图像处理1,灰度,data,for循环批处理图片,图片属性查看,图片单通道查看,椒盐噪声的生成,滤波处理,图像分割

news2024/11/25 6:39:21

图像处理1

  • 灰度处理
  • data库的使用
  • for循环批处理图像
  • 对图像属性的查看
    • 图片类型
    • 图片尺寸
    • 图片宽度
    • 图像高度
    • 通道数
    • 总像素个数
    • 最大像素值
    • 最小像素值,像素平均值
    • 图像点像素值
  • for循环分别显示图像rgb通道
  • 椒盐噪声的生成
  • 中值滤波处理
  • 高斯模糊处理
  • 图像切割

灰度处理

from skimage import io
a = 'tuxian.jpg'
img = io.imread(a,as_gray=True)
io.imshow(img)
io.show()

在这里插入图片描述
这段代码使用Python中的skimage库来读取名为"tuxian.jpg"的图像文件赋值给a,并将其以灰度图像的形式加载到变量img中。然后使用skimage库中的io.imshow()函数显示图像,最后使用io.show()函数将图像显示在屏幕上。

data库的使用

from skimage import io, data
img = data.chelsea()
io.imshow(img)
io.show()

在这里插入图片描述
这里使用了data.chelsea()将data库中的小猫图片调用了出来

from skimage import data_dir
print(data_dir)

这段代码使用Python中的skimage库,并导入其中的data_dir模块。然后使用print语句打印出data_dir模块的值,该值表示skimage库中存储数据文件的目录路径。

from skimage import io, data
img = data.chelsea()
io.imshow(img)
io.imsave('C:/Users/daiyo/Desktop/jupyter库/工坊/xiaomao.jpg',img)
io.show()

此代码与上面的

from skimage import io, data
img = data.chelsea()
io.imshow(img)
io.show()

效果一样

for循环批处理图像

import os
from skimage import io

folder_path = 'C:/Users/daiyo/Desktop/jupyter库/工坊/图像'
save_folder_path = 'C:/Users/daiyo/Desktop/jupyter库/工坊/图像/savepng'

img_list = []

# 遍历文件夹中的所有文件
for filename in os.listdir(folder_path):
    if filename.endswith('.jpg'):
        img_path = os.path.join(folder_path, filename)
        img = io.imread(img_path)
        img_list.append(img)

# 保存图像为png格式
for i, img in enumerate(img_list):
    save_path = os.path.join(save_folder_path, f'image_{i}.png')  # 构造保存路径
    io.imsave(save_path, img)

在这里插入图片描述

  1. 首先导入必要的模块
  2. 设置源文件夹和目标文件夹的路径:
    folder_path:包含原始 .jpg 图像的文件夹路径。
    save_folder_path:将保存新的 .png 图像的目标文件夹路径。
  3. 初始化图像列表:
    创建一个空列表 img_list,用来存储从文件夹中读取的图像数据。
  4. 读取并存储图像数据:
    使用 os.listdir(folder_path) 遍历指定文件夹中的所有文件。
    对于每个文件,检查文件名是否以 .jpg 结尾。如果是,执行以下操作:
    使用 os.path.join(folder_path, filename) 构造完整的文件路径。
    使用 io.imread(img_path) 读取图像文件,并将读取的图像数据存储到变量 img 中。
    将 img 添加到列表 img_list 中。
  5. 保存图像为 PNG 格式:
    代码遍历img_list列表中的每个图像,使用enumerate()函数获取图像在列表中的索引i。
    然后构造保存路径save_path为save_folder_path下的’image_i.png’,其中i为图像在列表中的索引。最后使用io.imsave()函数将每个图像保存为png格式文件,保存在指定的文件夹路径下,文件名为’image_i.png’。

对图像属性的查看

图片类型

from skimage import io
a = 'tuxian.jpg'
img = io.imread('tuxian.jpg')
# io.imshow(img)
print("图片类型是",type(a))

在这里插入图片描述

图片尺寸

在这里插入图片描述

图片宽度

在这里插入图片描述

图像高度

在这里插入图片描述

通道数

在这里插入图片描述

总像素个数

在这里插入图片描述

最大像素值

在这里插入图片描述

最小像素值,像素平均值

在这里插入图片描述
在这里插入图片描述

图像点像素值

from skimage import io
img = io.imread('tuxian.jpg')
place = img[30, 40]
print(place)

在这里插入图片描述

for循环分别显示图像rgb通道

import cv2
img = cv2.imread("tuxian.jpg")
cv2.imshow("one1",img)
b = img[:,:,0]
g = img[:, :, 1]  
r = img[:, :, 2] 
cv2.imshow("b",b)
cv2.imshow("g", g)  
cv2.imshow("r", r) 
# 等待用户点击关闭窗口
while True:
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cv2.destroyAllWindows()

