基于Python的LSTM网络实现单特征预测回归任务(TensorFlow)

news2024/11/24 0:52:10

目录

一、数据集

二、任务目标

三、代码实现

1、从本地路径中读取数据文件

2、数据归一化

3、创建配置类,将LSTM的各个超参数声明为变量,便于后续使用

4、创建时间序列数据

5、划分数据集

6、定义LSTM网络

(1)创建顺序模型实例

(2)添加LSTM层

(3)添加全连接层

7、编译LSTM模型

8、训练模型

9、模型预测

10、数据反归一化

11、绘制图像

12、完整版代码


一、数据集

自建数据集--【load.xlsx】。包含2列:

  • date列时间列,记录2022年6月2日起始至2023年12月31日为止,日度数据
  • price列价格列,记录日度数据对应的某品牌衣服的价格,浮点数)

二、任务目标

实现基于时间序列的单特征价格预测

三、代码实现

1、从本地路径中读取数据文件

  • read_excel函数读取Excel文件(read_csv用来读取csv文件),读取为DataFrame对象
  • index_col='date''date'列设置为DataFrame的索引
  • .values属性获取price列的值,pandas会将对应数据转换为NumPy数组
# 字符串前的r表示一个"原始字符串",raw string
# 文件路径中包含多个反斜杠。如果我们不使用原始字符串(即不使用r前缀),那么Python会尝试解析\U、\N等作为转义序列,这会导致错误
data = pd.read_excel(r'E:\load.xlsx', index_col='date')
# print(data)
prices = data['price'].values
# print(prices)

打印data:

打印prices:

2、数据归一化

  • 归一化:将原始数据的大小转化为[0,1]之间,采用最大-最小值归一化
    • 数值过大,造成神经网络计算缓慢
    • 在多特征任务中,存在多个特征属性,但神经网络会认为数值越小的,影响越小。所以可能关键属性A的值很小,不重要属性B的值却很大,造成神经网络的混淆
  • scikit-learn的转换器通常期望输入是二维的,其中每一行代表一个样本,每一列代表一个特征
    • prices.reshape(-1, 1) 用于确保 prices 是一个二维数组,即使它只有一个特征列
    • -1的意思是让 NumPy 自动计算该轴上的元素数量,以保持原始数据的元素总数不变
    • fit方法计算了数据中每个特征的最小值和最大值,这些值将被用于缩放
    • transform方法使用这些统计信息来实际缩放数据,将其转换到 [0, 1] 范围内
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_prices = scaler.fit_transform(prices.reshape(-1, 1)) # 二维数组
# print(scaled_prices)

打印归一化后的价格数据:

3、创建配置类,将LSTM的各个超参数声明为变量,便于后续使用

  • timestep:时间步长,滑动窗口大小
  • feature_size:每个步长对应的特征数量,这里只使用1维,即每天的价格数据
  • batch_size:批次大小,即一次性送入多少个数据(一时间步长为单位)进行训练
  • output_size:单输出任务,输出层为1,预测未来1天的价格
  • hidden_size:隐藏层大小,即神经元个数
  • num_layers:神经网络的层数
  • learning_rate:学习率
  • epochs:迭代轮数,即总共要让神经网络训练多少轮,全部数据训练一遍成为一轮
  • best_loss:记录损失
  • activation = 'relu':定义激活函数使用relu
class Config():
    timestep = 7  # 时间步长,滑动窗口大小
    feature_size = 1 # 每个步长对应的特征数量,这里只使用1维,每天的价格数据
    batch_size = 1 # 批次大小
    output_size = 1 # 单输出任务,输出层为1,预测未来1天的价格
    hidden_size = 128 # 隐藏层大小
    num_layers = 1 # lstm的层数
    learning_rate = 0.0001 # 学习率
    epochs = 500 # 迭代轮数
    model_name = 'lstm' # 模型名
    best_loss = 0  # 记录损失
    activation = 'relu' # 定义激活函数
config = Config()

