ElasticSearch教程入门到精通——第一部分(基于ELK技术栈elasticsearch 8.x新特性)

news2025/1/23 11:55:02

ElasticSearch教程入门到精通——第一部分(基于ELK技术栈elasticsearch 8.x新特性)

  • 1. ElasticSearch安装(略)
  • 2. ElasticSearch基础功能
    • 2.1 索引操作
      • 2.1.1 创建索引
      • 2.1.2 Head 索引
      • 2.1.3 查询索引
        • 2.1.3.1 查询单独索引
        • 2.1.3.2 查询全部索引
      • 2.1.4 增加配置
      • 2.1.5 删除索引
    • 2.2 文档操作
      • 2.2.1 创建文档
      • 2.2.2 查询文档
        • 2.2.2.1 查询个别文档
        • 2.2.2.2 查询文档所有数据
      • 2.2.3 修改数据
      • 2.2.4 删除数据
    • 2.3 文档搜索
      • 2.3.1 Match分词查询
      • 2.3.2 使用term精确匹配某个字段的关键词
      • 2.3.3 查询结果中过滤某些不需要的字段
      • 2.3.4 多条件组合查询
        • 2.3.4.1 查询name中含有zhang或age为40的数据
        • 2.3.4.2 查询文档中name中必须含有zhang或者age必须大于等于30岁的数据
        • 2.3.4.3 查询结果排序
      • 2.3.5 分页查询
    • 2.4 聚合搜索
      • 2.4.1 根据age将查询结果进行分组聚合
      • 2.4.2 查询年龄大于等于40岁的,并将结果按照age分组聚合
      • 2.4.3 根据age分组聚合,再对聚合后的结果按照age求平均值
      • 2.4.4 获取结果集中的前N个数据
      • 2.4.5 获取结果集中按照age字段排序后求取前N个数据
    • 2.5 索引模板
      • 2.5.1 创建/修改 索引
      • 2.5.2 查看模板
      • 2.5.3 更新模板
      • 2.5.4 应用模板
      • 2.5.5 删除模板
    • 2.6 中文分词
      • 2.6.1 分词操作
      • 2.6.2 分词操作(不带插件情况下,中文拆分逻辑太适合)
      • 2.6.3 集成了IK插件后提供的分词
        • 2.6.3.1 ik_smart——最少切分
        • 2.6.3.2 ik_max_word——最细粒度切分
      • 2.6.4 自定义分词效果
    • 2.7 文档评分机制(转载)
      • 2.7.1 TF-IDF 原理
        • 2.7.1.1 计算公式
        • 2.7.1.2 示例说明
        • 2.7.1.3 计算TF
        • 2.7.1.4 计算IDF
        • 2.7.1.5 TF-IDF计算
      • 2.7.2 Elasticsearch打分机制
        • 2.7.2.1 示例说明
        • 2.7.2.2 计算 TF 值
        • 2.7.2.3 计算 IDF 值
        • 2.7.2.4 计算文档得分
        • 2.7.2.5 增加新的文档测试得分
      • 2.7.3 案列
        • 2.7.3.1 需求
        • 2.7.3.2 准备数据
        • 2.7.3.3 查询数据

在这里插入图片描述

在这里插入图片描述

1. ElasticSearch安装(略)

  • java 17的安装——史上最快的JDK

  • 这个一定要看 支持一览表

  • 在这里插入图片描述

  • 集群环境安装

  • Kibana 官网安装

在这里插入图片描述

在这里插入图片描述

2. ElasticSearch基础功能

2.1 索引操作

2.1.1 创建索引

ES软件的索引可以类比为MySQL中表的概念,创建一个索引,类似于创建一个表。查询完成后,Kibana右侧会返回响应结果及请求状态

PUT test_index

在这里插入图片描述

重复创建索引——报错!

在这里插入图片描述

在这里插入图片描述

2.1.2 Head 索引

head test_index

在这里插入图片描述

head test_index1

在这里插入图片描述

在这里插入图片描述

2.1.3 查询索引

2.1.3.1 查询单独索引
GET test_index

在这里插入图片描述

在这里插入图片描述

2.1.3.2 查询全部索引
GET _cat/indices

在这里插入图片描述

在这里插入图片描述

2.1.4 增加配置

JSON格式的主题内容

PUT test_index_1
{
	"aliases":{
		"test1":{}
	}
}

查询看结果
在这里插入图片描述
这样 别名就设置上了

GET test1

试一试~

注意:ES软件不支持修改索引信息,如果想要修改,只能新建

在这里插入图片描述

2.1.5 删除索引

DELETE test_index_1

在这里插入图片描述
再删除一次 ~!

