来训练 prompt retriever,损失函数使用的 InfoNCE 这样的对比损失函数。

inference 阶段

预先使用 prompt encoder 对所有 prompt 进行编码,存入 prompt pool 中。

在 inference 时,对于 task input x t e s t x_{test} xtest,对其使用 input encoder 进行编码,然后从 prompt pool 中检索出最相似的 K 个 prompts 并降序排列: P + = ( p 1 , … , p K ) P^+ = (p_1, \dots, p_K) P+=(p1,,pK),然后把这个些 prompts 和 input 连接在一起,形成 p k ⊕ ⋯ ⊕ p 1 ⊕ x t e s t p_k \oplus \dots \oplus p_1 \oplus x_{test} pkp1xtest作为给 LLM 的输入。

同时神奇的是,在多个 downstream tasks 上训练出来的 retriever,能够很不错的应对未见过的任务,并从 prompt pool 选出相对来说比较合适的 prompts 来与 input 组装从而输入给 LLM 获得好的 answer。

三、总结

总的来说,这篇论文提出了一个很新颖的思路:prompt retriever,从而提高 LLM 的 zero-shot 的能力。

同时还研究了 prompt retriever 从训练的任务类型推广到其他未见过的任务类型,以及从小的 LLM 推广到更大规模的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1641357.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Git可视化工具tortoisegit 的下载与使用

一、tortoisegit 介绍 TortoiseGit 是一个非常实用的版本控制工具,主要用于与 Git 版本控制系统配合使用。 它的主要特点包括: 图形化界面:提供了直观、方便的操作界面,让用户更易于理解和管理版本控制。与 Windows 资源管理器…

Flutter笔记:Widgets Easier组件库(9)使用弹窗

Flutter笔记 Widgets Easier组件库(9):使用弹窗 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress o…

美国站群服务器的定义、功能以及在网站运营中的应用

美国站群服务器的定义、功能以及在网站运营中的应用 在当今互联网的蓬勃发展中,站群服务器已成为网站运营和SEO优化中不可或缺的重要工具之一。尤其是美国站群服务器,在全球范围内备受关注。本文将深入探讨美国站群服务器的定义、功能以及在网站运营中的…

Go实战训练之Web Server 与路由树

Server & 路由树 Server Web 核心 对于一个 Web 框架,至少要提供三个抽象: Server:代表服务器的抽象Context:表示上下文的抽象路由树 Server 从特性上来说,至少要提供三部分功能: 生命周期控制&…

基于SSM的宠物领养平台(有报告)。Javaee项目。ssm项目。

演示视频: 基于SSM的宠物领养平台(有报告)。Javaee项目。ssm项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构,通过Spring Spri…

《自动机理论、语言和计算导论》阅读笔记:p215-p351

《自动机理论、语言和计算导论》学习第 11 天,p215-p351总结,总计 37 页。 一、技术总结 1.constrained problem 2.Fermat’s lats theorem Fermat’s Last Theorem states that no three positive integers a, b and c satisfy the equation a^n b…

【数据结构(邓俊辉)学习笔记】列表01——从向量到列表

文章目录 0.概述1. 从向量到列表1.1 从静态到动态1.2 从向量到列表1.3 从秩到位置1.4 列表 2. 接口2.1 列表节点2.1.1 ADT接口2.1.2 ListNode模板类 2.2 列表2.2.1 ADT接口2.2.2 List模板类 0.概述 学习了向量,再介绍下列表。先介绍下列表里的概念和语义&#xff0…

C++ | Leetcode C++题解之第66题加一

题目&#xff1a; 题解&#xff1a; class Solution { public:vector<int> plusOne(vector<int>& digits) {int n digits.size();for (int i n - 1; i > 0; --i) {if (digits[i] ! 9) {digits[i];for (int j i 1; j < n; j) {digits[j] 0;}return …

平平科技工作室-Python-超级玛丽

一.准备图片 放在文件夹取名为images 二.准备一些音频和文字格式 放在文件夹media 三.编写代码 import sys, os sys.path.append(os.getcwd()) # coding:UTF-8 import pygame,sys import os from pygame.locals import* import time pygame.init() # 设置一个长为1250,宽为…