4、创建时间序列数据

  • 通过滑动窗口移动获取数据,时间步内数据作为特征数据,时间步外1个数据作为标签数据
  • 通过序列的切片实现特征和标签的划分
  • 通过np.array将数据转化为NumPy数组

# 创建时间序列数据
X, y = [], []
for i in range(len(scaled_prices) - config.timestep):
    # 从当前索引i开始,取sequence_length个连续的价格数据点,并将其作为特征添加到列表 X 中。
    X.append(scaled_prices[i: i + config.timestep])
    # 将紧接着这sequence_length个时间点的下一个价格数据点作为目标添加到列表y中。
    y.append(scaled_prices[i + config.timestep])
X = np.array(X)
print(X)
y = np.array(y)
print(y)

打印特征数据: 

  • 三维数组,X 是由多个二维数组(即多个时间步长的数据)组成的,加之本身是一个列表
  • 每次迭代都会从 scaled_prices 中取出一个长度为 config.timestep 的连续子序列,并将其添加到 X 列表中
  • 由于 scaled_prices 本身是一个二维数组,所以每次取出的子序列也是一个二维数组,形状大致为 [config.timestep, features]
  • 当多个这样的二维数组被添加到 X 列表中时,X 就变成了一个列表的列表,其中每个内部列表都是一个二维数组
  • 它的形状将是 [n_samples - config.timestep, config.timestep, features],这是一个三维数组

打印标签数据:

  • 二维数组,y 是由单个数据点(即单个时间步长的数据)组成的,所以它保持为二维数组
  • 从 scaled_prices 中取出一个单独的数据点(即一个二维数组中的一行),并将其添加到 y 列表中
  • y 列表中的每个元素都是一个一维数组(或可以看作是一个具有多个特征的向量)
  • 它的形状将是 [n_samples - config.timestep, features],这仍然是一个二维数组

5、划分数据集

  • 按照9:1的比例划分训练集和测试集
  • train_test_split:是sklearn.model_selection模块中的一个函数,用于将数据集随机划分为训练集和测试集
  • shuffle=False:表示在划分数据之前不进行随机打乱,意味着数据会按照其原始顺序进行划分
  • 因为时间序列数据具有时序性,用过去时间数据预测新时间数据,要保证时间有序
  • 测试数据为时间序列的末尾数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, shuffle=False)

6、定义LSTM网络

(1)创建顺序模型实例

model = Sequential()

(2)添加LSTM层

  • LSTM:这是 Keras 中提供的 LSTM 层的类。通过调用这个类,创建一个 LSTM 层
  • activation=config.activation:这设置了 LSTM 层中使用的激活函数
  • units=config.hidden_size:这设置了 LSTM 层中的隐藏单元数量
  • input_shape=(config.timestep, config.feature_size):这定义了输入数据的形状,是一个元组
    • 告诉模型,输入数据应该是一个形状为[batch_size, config.timestep, config.feature_size]的三维
    • 其中batch_size是批次中样本的数量,它在模型训练时会自动确定(根据你传递给模型的批次数据大小)
model.add(LSTM(activation=config.activation, units=config.hidden_size, input_shape=(config.timestep, config.feature_size)))
  •  LSTM层的输出是一个三维张量,其形状通常为(seq_len, batch_size, num_directions * hidden_size)
    • seq_len表示序列长度,即时间序列展开的步数
    • batch_size表示数据批次的大小,即一次性输入到LSTM层的数据样本数量
    • num_directions * hidden_size表示隐藏层的输出特征维度
      • 对于单向LSTM,num_directions为1
      • 对于双向LSTM,num_directions为2。hidden_size则是隐藏层节点数,即LSTM单元中隐藏状态的维度
    • 含义:LSTM层的输出包含了每个时间步的隐藏状态

(3)添加全连接层

  • Dense:是 Keras 中用于创建全连接层的类,也就是每个输入节点与输出节点之间都连接有一个权重
  • config.output_size:指定了该全连接层的输出单元数量
model.add(Dense(config.output_size))
  • 由于此例中,全连接层的大小为1,因此LSTM层输出的三维张量在经过全连接层后将被压缩成一个二维张量
  • (batch_size, 1)这样的形状