在这里插入图片描述
在这里插入图片描述

2.2 文档操作

文档是ES软件搜索数据的最小单位,不依赖预先定义的模式,所以可以将文档类比为表的一行JSON类型的数据。我们知道关系型数据库中,要提前定义字段才能使用,在Elasticsearch中,对于字段是非常灵活的,有时候,我们可以忽略该字段,或者动态的添加一个新的字段。

2.2.1 创建文档

索引已经创建好了,接下来我们来创建文档,并添加数据。这里的文档可以类比为关系型数据库中的表数据,添加的数据格式为JSON格式

PUT test_doc

添加索引
在这里插入图片描述

PUT test_doc/_doc
{
	"id":1001,
	"name":"zhangsan",
	"age":30
}

在这里插入图片描述

为什么只让用Post 不让用PUT?

  • 因为PUT创建的时候,创建数据具有唯一性标识
PUT test_doc/_doc/1001
{
	"id":1001,
	"name":"zhangsan",
	"age":30
}

在这里插入图片描述

POST test_doc/_doc
{
	"id":1002,
	"name":"lisi",
	"age":40
}

在这里插入图片描述

在这里插入图片描述

2.2.2 查询文档

2.2.2.1 查询个别文档
GET test_doc/_doc/1001

在这里插入图片描述

GET test_doc/_doc

在这里插入图片描述

在这里插入图片描述

2.2.2.2 查询文档所有数据
GET test_doc/_search

在这里插入图片描述

在这里插入图片描述

2.2.3 修改数据

PUT test_doc/_doc/1001
{
	"id":10011,
	"name":"zhangsan1",
	"age":300,
	"tel":123123
}

在这里插入图片描述

POST 也可以
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

2.2.4 删除数据

DELETE test_doc/_doc/1002

在这里插入图片描述
再删一次
在这里插入图片描述

在这里插入图片描述

2.3 文档搜索

PUT test_query
PUT test_query/_bulk
{"index": {"_index": "test_query","_id": "1001"}}
{"id": "1001","name":"zhang san","age":30}
{"index": {"_index": "test_query","_id": "1002"}}
{"id": "1002","name":"li si","age": 40}
{"index": {"_index": "test_query","_id": "1003"}}
{"id": "1003", "name": "wang wu","age" : 50}
{"index": {"_index": "test_query","_id": "1004"}}
{"id": "1004","name": "zhangsan", "age" : 30}
{"index": {"_index": "test_query","_id": "1005"}}
{"id": "1005","name": "lisi","age":40}
{"index": {"_index": "test_query","_id": "1006"}}
{"id": "1006", "name ": "wangwu","age" : 50}

在这里插入图片描述

在这里插入图片描述

2.3.1 Match分词查询

Match 是分词查询,ES会将数据分词保存

GET test_query/_search
{
	"query":{
		"match":{
			"name":"zhangsan"
		}
	}
}

在这里插入图片描述

GET test_query/_search
{
	"query":{
		"match":{
			"name":"zhang"
		}
	}
}

在这里插入图片描述

GET test_query/_search
{
	"query":{
		"match":{
			"name":"zhang li"
		}
	}
}

在这里插入图片描述

在这里插入图片描述

2.3.2 使用term精确匹配某个字段的关键词

但是我不想分词~

GET test_query/_search
{
	"query":{
		"term":{
			"name":{
				"value":"zhang san"
			}
		}
	}
}

在这里插入图片描述

GET test_query/_search
{
	"query":{
		"term":{
			"name":{
				"value":"zhangsan"
			}
		}
	}
}

在这里插入图片描述

在这里插入图片描述

2.3.3 查询结果中过滤某些不需要的字段

某些情况下,不需要查询结果中返回所有的字段,就可以通过添加"_source"进行限制

GET test_query/_search
{
  "_source": ["name","age"], 
  
  "query": {
    "match": {
      "name": "zhang"
    }
  }
}

在这里插入图片描述

在这里插入图片描述

2.3.4 多条件组合查询

组合查询的关键语法是需要在查询条件中使用bool关键字

在这里插入图片描述

2.3.4.1 查询name中含有zhang或age为40的数据

这个需求类似于mysql 中的or的语法,在es中使用should可以满足类似的需求

GET test_query/_search
{
  "query": {
    "bool": {
      "should": [
        [
          {
            "match":{
              "name":"zhang"
            }
          },
          {
            "match":{
              "age":40
            }
          }
        ]
      ]
    }
  }
}