这段代码的功能是显示原始图像以及其分离的蓝色、绿色和红色通道的图像,并等待用户按下"q"键来关闭显示的窗口。
在这里插入图片描述

椒盐噪声的生成

from skimage import io
import numpy as np

img = io.imread('tuxian.jpg')
rows, cols, dims = img.shape

for i in range(5000):
    x = np.random.randint(0, rows)
    y = np.random.randint(0, cols)
    img[x, y, :] = 255

io.imshow(img)
io.imsave('after.jpg',img)
io.show()

这段代码的功能是在读取的图像上随机选取5000个像素位置,并将这些位置的像素值设置为白色,然后显示修改后的图像并保存为新的图像文件。
在这里插入图片描述

中值滤波处理

img2 = io.imread('after.jpg')
denoised_image = cv2.medianBlur(img2, 3)  # 3表示核的大小,可以根据需要调整
io.imshow(denoised_image)
io.show()

使用OpenCV库(cv2)中的medianBlur()函数对图像img2进行中值滤波处理,其中参数3表示核的大小。中值滤波是一种常用的去噪方法,可以有效地去除椒盐噪声。
在这里插入图片描述

高斯模糊处理

img2 = io.imread('after.jpg')
blurred_image = cv2.GaussianBlur(img2, (5, 5), 0)
io.imshow(blurred_image)
io.show()

使用OpenCV库(cv2)中的GaussianBlur()函数对图像img2进行高斯模糊处理。函数的第一个参数是输入图像,第二个参数是高斯核的大小,这里是(5, 5),第三个参数是高斯核的标准差,这里是0。高斯模糊是一种常用的去噪方法,可以平滑图像并降低噪声。
在这里插入图片描述

图像切割

from skimage import io
img = io.imread('羊.jpg')
roi = img[382:1075,810:1755,:]
# io.imshow(img)
io.imshow(roi)
io.show()

在这里插入图片描述

使用skimage库中的io模块读取了名为"羊.jpg"的图像,并将其存储在变量img中。然后,通过切片操作,选择了图像img中指定区域的感兴趣区域(ROI),即从382行到1075行、从810列到1755列的部分图像,并将其存储在变量roi中。
接着使用io.imshow()函数显示了选定的感兴趣区域roi,并调用io.show()函数展示了这个部分图像。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1639896.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

多国语言免费在线客服系统源码,网站在线客服系统,网页在线客服软件在线聊天通讯平台

详情介绍 多国语言免费在线客服系统源码,网站在线客服系统,网页在线客服软件在线聊天通讯平台 新款在线客服系统全开源无加密:多商户、国际化多语言、智能机器人、自动回复、语音聊天、 文件发送、系统强力防黑加固、不限坐席、国际外贸、超多功能 支持手机移动端和PC网页…

如何从Mac电脑恢复任何删除的视频

Microsoft Office是包括Mac用户在内的人们在世界各地创建文档时使用的最佳软件之一。该软件允许您创建任何类型的文件,如演示文稿、帐户文件和书面文件。您可以使用 MS Office 来完成。所有Microsoft文档都可以在Mac上使用。大多数情况下,您处理文档&…

私有开源LLM实例的三个考虑因素

原文地址:three-considerations-for-private-open-source-llm-instances 2024 年 4 月 29 日 在生产应用中使用商业 LLM APIs 会带来明确且经过充分研究的风险。因此,企业越来越多地转向利用开源的私有托管LLM实例,并通过RAG技术进行增强。 介…

RCE学习

从最近的xyctf中,最大的感受就是自己的rce基础并不牢固,所以马上来恶补一下 漏洞成因 php和其他语言有很多能够执行系统命令或执行其他php代码的函数,因为开发者的使用不当,使得用户能够控制传递给执行命令的函数的参数&#xf…

【C++题解】1300. 小明暑假的零花钱

问题:1300. 小明暑假的零花钱 类型:多分支结构 题目描述: 小明同学的妈妈在期末考试之后决定根据小明的考试成绩奖励小明不同的暑假零花钱,如果考试成绩在90 分以上(包括 90 分),零花钱是成绩…

clang:在 Win10 上编译 MIDI 音乐程序

先从 Microsoft C Build Tools - Visual Studio 下载 1.73GB 安装 "Microsoft C Build Tools“ 访问 Swift.org - Download Swift 找到 Windows 10:x86_64 下载 swift-5.10-RELEASE-windows10.exe 大约490MB 建议安装在 D:\Swift\ ,安装后大约占…

【Linux系统编程】32.线程同步、锁的使用、互斥锁管理

目录 线程同步 锁的使用 注意事项 pthread_mutex_init 注意 参数mutex 参数attr 返回值 动态初始化 静态初始化 pthread_mutex_destroy 参数mutex 返回值 pthread_mutex_lock 参数mutex 返回值 pthread_mutex_unlock 参数mutex 返回值 pthread_mutex_trylo…