7、编译LSTM模型

  • model.compile():这个方法是Keras模型的一个函数,用于配置模型训练前的参数
  • optimizer='adam':这里指定了使用Adam优化器来训练模型
  • loss='mean_squared_error':这里指定了损失函数为均方误差(Mean Squared Error, MSE)
model.compile(optimizer='adam', loss='mean_squared_error')

8、训练模型

  • model.fit():是 Keras 模型的一个函数,用于训练模型。它将根据提供的训练数据 X_train 和对应的标签 y_train通过多次迭代(epochs)来训练模型。
  • x=X_train:指定了训练数据的输入
  • y=y_train:指定了训练数据的标签(或目标值)
  • epochs=config.epochs:指定了训练过程中数据集的完整遍历次数。
  • batch_size=config.batch_size:指定了每次更新模型时使用的样本数
  • verbose=2:控制训练过程中的日志输出。verbose=2 表示每个 epoch 输出一行日志,显示训练过程中的损失值和评估指标(如果在编译时指定了评估指标)
  • history 对象是一个记录训练过程中信息的字典,包含了训练过程中的损失值和评估指标(如果有的话)
history = model.fit(x=X_train, y=y_train, epochs=config.epochs, batch_size=config.batch_size, verbose=2)

9、模型预测

  • model.predict():是 Keras 模型的一个函数,它根据提供的输入数据,给出模型对于这些数据的预测结果
predictions = model.predict(X_test)

10、数据反归一化

  • 当模型训练完成后并进行预测时,预测出的值会是缩放后的值(即按照训练数据缩放的比例)
  • 为了得到原始的比例或范围,需要使用缩放器的 inverse_transform 方法来将这些缩放后的值转换回原始的比例或范围
y_test_true_unnormalized = scaler.inverse_transform(y_test)
y_test_preds_unnormalized = scaler.inverse_transform(predictions)
  • 确保模型的预测结果和真实的测试集标签都在同一个比例或范围内,从而可以准确地评估模型的性能,并以更直观、更易于理解的方式呈现预测结果

11、绘制图像

# 设置图形的大小为10x5单位
plt.figure(figsize=(10, 5))

# 绘制真实的测试集标签,使用圆圈('o')作为标记,并命名为'True Values' 
plt.plot(y_test_true_unnormalized, label='True Values', marker='o')

# 绘制模型的预测值,使用叉号('x')作为标记,并命名为'Predictions' 
plt.plot(y_test_preds_unnormalized, label='Predictions', marker='x')

# 设置图形的标题
plt.title('Comparison of True Values and Predictions')

# 设置x轴的标签
plt.xlabel('Time Steps')

# 设置y轴的标签
plt.ylabel('Prices')

# 显示图例 
plt.legend()

# 显示图形
plt.show()

12、完整版代码

import pandas as pd
import numpy as np
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from matplotlib import pyplot as plt
from keras.models import Sequential
from keras.layers import LSTM, Dense, Dropout

class Config():
    timestep = 7
    hidden_size = 128
    batch_size = 1
    output_size = 1
    epochs = 500
    feature_size = 1
    activation = 'relu'
config = Config()


# dataframe对象
qy_data = pd.read_excel(r'E:\load.xlsx', index_col='date')
# print(qy_data)
# numpy数组 一维
prices = qy_data['price'].values
# print(prices)

scaler = MinMaxScaler()
# 归一化后变成二维数组
scaled_prices = scaler.fit_transform(prices.reshape(-1, 1))
# print(scaled_prices)

# Create time series data
X, y = [], []
for i in range(len(scaled_prices) - config.timestep):
    X.append(scaled_prices[i: i + config.timestep])
    y.append(scaled_prices[i + config.timestep])
X = np.array(X)
# print(X)
y = np.array(y)
# print(y)

# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, shuffle=False)

# Define the LSTM mode
model = Sequential()
model.add(LSTM(activation=config.activation, units=config.hidden_size, input_shape=(config.timestep, config.feature_size)))
model.add(Dense(config.output_size))