在这里插入图片描述

在这里插入图片描述

2.3.4.2 查询文档中name中必须含有zhang或者age必须大于等于30岁的数据

组合使用should和must

GET test_query/_search
{
  "query": {
    "bool": {
      "must": [
        [
          {
            "match":{
              "name":"zhang"
            }
          }
        ]
      ],
      
      "should": [
        {
          "range": {
            "age": {
              "gte": 30
            }
          }
        }
      ]
    }
  }
}

在这里插入图片描述

在这里插入图片描述

2.3.4.3 查询结果排序

查询name中含有 zhang的文档,并按照age排序

GET test_query/_search
{
  
  "query": {
    "match": {
      "name": "zhang"
    }
  },
  "sort":[
    {
      "age" : {
        "order":"desc"
      }
    }
  ]
}

在这里插入图片描述

在这里插入图片描述

2.3.5 分页查询

语法

GET 索引名称/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0,        //从第几条开始查询
  "size": 2         //每次查询多少数据
}

看下面的查询结果
在这里插入图片描述

计算公式:

f r o m = ( p a g e n o − 1 ) ∗ s i z e from = (pageno -1)*size from=(pageno1)size

在这里插入图片描述

2.4 聚合搜索

实际业务中,经常会涉及到对查询的结果根据某个或者某些字段进行聚合,类似于mysql中的group by语法;

2.4.1 根据age将查询结果进行分组聚合

注意点:这里 "size"设置为0表示查询结果中不展示其他非聚合结果的信息

GET test_query/_search
{
 
  "aggs": {
    "aggAge": {
      "terms": {
        "field": "age"
      }
    }
  },
 
  "size": 0
}

在这里插入图片描述

在这里插入图片描述

2.4.2 查询年龄大于等于40岁的,并将结果按照age分组聚合

GET test_query/_search
{
 
 "query": {
   "range": {
     "age": {
       "gte": 40
     }
   }
 }, 
 
  "aggs": {
    "aggAge": {
      "terms": {
        "field": "age"
      }
    }
  },
 
  "size": 0
}

查询结果如下

在这里插入图片描述

2.4.3 根据age分组聚合,再对聚合后的结果按照age求平均值

GET test_query/_search
{
  "aggs": {
    "ageAgg": {
      "terms": {
        "field": "age"
      },
      
      "aggs": {
        "avgAgg": {
          "avg": {
            "field": "age"
          }
        }
      }
      
    }
  },
  "size": 0
}

查询结果如下

在这里插入图片描述

在这里插入图片描述

2.4.4 获取结果集中的前N个数据

GET test_query/_search
{
  "aggs": {
    "top3": {
      "top_hits": {
        "size": 3
      }
    }
  },
  "size": 0
}

查询结果如下

在这里插入图片描述

在这里插入图片描述

2.4.5 获取结果集中按照age字段排序后求取前N个数据

GET test_query/_search
{
  "aggs": {
    "top3": {
      "top_hits": {
        "sort": [
          {
          "age" : {
              "order":"desc"
            }
          }
        ], 
        "size": 3
      }
    }
  },
  "size": 0
}

在这里插入图片描述

2.5 索引模板

我们之前对索引进行一些配置信息设置,但是都是在单个索引上进行设置。在实际开发中,我们可能需要创建不止一个索引,但是每个索引或多或少都有一些共性。

比如我们在设计关系型数据库时,一般都会为每个表结构设计一些常用的字段,比如:创建时间更新时间备注信息等。elasticsearch 在创建索引的时候,就引入了模板的概念,你可以先设置一些通用的模板,在创建索引的时候,elasticsearch会先根据你创建的模板对索引进行设置。

elasticsearch中提供了很多的默认设置模板,这就是为什么我们在新建文档的时候,可以为你自动设置一些信息, 做一些字段转换等。

在这里插入图片描述

2.5.1 创建/修改 索引

索引可使用预定义的模板进行创建这个模板称作Indextemplates.模板设置包括settingsmappings

PUT _template/mytemplate

{
  "index_patterns": [
    "my*"  // 该模板自动适用于索引名称以 my 开头的索引
  ],
  // 设置模板规则
  "settings": {
    "index": {
      "number_of_shards": "2" // 分片数量
    }
  },
  // 影射规则
  "mappings": {
    "properties": {
      // 字段 now 的类型及格式
      "now": {
        "type": "date",
        "format": "yyyy/MM/dd"
      }
    }
  }
}

在这里插入图片描述

可以多长操作!!