Python | Leetcode Python题解之第65题有效数字

题目&#xff1a; 题解&#xff1a; from enum import Enumclass Solution:def isNumber(self, s: str) -> bool:State Enum("State", ["STATE_INITIAL","STATE_INT_SIGN","STATE_INTEGER","STATE_POINT","STATE_…

Redis-三主三从集群搭建

正式搭建之前&#xff0c;注意事项&#xff08;坑&#xff09;提前放到最开始&#xff0c;也可以出问题回来看&#xff0c; &#xff08;1&#xff09;第二步中最好将配置文件中的logfile自定义一个目录&#xff0c;以便于在第五步中启动出错的时候迅速定位错误。 &#xff0…

DS高阶:图论算法经典应用

一、最小生成树&#xff08;无向图&#xff09; 在了解最小生成树算法之前&#xff0c;我们首先要先了解以下的准则&#xff1a; 连通图中的每一棵生成树&#xff0c;都是原图的一个极大无环子图&#xff0c;即&#xff1a;从其中删去任何一条边&#xff0c;生成树就不在连通&a…

如何低成本创建个人网站?

目录 前言 网站源代码 虚拟主机或服务器 域名注册或免费二级域名 域名解析 上传源代码压缩包 添加刚刚的域名 成功搭建 失败的解决方案 结语 前言 很多小白都非常想拥有自己的网站&#xff0c;但很多人虽然有了自己的源代码但苦于不知道怎么将其变成所有人都能够访…

全自动预混料饲料生产线,轻松生产发酵饲料

随着人们对健康饮食的日益重视&#xff0c;发酵饲料机作为一种新X的养殖设备&#xff0c;逐渐受到了广大养殖户的青睐。全自动预混料饲料生产线不仅提高了饲料的营养价值&#xff0c;还大大缩短了饲料的发酵时间&#xff0c;为养殖户带来了可观的经济效益。 发酵饲料加工机械…

通过符号程序搜索提升prompt工程

原文地址&#xff1a;supercharging-prompt-engineering-via-symbolic-program-search 通过自动探索​​大量提示变体来找到更好的提示 2024 年 4 月 22 日 众所周知&#xff0c;LLMs的成功在很大程度上仍然取决于我们用正确的指导和例子来提示他们的能力。随着新一代LLMs变得越…

「C++ STL篇 0-0」string类的使用

目录 〇、概念 1. string类是什么&#xff1f; 2. string类的官方文档 3. 导入string类 一、string类的构造函数 0. 全部构造函数 1. 常用的四个构造函数 2. 可能用到的构造函数 拓1&#xff1a;npos 二、赋值运算符重载 1. 三个赋值运算符重载函数 2. 使用赋值运算符重载函数…

最新SpringBoot项目地方废物回收机构管理系统

采用技术 最新SpringBoot项目地方废物回收机构管理系统的设计与实现~ 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBootMyBatis 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 页面展示效果 登录页面 后端管理员 管理员首页 员工管理 设…

机器学习批量服务模式优化指南

原文地址&#xff1a;optimizing-machine-learning-a-practitioners-guide-to-effective-batch-serving-patterns 2024 年 4 月 15 日 简介 在机器学习和数据分析中&#xff0c;模型服务模式的战略实施对于在生产环境中部署和操作人工智能模型起着至关重要的作用。其中&…

软考之零碎片段记录(二十九)+复习巩固(十七、十八)

学习 1. 后缀式&#xff08;逆波兰式&#xff09; 2. c/c语言编译 类型检查是语义分析 词法分析。分析单词。如单词的字符拼写等语法分析。分析句子。如标点符号、括号位置等语言上的错误语义分析。分析运算符、运算对象类型是否合法 3. java语言特质 即时编译堆空间分配j…

Linux服务器常用命令总结

view查找日志关键词 注意日志级别&#xff0c;回车后等一会儿&#xff0c;因为文件可能比较大加载完需要时间 当内容显示出来后&#xff0c;使用“/关键词”搜索 回车就能搜到&#xff0c;n表示查找下一个&#xff0c;N表示查找上一个 find 查找 find Family -name book …