# Compile the model
# adam默认学习率是0.01
model.compile(optimizer='adam', loss='mean_squared_error')

model.save('LSTM.h5')

# Train the model
history = model.fit(x=X_train, y=y_train, epochs=config.epochs, batch_size=config.batch_size, verbose=2)

# Predictions
predictions = model.predict(X_test)

# Inverse transform predictions and true values
y_test_true_unnormalized = scaler.inverse_transform(y_test)
y_test_preds_unnormalized = scaler.inverse_transform(predictions)


# Plot true values and predictions
plt.figure(figsize=(10, 5))
plt.plot(y_test_true_unnormalized, label='True Values', marker='o')
plt.plot(y_test_preds_unnormalized, label='Predictions', marker='x')
plt.title('Comparison of True Values and Predictions')
plt.xlabel('Time Steps')
plt.ylabel('Prices')
plt.legend()
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1641121.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【ESP32之旅】合宙ESP32-C3 使用PlatformIO编译和Debug调试

工程创建 首先打开PIO Home窗口,然后点击New Project来创建新的工程,工程配置选择如下图所示: 注: 选择板子型号的时候需要选择ESP32C3,勾选取消Location可以自定义路径。 修改配置文件 工程创建完毕之后在工程根…

模式识别作业:颜色算子的三种阈值分割算法

一、引言: 在图像处理中,我们往往需要提取图像的一些关键信息,比如本篇文章的内容——提取颜色,然而当我们需要提取某一种颜色时,无论图像余下的部分如何“丰富多彩”,他们都不再重要,需要被忽…

C#核心之面向对象-继承

面向对象-继承 文章目录 1、继承的基本规则1、基本概念2、基本语法3、示例4、访问修饰符的影响5、子类和父类的同名成员 2、里氏替换原则1、基本概念2、is和as3、基本实现 3、继承中的构造函数1、基本概念2、父类的无参构造函数3、通过base调用指定父类构造 4、万物之父和装箱拆…

8.k8s中网络资源service

目录 一、service资源概述 二、service资源类型 1.ClusterIP类型 2.service的nodeport类型 3.service的loadbalancer类型(了解即可) 4.service的externalname类型(了解即可) 三、nodeport的端口范围设置和svc的endpoint列表 1.修…

扩散模型(Diffusion Model)概述

扩散模型(Diffusion Model)是图像生成模型的一种。有别于此前 AI 领域大名鼎鼎的 GAN、VAE 等算法,扩散模型另辟蹊径,其主要思想是一种先对图像增加噪声,再逐步去噪的过程,其中如何去噪还原图像是算法的核心…

web3风格的网页怎么设计?分享几个,找找感觉。

web3风格的网站是指基于区块链技术和去中心化理念的网站设计风格。这种设计风格强调开放性、透明性和用户自治,体现了Web3的核心价值观。 以下是一些常见的Web3风格网站设计元素: 去中心化标志:在网站的设计中使用去中心化的标志&#xff0…

RocketMQ SpringBoot 3.0不兼容解决方案

很多小伙伴在项目升级到springBoot3.0版本以上之后,整合很多中间件会有很多问题,下面带小伙伴解决springBoot3.0版本以上对于RocketMQ 不兼容问题 报错信息 *************************** APPLICATION FAILED TO START *************************** Des…

深入 Django 模型层:数据库设计与 ORM 实践指南

title: 深入 Django 模型层:数据库设计与 ORM 实践指南 date: 2024/5/3 18:25:33 updated: 2024/5/3 18:25:33 categories: 后端开发 tags: Django ORM模型设计数据库关系性能优化数据安全查询操作模型继承 第一章:引言 Django是一个基于Python的开源…

Lucene从入门到精通

**************************************************************************************************************************************************************************** 1、概述 【1】入门:作用、有点与缺点 【2】应用:索引、搜索、fie…

最短路径(朴素)+堆排序+模拟堆

文章目录 Dijkstra求最短路 I堆排序模拟堆 Dijkstra求最短路 I 给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。 请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。 输…