2.5.2 查看模板

GET _template/模板名称

在这里插入图片描述

在这里插入图片描述

2.5.3 更新模板

与创建命令相同,只要创建的模板名称已存在,就是更新操作,新规则覆盖旧规则

如果创建的是索引,不是索引模板,当要创建的索引已存在时,操作是不会成功的,会出错,提示索引已存在

在这里插入图片描述

2.5.4 应用模板

只要新创建的 索引 符合 索引模板 的匹配规则,就会自动应用模板

如:新创建 my_index_template 索引,以 my 开头,符合匹配规则

// 应用索引模板;创建以 my 开头的索引
PUT my_index_template
// 查询创建的索引
GET my_index_template

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

2.5.5 删除模板

DELETE _template/索引模板名称

删除后查询;结果为空;查询不存在的索引模板时,结果都为空

在这里插入图片描述

在这里插入图片描述

2.6 中文分词

我们在使用Elasticsearch官方默认的分词插件时会发现,其对中文的分词效果不佳,经常分词后得效果不是我们想要得。

2.6.1 分词操作

GET _analyze
{
  "analyzer": "standard", 
  "text": ["zhang san"]
}

在这里插入图片描述

在这里插入图片描述

2.6.2 分词操作(不带插件情况下,中文拆分逻辑太适合)

GET _analyze
{
  "analyzer": "chinese", 
  "text": ["我是一个三好学生"]
}

在这里插入图片描述

在这里插入图片描述

2.6.3 集成了IK插件后提供的分词

一定注意!版本下载的正确性!!!
在这里插入图片描述
在这里插入图片描述
别忘了重新启动!!

在这里插入图片描述

2.6.3.1 ik_smart——最少切分
GET _analyze
{
  "analyzer": "ik_smart", 
  "text": ["我是一个三好学生"]
}

在这里插入图片描述

2.6.3.2 ik_max_word——最细粒度切分

相较于上者,分得更加精细

GET _analyze
{
  "analyzer": "ik_max_word", 
  "text": ["我是一个三好学生"]
}

在这里插入图片描述

在这里插入图片描述

2.6.4 自定义分词效果

在这里插入图片描述
在这里插入图片描述
重新启动ES!!!

在这里插入图片描述

2.7 文档评分机制(转载)

PUT test_score

PUT test_score/_doc/1001
{
  "text": "zhang kai shou bi, yin jie tai yang"
}

PUT test_score/_doc/1002
{
  "text": "zhang san"
}

GET test_score/_search?explain=true
{
  "query": {
    "match": {
      "text": "zhang"
    }
  }
}

在这里插入图片描述

  • 该章节转载了 ElasticSearch之score打分机制原理

Elasticsearch 的得分机制是一个基于词频和逆文档词频的公式,简称为 TF-IDF 公式,所以先来研究下 TF-IDF原理。

在这里插入图片描述

2.7.1 TF-IDF 原理

  • 英文全称:Term Frequency - Inverse Document Frequency
  • 中文名称:词频-逆文档频率

常用于文本挖掘,资讯检索等应用,在NLP以及推荐等领域都是一个常用的指标,用于衡量字词的重要性。

比较直观的解释是,如果一个词本来出现的频率就很高,如the,那么它就几乎无法带给读者一些明确的信息。

一般地,以TF-IDF衡量字词重要性时

  • 某个字词在某个文档中出现的频率越高,那么该字词对该文档就有越大的重要性,它可能会是文章的关键词(词在单个文档中出现的频率,相对于当个文档!!!)
  • 但若字词在词库中出现的频率越高,那么字词的重要性越低,如the。(相对于整个文档集合,也就是词库)

在这里插入图片描述

2.7.1.1 计算公式

TF-IDF即是两者相乘,词频乘以逆文档频率,如下:

