【深度学习】第二门课 改善深层神经网络 Week 2 3 优化算法、超参数调试和BN及其框架

news2024/12/25 3:17:26

🚀Write In Front🚀
📝个人主页:令夏二十三
🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝
📣系列专栏:深度学习
💬总结:希望你看完之后,能对你有所帮助,不足请指正!共同学习交流 🖊

文章目录

目录

文章目录

2.1 优化算法分类

2.2 超参数调试和BN及框架


2.1 优化算法分类

深度学习中的优化算法主要包括以下几种:

  1. 批量梯度下降(Batch Gradient Descent):这种方法涉及对整个训练数据集进行一次完整的遍历来计算梯度。然而,随着数据集的增大,这种方法的计算量也会增加。

  2. 小批量梯度下降(Mini-batch Gradient Descent):为了解决批量梯度下降的计算量问题,可以将数据集划分为多个较小的批次(mini-batches),并使用每个批次来计算梯度。这种方法既减少了计算量,又避免了随机梯度下降的噪声。

  3. 动量梯度下降(Momentum Gradient Descent):这种方法通过引入动量概念来加速学习过程。它考虑了之前的梯度信息,从而减少了学习过程中的震荡。

  4. RMSprop:这种方法在动量梯度下降的基础上,还考虑了梯度的平方,这有助于确定学习率,特别是在数据分布不均匀的情况下。

  5. Adam优化算法:这是一种自适应学习率的方法,结合了动量梯度下降和RMSprop的特点,能够更有效地处理非平稳目标函数。

这些优化算法在深度学习中起着关键作用,它们帮助模型更快地收敛并提高其性能。选择合适的优化算法取决于具体问题的性质和数据的特点。

除了这些梯度下降算法层面的优化,还有一些其他的优化手段,比如随着 epoch 的增大逐渐衰减学习率:(这里用t代表当前训练的迭代次数下标)

 它们主要可以改善 mini-batch 带来的训练末期参数反复震荡的问题,不过就是会导致超参数的增加。

2.2 超参数调试和BN及框架

在深度学习中,超参数调试是指调整模型中的超参数以优化模型性能的过程。这些超参数包括学习率、批量大小、隐藏层神经元数量、网络层数等。通过实验和观察,研究人员可以找到最佳的超参数设置,以提高模型的准确性和泛化能力。

下面按照重要程度对神经网络中的一些超参数进行排序:

  1. 学习率α
  2. mini-batch大小
  3. 隐藏层神经元数量
  4. 动量梯度下降法滤波系数β
  5. 隐藏层个数
  6. 学习率衰减系数
  7. Adam优化方法参数

批量归一化(Batch Normalization, BN)是一种深度学习技术,用于加速训练过程并减少过拟合的风险。BN通过对每个小批量数据在激活函数之前进行归一化处理,使得每层输入的分布更加稳定,从而有助于解决内部协变量偏移问题,提高模型的泛化能力。

批量归一化(Batch Normalization,简称BN)是深度学习中一种用于提高训练速度和稳定性的技术。它的主要作用是对神经网络的每一层的输入数据进行归一化处理,即使得这些数据的分布保持一致。这样做有几个好处:

  1. 加速学习过程:通过归一化,可以允许使用更高的学习率,而不担心数值问题,从而加速模型的收敛速度。

  2. 减少过拟合:BN通过减少内部协变量偏移(Internal Covariate Shift)现象,即每层输入分布的变化,有助于模型更好地泛化。

  3. 减少对初始化的依赖:在没有BN的情况下,网络中每一层的输入分布会随着前面层参数的更新而变化,这要求对网络进行细致的初始化。BN减轻了这一需求。

批量归一化的具体步骤如下:

  1. 计算批均值和批方差:对每个特征在小批量数据上进行平均和方差的计算。

  2. 归一化:对每个特征进行归一化处理,使其具有均值为0和方差为1的分布。这通常通过减去均值并除以方差的平方根来实现。

  3. 缩放和平移:引入两个可学习的参数——缩放因子(γ)和平移因子(β),对归一化后的数据进行缩放和平移,以恢复网络的表示能力。

  4. 应用激活函数:在归一化、缩放和平移之后,对数据进行非线性激活。

批量归一化的关键在于它是在每个小批量(mini-batch)上进行的,而不是在整个数据集上。这使得归一化过程可以随数据的流动而动态调整,而不是固定不变。

BN在深度学习模型中广泛应用,尤其是在卷积神经网络(CNN)和前馈神经网络中,它有助于模型的训练效率和性能提升。然而,值得注意的是,BN在某些情况下可能不是最佳选择,例如在循环神经网络(RNN)中,或者在数据批量非常小的情况下,BN的效果可能不佳。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1641136.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ASV1000视频监控平台:通过SDK接入海康网络摄像机IPC

目录 一、为何要通过SDK接入海康网络摄像机 (一)海康网络摄像机的SDK的功能 1、视频采集和显示 2、视频存储 3、视频回放 4、报警事件处理 5、PTZ控制 6、自定义设置 7、扩展功能 (二)通过SDK接入的好处(相对…

【1小时掌握速通深度学习面试3】RNN循环神经网络

目录 12.描述循环神经网络的结构及参数更新方式,如何使用神经网络对序列数据建模? 13.循环神经网络为什么容易出现长期依赖问题? 14.LSTM 是如何实现长短期记忆功能的? 15.在循环神经网络中如何使用 Dropout ? 16.如何用循环神经网络实现 Seg2Seq 映射? …

2024新版Java基础从入门到精通全套教程(含视频+配套资料)

前言 Java基础是所有入门java的同学必过的一关,基础学习的牢固与否决定了程序员未来成就的高度。因此,基础学习的重要性不言而喻。 但是很多同学学习java基础知识,要么是学的太“基础”,就是只会各个知识点的简单概念和使用&…

idea 新建spring maven项目、ioc和依赖注入

文章目录 一、新建Spring-Maven项目二、在Spring-context使用IOC和依赖注入 一、新建Spring-Maven项目 在pom.xml文件中添加插件管理依赖 <build><plugins><plugin><artifactId>maven-compiler-plugin</artifactId><version>3.1</ver…

恶补《操作系统》4_2——王道学习笔记

4.1_5 文件存储空间管理 1、存储空间的划分与初始化 文件卷&#xff08;逻辑卷&#xff09;的概念目录区与文件区 2、几种管理方法 空闲表法&#xff1a;首位置长度&#xff0c;回收时注意修改空闲链表法&#xff08;空闲盘块链、空闲盘区链&#xff09;位示图法 成组链接法…

2024年 Java 面试八股文——Mybatis篇

目录 1. 什么是Mybatis&#xff1f; 2. 说说Mybatis的优缺点 3. Xml映射文件中&#xff0c;都有哪些标签 4. #{}和&{}有什么区别 5. Mybatis是如何进行分页的,分页插件的原理是什么 6. Mybatis是如何将sql执行结果封装为目标对象并返回的&#xff1f; 7. Mybatis是怎…

JavaWeb--1.Servlet

Servlet&#xff08;基础&#xff09; 1、配置依赖&#xff1a; ​ 在pom.xml文件中加入相关依赖 <dependencies><dependency><groupId>jakarta.servlet</groupId><artifactId>jakarta.servlet-api</artifactId><version>5.0.0&l…

基于Python的LSTM网络实现单特征预测回归任务(TensorFlow)

目录 一、数据集 二、任务目标 三、代码实现 1、从本地路径中读取数据文件 2、数据归一化 3、创建配置类&#xff0c;将LSTM的各个超参数声明为变量&#xff0c;便于后续使用 4、创建时间序列数据 5、划分数据集 6、定义LSTM网络 &#xff08;1&#xff09;创建顺序模…

【ESP32之旅】合宙ESP32-C3 使用PlatformIO编译和Debug调试

工程创建 首先打开PIO Home窗口&#xff0c;然后点击New Project来创建新的工程&#xff0c;工程配置选择如下图所示&#xff1a; 注&#xff1a; 选择板子型号的时候需要选择ESP32C3&#xff0c;勾选取消Location可以自定义路径。 修改配置文件 工程创建完毕之后在工程根…