对命令模式的理解

目录 一、场景1、文本编辑器并不是一个好的例子,设备控制器才是2、设备控制器的demo 二、不用命令模式1、代码2、问题 三、使用命令模式1、代码2、当需求变化时2.1 新增代码2.2 优点 四、进一步思考1、省略对Command的建模可以吗?2、命令模式的价值 一、…

香港理工大学内地事务总监陆海天教授确认出席“边缘智能2024 - AI开发者峰会”并发表主题演讲

隨著AI技術的日新月異,我們正步入一個邊緣計算智能化與分布式AI相互融合的新紀元。這一變革不僅推動了分布式智能創新應用的飛速發展,還使得邊緣智能——這一結合邊緣計算和智能技術的新興領域,逐漸成為引領AI發展的重要力量。通過其分布式和…

# 从浅入深 学习 SpringCloud 微服务架构(八)Sentinel(1)

从浅入深 学习 SpringCloud 微服务架构(八)Sentinel(1) 一、sentinel:概述 1、前言 – 服务熔断 Hystrix 的替换方案。 1)2018年底 Netflix 官方宣布 Hystrix 已经足够稳定,不再积极开发 Hys…

基于AT89C52单片机的智能热水器控制系统

点击链接获取Keil源码与Project Backups仿真图: https://download.csdn.net/download/qq_64505944/89242443?spm1001.2014.3001.5503 C 源码仿真图毕业设计实物制作步骤05 题 目 基于单片机的智能热水器系统 学 院 专 业 班 级 学 号 学生姓名 指导教师 完成日期…

【Docker学习】docker version查看版本信息

就像很多应用一样,docker也使用version来查看版本信息。但因为docker包含有不少独立组件,version的作用范围会更广一些。 用法1: docker --version 描述: 输出安装的Docker CLI 的版本号。关于Docker CLI,请访问。 实操…

Ubuntu启动后进入GRUB故障-Minimal BASH like line editing is supported.

目录 1.问题描述 2.解决方案 2.1 临时性办法 2.2 工具永久性修复 总结 1.问题描述 PC安装Ubuntu系统第二天重启后提示GUN GRUB version 2.04,之前是WindowsOS装Ubuntu后无法进入图形界面。具体原因据网友提供线索据说是由于在Windows上进行更新/重装/修改了引…

Golang | Leetcode Golang题解之第66题加一

题目&#xff1a; 题解&#xff1a; func plusOne(digits []int) []int {n : len(digits)for i : n - 1; i > 0; i-- {if digits[i] ! 9 {digits[i]for j : i 1; j < n; j {digits[j] 0}return digits}}// digits 中所有的元素均为 9digits make([]int, n1)digits[0]…

Docker-Compose编排LNMP并部署WordPress

前言 随着云计算和容器化技术的快速发展&#xff0c;使用 Docker Compose 编排 LNMP 环境已经成为快速部署 Web 应用程序的一种流行方式。LNMP 环境由 Linux、Nginx、MySQL 和 PHP 组成&#xff0c;为运行 Web 应用提供了稳定的基础。本文将介绍如何通过 Docker Compose 编排 …

【深度学习】第一门课 神经网络和深度学习 Week 3 浅层神经网络

&#x1f680;Write In Front&#x1f680; &#x1f4dd;个人主页&#xff1a;令夏二十三 &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd; &#x1f4e3;系列专栏&#xff1a;深度学习 &#x1f4ac;总结&#xff1a;希望你看完之后&#xff0c;能对…

20240503解决Ubuntu20.04和WIN10双系统下WIN10的时间异常的问题

20240503解决Ubuntu20.04和WIN10双系统下WIN10的时间异常的问题 2024/5/3 9:33 缘起&#xff1a;因为工作需要&#xff0c;编译服务器上都会安装Ubuntu20.04。 但是因为WINDOWS强悍的生态系统&#xff0c;偶尔还是有必须要用WINDOWS的时候&#xff0c;于是也安装了WIN10。 双系…