TF-IDF = T F ∗ I D F =TF*IDF =TFIDF

下标ij的含义:编号为j的文档中的词语i在该文档中的词频,即所占比例,n为该词语的数量。如下:

换言之,就是词语出现的次数与文档中所有词总数的比值。

T F i j = n i j n ∗ j TF_{ij} = \frac{n_{ij}}{n_{*j}} TFij=njnij

N表示文档总数,Ni表示文档集中包含了词语 i i i 的文档数。

对分子分母加一是为了避免某些词语没有在文档中出现过,导致分母为零的情况。

IDF针对某个词计算了它的逆文档频率,即包含该词语的文档比例的倒数(再取对数),若IDF值越小,分母越大,说明这个词语在文档集中比较常见不具有鲜明的信息代表性,TF-IDF的值就小。

总之TF-IDF的值,通常希望它越大越好,大值代表性强。如下:

I D F i = l o g ( N + 1 N i + 1 ) IDF_i=log (\frac{N+1}{N_i+1}) IDFi=logNi+1N+1

2.7.1.2 示例说明

有两个文档,即doc1doc2,并去它们的并集

doc1 = "The cat sat on my bed"
doc2 = "The dog sat on my knees"
# 构建词库,union是并集操作
wordSet = set(doc1.split()).union(set(doc2.split()))

两个文档的并集如下:

{‘The’,‘bed’,‘cat’,‘dog’,‘knees’,‘my’,‘on’,‘sat’}

doc1doc2两个文档对应的词在并集中的统计情况:

序号catsatmyondogbedTheknees
011110110
101111011

在这里插入图片描述

2.7.1.3 计算TF

计算词频 TF,对单个文档统计:

再理解一下,何为TF,表示单个单词占当前文档所有单词集合的比值。即1/6=0.16666666666…

catsatmyondogbedTheknees
11110110
0.166666…0.166666…0.166666…0.166666…00.166666…0.166666…0

在这里插入图片描述

2.7.1.4 计算IDF

逆文档频率IDF,全局只有一份逆文档频率,对所有文档统计

N表示文档总数,Ni`表示文档集中包含了词语i的文档数。

此时N=2,共有两个文档。Ni表示含有单词的文档个数。

catsatmyondogbedTheknees
0.17609125…0.00.00.0…0.17609125…0.17609125…0.00.17609125…

在这里插入图片描述

2.7.1.5 TF-IDF计算

最终计算:TF-IDF = TF * IDF

序号catsatmyondogbedTheknees
00.0293490000.029349000
10000.0293490000.029349

在这里插入图片描述

2.7.2 Elasticsearch打分机制

上面介绍了TF-IDF的原理,而ES的得分机制就是基于词频和逆文档词频的公式,即TF-IDF公式。
s c o r e ( q , d ) = c o o r d ( q , d ) ⋅ q u e r y N o r m ( q ) ⋅ ∑ t i n q ( t f ( t i n d ) ⋅ i d f ( t ) 2 ⋅ t . g e t B o o s t ( ) ⋅ n o r m ( t , d ) ) score(q,d) = coord(q,d)\cdot queryNorm(q)\cdot \sum_{t in q}(tf(t in d)\cdot idf(t){^2}\cdot t.getBoost()\cdot norm(t,d)) score(q,d)=coord(q,d)queryNorm(q)tinq(tf(tind)idf(t)2t.getBoost()norm(t,d))

公式中将查询作为输入,使用不同的手段来确定每一篇文档的得分,将每一个因素最后通过公式综合起来,返回该文档的最终得分。这个综合考量的过程,在ES中这种相关性称为得分。

考虑到查询内容和文档的关系比较复杂,所以公式中需要输入的参数和条件非常得多,但是其中比较重要的其实是TF-IDF算法 ,再次解释一下。

  • TF (词频)

Term Frequency : 搜索文本中的各个词条在查询文本中出现了多少次,次数越多,就越相关,得分会比较高

  • IDF(逆文档频率)

Inverse Document Frequency : 搜索文本中的各个词条在整个索引的所有文档中出现了多少次,出现的次数越多,说明越不重要,也就越不相关,得分就比较低。