模式识别作业:颜色算子的三种阈值分割算法

一、引言&#xff1a; 在图像处理中&#xff0c;我们往往需要提取图像的一些关键信息&#xff0c;比如本篇文章的内容——提取颜色&#xff0c;然而当我们需要提取某一种颜色时&#xff0c;无论图像余下的部分如何“丰富多彩”&#xff0c;他们都不再重要&#xff0c;需要被忽…

C#核心之面向对象-继承

面向对象-继承 文章目录 1、继承的基本规则1、基本概念2、基本语法3、示例4、访问修饰符的影响5、子类和父类的同名成员 2、里氏替换原则1、基本概念2、is和as3、基本实现 3、继承中的构造函数1、基本概念2、父类的无参构造函数3、通过base调用指定父类构造 4、万物之父和装箱拆…

8.k8s中网络资源service

目录 一、service资源概述 二、service资源类型 1.ClusterIP类型 2.service的nodeport类型 3.service的loadbalancer类型&#xff08;了解即可&#xff09; 4.service的externalname类型&#xff08;了解即可&#xff09; 三、nodeport的端口范围设置和svc的endpoint列表 1.修…

扩散模型(Diffusion Model)概述

扩散模型&#xff08;Diffusion Model&#xff09;是图像生成模型的一种。有别于此前 AI 领域大名鼎鼎的 GAN、VAE 等算法&#xff0c;扩散模型另辟蹊径&#xff0c;其主要思想是一种先对图像增加噪声&#xff0c;再逐步去噪的过程&#xff0c;其中如何去噪还原图像是算法的核心…

web3风格的网页怎么设计?分享几个,找找感觉。

web3风格的网站是指基于区块链技术和去中心化理念的网站设计风格。这种设计风格强调开放性、透明性和用户自治&#xff0c;体现了Web3的核心价值观。 以下是一些常见的Web3风格网站设计元素&#xff1a; 去中心化标志&#xff1a;在网站的设计中使用去中心化的标志&#xff0…

RocketMQ SpringBoot 3.0不兼容解决方案

很多小伙伴在项目升级到springBoot3.0版本以上之后&#xff0c;整合很多中间件会有很多问题&#xff0c;下面带小伙伴解决springBoot3.0版本以上对于RocketMQ 不兼容问题 报错信息 *************************** APPLICATION FAILED TO START *************************** Des…

深入 Django 模型层:数据库设计与 ORM 实践指南

title: 深入 Django 模型层&#xff1a;数据库设计与 ORM 实践指南 date: 2024/5/3 18:25:33 updated: 2024/5/3 18:25:33 categories: 后端开发 tags: Django ORM模型设计数据库关系性能优化数据安全查询操作模型继承 第一章&#xff1a;引言 Django是一个基于Python的开源…

Lucene从入门到精通

**************************************************************************************************************************************************************************** 1、概述 【1】入门&#xff1a;作用、有点与缺点 【2】应用&#xff1a;索引、搜索、fie…

最短路径(朴素)+堆排序+模拟堆

文章目录 Dijkstra求最短路 I堆排序模拟堆 Dijkstra求最短路 I 给定一个 n 个点 m 条边的有向图&#xff0c;图中可能存在重边和自环&#xff0c;所有边权均为正值。 请你求出 1 号点到 n 号点的最短距离&#xff0c;如果无法从 1 号点走到 n 号点&#xff0c;则输出 −1。 输…

对命令模式的理解

目录 一、场景1、文本编辑器并不是一个好的例子&#xff0c;设备控制器才是2、设备控制器的demo 二、不用命令模式1、代码2、问题 三、使用命令模式1、代码2、当需求变化时2.1 新增代码2.2 优点 四、进一步思考1、省略对Command的建模可以吗&#xff1f;2、命令模式的价值 一、…

香港理工大学内地事务总监陆海天教授确认出席“边缘智能2024 - AI开发者峰会”并发表主题演讲

隨著AI技術的日新月異&#xff0c;我們正步入一個邊緣計算智能化與分布式AI相互融合的新紀元。這一變革不僅推動了分布式智能創新應用的飛速發展&#xff0c;還使得邊緣智能——這一結合邊緣計算和智能技術的新興領域&#xff0c;逐漸成為引領AI發展的重要力量。通過其分布式和…