JAVA面试之MQ

如何保证消息的可靠传输?如果消息丢了怎么办 数据的丢失问题,可能出现在生产者、MQ、消费者中。 (1)生产者发送消息时丢失: ①生产者发送消息时连接MQ失败 ②生产者发送消息到达MQ后未找到Exchange(交换机) ③生产者发…

Python | Leetcode Python题解之第64题最小路径和

题目: 题解: class Solution:def minPathSum(self, grid: List[List[int]]) -> int:if not grid or not grid[0]:return 0rows, columns len(grid), len(grid[0])dp [[0] * columns for _ in range(rows)]dp[0][0] grid[0][0]for i in range(1, r…

WPF基础应用

WPF参考原文 MVVM介绍 1.常用布局控件 1.1 布局控件 WPF(Windows Presentation Foundation)提供了多种布局容器来帮助开发者设计用户界面,以下是一些常用的布局: Grid: Grid是最常用的布局容器之一,它允许你通过定…

计算机网络-408考研

后续更新发布在B站账号:谭同学很nice http://【计算机408备考-什么是计算机网络,有什么特点?】 https://www.bilibili.com/video/BV1qZ421J7As/?share_sourcecopy_web&vd_source58c2a80f8de74ae56281305624c60b13http://【计算机408备考…

【论文阅读笔记】TS2Vec: Towards Universal Representation of Time Series

【论文阅读笔记】TS2Vec: Towards Universal Representation of Time Series 摘要 这段文字介绍了一个名为TS2Vec的通用框架,用于学习时间序列数据的表示,可以在任意语义层次上进行。与现有方法不同,TS2Vec通过对增强的上下文视图进行层次化…

C语言指针进阶_字符指针、指针数组、数组指针、函数指针等的介绍

文章目录 前言一、字符指针二、指针数组三、 数组指针1. 数组名和 & 数组名2. 数组指针3. 数组指针解引用 四、数组指针的使用二维数组的传参说明数组指针使用小测验 五、数组传参和指针传参1. 一维数组传参总结2. 二维数组传参总结3. 一级指针传参4. 二级指针传参 六、函数…

React Context

Context https://juejin.cn/post/7244838033454727227?searchId202404012120436CD549D66BBD6C542177 context 提供了一个无需为每层组件手动添加 props, 就能在组件树间进行数据传递的方法 React 中数据通过 props 属性自上而下(由父及子)进行传递,但此种用法对…

Git使用指北

目录 创建一个Git仓库本地仓库添加文件文件提交到本地仓库缓冲区添加远程仓库地址本地仓库推送到远程仓库创建新的分支拉取代码同步删除缓冲区的文件,远程仓库的文件.gitignore文件 创建一个Git仓库 Git仓库分为远程和本地两种,远程仓库如Githu上创建的…

每天五分钟深度学习框架pytorch:如何创建多维Tensor张量元素?

本文重点 上节课程我们学习了如何创建Tensor标量,我们使用torch.tensor。本节课程我们学习如何创建Tensor向量,我们即可以使用torch.Tensor又可以使用torch.tensor,下面我们看一下二者的共同点和不同点。 Tensor张量 tensor张量是一个多维数组,零维就是一个点(就是上一…

Java零基础入门到精通_Day 9

1.ArrayList 编程的时候如果要存储多个数据,使用长度固定的数组存储格式,不一定满足我们的需求,更适应不了变化的需求,那么,此时该如何选择呢? 集 合 集合类的特点:提供一种存储空间可变的存储模型,存储的…

EMP.DLL是什么东西?游戏提示EMP.DLL文件缺失怎么解决

emp.dll文件是Windows操作系统中的一种动态链接库文件,它被设计为可以被多个程序共享使用的模块化文件。这种设计旨在提高系统效率,减少内存消耗,并简化软件的维护和更新。DLL文件通常包含了一系列相关的函数和变量,这些函数和变量…

C++入门系列-内联函数

🌈个人主页:羽晨同学 💫个人格言:“成为自己未来的主人~” 以inline修饰的函数叫做内联函数,编译时C编译器会在调用内敛函数的地方展开,这就意味着使用内联函数可以提升程序的运行的效率,减小了调用所需…

微软开源 MS-DOS「GitHub 热点速览」

上周又是被「大模型」霸榜的一周,各种 AI、LLM、ChatGPT、Sora、RAG 的开源项目在 GitHub 上“争相斗艳”。这不 Meta 刚开源 Llama 3 没几天,苹果紧跟着就开源了手机端大模型:CoreNet。 GitHub 地址:github.com/apple/corenet 开…