在这里插入图片描述

2.7.2.1 示例说明

在查询语句的最后加上explain=true ,会把得分过程打印。

注:当前ElasticSearchscorpios索引里,只有一个文档。

PUT itwluo

PUT itwluo/_doc/1001
{
  "text": "java"
}

GET itwluo/_search
{
  "query": {
    "match": {
      "text": "java"
    }
  }
}

result


{
  "took": 992,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 1,
      "relation": "eq"
    },
    "max_score": 0.2876821,
    "hits": [
      {
        "_index": "itwluo",
        "_id": "1001",
        "_score": 0.2876821,
        "_source": {
          "text": "java"
        }
      }
    ]
  }
}

详细结果


{
  "took": 3,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 1,
      "relation": "eq"
    },
    "max_score": 0.2876821,
    "hits": [
      {
        "_shard": "[itwluo][0]",
        "_node": "EX7ZCQpSRLu-OWEZjQazog",
        "_index": "itwluo",
        "_id": "1001",
        "_score": 0.2876821,
        "_source": {
          "text": "java"
        },
        "_explanation": {
          "value": 0.2876821,
          "description": "weight(text:java in 0) [PerFieldSimilarity], result of:",
          "details": [
            {
              "value": 0.2876821,
              "description": "score(freq=1.0), computed as boost * idf * tf from:",
              "details": [
                {
                  "value": 2.2,
                  "description": "boost",
                  "details": []
                },
                {
                  "value": 0.2876821,
                  "description": "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:",
                  "details": [
                    {
                      "value": 1,
                      "description": "n, number of documents containing term",
                      "details": []
                    },
                    {
                      "value": 1,
                      "description": "N, total number of documents with field",
                      "details": []
                    }
                  ]
                },
                {
                  "value": 0.45454544,
                  "description": "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:",
                  "details": [
                    {
                      "value": 1,
                      "description": "freq, occurrences of term within document",
                      "details": []
                    },
                    {
                      "value": 1.2,
                      "description": "k1, term saturation parameter",
                      "details": []
                    },
                    {
                      "value": 0.75,
                      "description": "b, length normalization parameter",
                      "details": []
                    },
                    {
                      "value": 1,
                      "description": "dl, length of field",
                      "details": []
                    },
                    {
                      "value": 1,
                      "description": "avgdl, average length of field",
                      "details": []
                    }
                  ]
                }
              ]
            }
          ]
        }
      }
    ]
  }
}

新增数据后,观察分值变化

PUT itwluo/_doc/1002
{
  "text": "java bigdata"
}

#查询文档数据
GET itwluo/_search?explain=true
{
  "query": {
    "match": {
      "text": "java"
    }
  }
}

详细结果

{
  "took": 609,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 2,
      "relation": "eq"
    },
    "max_score": 0.21110919,
    "hits": [
      {
        "_shard": "[itwluo][0]",
        "_node": "EX7ZCQpSRLu-OWEZjQazog",
        "_index": "itwluo",
        "_id": "1001",
        "_score": 0.21110919,
        "_source": {
          "text": "java"
        },
        "_explanation": {
          "value": 0.21110919,
          "description": "weight(text:java in 0) [PerFieldSimilarity], result of:",
          "details": [
            {
              "value": 0.21110919,
              "description": "score(freq=1.0), computed as boost * idf * tf from:",
              "details": [
                {
                  "value": 2.2,
                  "description": "boost",
                  "details": []
                },
                {
                  "value": 0.18232156,
                  "description": "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:",
                  "details": [
                    {
                      "value": 2,
                      "description": "n, number of documents containing term",
                      "details": []
                    },
                    {
                      "value": 2,
                      "description": "N, total number of documents with field",
                      "details": []
                    }
                  ]
                },
                {
                  "value": 0.5263158,
                  "description": "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:",
                  "details": [
                    {
                      "value": 1,
                      "description": "freq, occurrences of term within document",
                      "details": []
                    },
                    {
                      "value": 1.2,
                      "description": "k1, term saturation parameter",
                      "details": []
                    },
                    {
                      "value": 0.75,
                      "description": "b, length normalization parameter",
                      "details": []
                    },
                    {
                      "value": 1,
                      "description": "dl, length of field",
                      "details": []
                    },
                    {
                      "value": 1.5,
                      "description": "avgdl, average length of field",
                      "details": []
                    }
                  ]
                }
              ]
            }
          ]
        }
      },
      {
        "_shard": "[itwluo][0]",
        "_node": "EX7ZCQpSRLu-OWEZjQazog",
        "_index": "itwluo",
        "_id": "1002",
        "_score": 0.160443,
        "_source": {
          "text": "java bigdata"
        },
        "_explanation": {
          "value": 0.160443,
          "description": "weight(text:java in 0) [PerFieldSimilarity], result of:",
          "details": [
            {
              "value": 0.160443,
              "description": "score(freq=1.0), computed as boost * idf * tf from:",
              "details": [
                {
                  "value": 2.2,
                  "description": "boost",
                  "details": []
                },
                {
                  "value": 0.18232156,
                  "description": "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:",
                  "details": [
                    {
                      "value": 2,
                      "description": "n, number of documents containing term",
                      "details": []
                    },
                    {
                      "value": 2,
                      "description": "N, total number of documents with field",
                      "details": []
                    }
                  ]
                },
                {
                  "value": 0.40000004,
                  "description": "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:",
                  "details": [
                    {
                      "value": 1,
                      "description": "freq, occurrences of term within document",
                      "details": []
                    },
                    {
                      "value": 1.2,
                      "description": "k1, term saturation parameter",
                      "details": []
                    },
                    {
                      "value": 0.75,
                      "description": "b, length normalization parameter",
                      "details": []
                    },
                    {
                      "value": 2,
                      "description": "dl, length of field",
                      "details": []
                    },
                    {
                      "value": 1.5,
                      "description": "avgdl, average length of field",
                      "details": []
                    }
                  ]
                }
              ]
            }
          ]
        }
      }
    ]
  }
}

在这里插入图片描述

2.7.2.2 计算 TF 值

T F = f r e q / ( f r e q + k 1 ∗ ( 1 − b + b ∗ d l / a v g d l ) ) TF = freq/(freq + k1 * (1-b+b*dl/avgdl)) TF=freq/(freq+k1(1b+bdl/avgdl))

参数含义取值
freq文档中出现词条的次数1.0
k1术语饱和参数1.2(默认值)
b长度规格参数(单词长度对于整个文档的影响程度)0.75(默认值)
dl当前文中分解的字段长度1.0
avgdl查询文档中分解字段数量/查询文档数量1.0
TF(词频)1.0/(1+1.2 * (1-0.75+0.75 * 1.0/1.0))0.454545

在这里插入图片描述

2.7.2.3 计算 IDF 值

I D F = l n ( 1 + ( N − n + 0.5 ) / ( n + 0.5 ) ) IDF = ln(1+(N−n+0.5)/(n+0.5)) IDF=ln(1+(Nn+0.5)/(n+0.5))

参数含义取值
N包含查询字段的文档总数(不一定包含查询词条)1
n包含查询词条的文档数1
IDF(逆文档频率)log(1+(1-1+0.5)/(1+0.5))0.2875821

注:这里的 ln是底数为e 的对数

在这里插入图片描述

2.7.2.4 计算文档得分

s c o r e = t f b o o s t ∗ i d f ∗ t f score = tf boost∗idf∗tf score=tfboostidftf

参数含义取值
boost词条权重2.2(基础值)*查询权重(1)
idf逆文档频率0.2876821
tf词频0.454545
score(得分)2.20.28768210.4545450.2876821

在这里插入图片描述

2.7.2.5 增加新的文档测试得分
  • 增加一个毫无关系的文档
# 增加文档
PUT /scorpios/_doc/2
{
 "text" : "spark"
}
# 得分:0.6931741
GET /scorpios/_search
{
     "query": {
        "match": {
            "text": "hello"
        }
     } 
 }

因为新文档无词条相关信息,所以匹配的文档数据得分就应该较高

  • 增加一个一模一样的文档
# 增加文档
PUT /scorpios/_doc/2
{
 "text" : "hello"
}

# 得分:0.18232156
GET /scorpios/_search
{
 	"query": {
 		"match": {
 			"text": "hello"
 		}
	}
}

因为新文档含词条相关信息,且多个文件含有词条,所以显得不是很重要,得分会变低

  • 增加一个含有词条,但是内容较多的文档
# 增加文档
PUT /scorpios/_doc/2 
{
	"text" : "hello elasticsearch" 
}
# 得分:0.14874382
GET /scorpios/_search
{
     "query": {
         "match": {
         	"text": "hello"
         }
     }
 }

因为新文档含词条相关信息,但只是其中一部分,所以查询文档的分数会变得更低一些。

在这里插入图片描述

2.7.3 案列

2.7.3.1 需求

查询文档标题中含有Hadoop,Elasticsearch,Spark的内容,优先选择Spark的内容

2.7.3.2 准备数据
# 创建索引
PUT /test
# 准备数据
PUT /test/_doc/1001
{
	"title" : "Hadoop is a Framework",
	"content" : "Hadoop 是一个大数据基础框架" 
}
PUT /test/_doc/1002
{
	"title" : "Hive is a SQL Tools",
	"content" : "Hive 是一个 SQL 工具" 
}
PUT /test/_doc/1003
{
	"title" : "Spark is a Framework",
	"content" : "Spark 是一个分布式计算引擎" 
}
2.7.3.3 查询数据
# 查询文档标题中含有“Hadoop”,“Elasticsearch”,“Spark”的内容
GET /test/_search?explain=true
{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
            "title": {
              "query": "Hadoop", "boost": 1
            }
          }
        },
        {
          "match": {
            "title": {
              "query": "Hive", "boost": 1
            }
          }
        },
        {
          "match": {
            "title": {
              "query": "Spark", "boost": 1
            }
          }
        }
      ]
    }
  }
}

此时会发现,Spark的结果并不会放置在最前面

此时可以更改 Spark 查询的权重参数 boost,看看查询的结果有什么不同

# 查询文档标题中含有“Hadoop”,“Elasticsearch”,“Spark”的内容
GET /test/_search?explain=true
{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
            "title": {
              "query": "Hadoop", "boost": 1
            }
          }
        },
        {
          "match": {
            "title": {
              "query": "Hive", "boost": 1
            }
          }
        },
        {
          "match": {
            "title": {
              "query": "Spark", "boost": 2
            }
          }
        }
      ]
    }
  }
}

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1639098.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

智能产品信息模型-控制信息模型

数字化的核心是数字化建模,为一个事物构建数字模型是一项十分复杂的工作。不同的应用场景,对事物的关注重点的不同的。例如,对于一个智能传感器而言,从商业的角度看,产品的信息模型中应该包括产品的类型,名…

Vue 组件的三大组成部分

Vue 组件通常由三大组成部分构成:模板(Template)、脚本(Script)、样式(Style) 模板部分是组件的 HTML 结构,它定义了组件的外观和布局。Vue 使用基于 HTML 的模板语法来声明组件的模…

如何维持CISSP证书:附免费获取CPE学分的16个官方渠道

CISSP 证书只有三年有效期(如2023.11-2026.10),需要每年维护才能续证。持证者需要持续获取 CPE 学分来维持证书,否则证书到期后将失效。本文主要介绍维护CISSP证书的2个必备条件及16个CPE学分官方获取渠道。 1. 证书维持的2个必备…

AI大模型探索之路-训练篇10:大语言模型Transformer库-Tokenizer组件实践

系列篇章💥 AI大模型探索之路-训练篇1:大语言模型微调基础认知 AI大模型探索之路-训练篇2:大语言模型预训练基础认知 AI大模型探索之路-训练篇3:大语言模型全景解读 AI大模型探索之路-训练篇4:大语言模型训练数据集概…

springcloud微服务搭建多数据源(mysql,oracle,postgres,等等)管理模块,支持通过注解方式切换不同类型的数据库

1.背景 同一套微服务管理系统,业务完全一样,但不同的客户可能要求使用自己熟悉的数据库,比如,mysql,oracle,postgres,还有一些国产数据库。如果能够将数据库模块独立出来,兼容各家的…

Mybatis进阶(映射关系一对一 )

文章目录 1.基本介绍1.基本说明2.映射方式 2.配置xml方式(多表联查)1.数据库表设计2.新建子模块1.创建子模块2.创建基本结构 3.MyBatisUtils.java和jdbc.properties和mybatis-config.xml与原来的一致4.IdenCard.java5.Person.java6.IdenCardMapper.java7…

【漏洞复现】北京中科聚网一体化运营平台catchByUrl存在文件上传漏洞

漏洞描述 北京中科聚网一体化运营平台 catchByUrl存在文件上传漏洞,未经身份验证的攻击者可利用此漏洞上传后门文件,从而获取服务器权限。 免责声明 技术文章仅供参考,任何个人和组织使用网络应当遵守宪法法律,遵守公共秩序,尊重社会公德,不得利用网络从事危害国家安…

订票系统|基于Springboot+vue的火车票订票系统(源码+数据库+文档)

订票系统目录 基于Springbootvue的火车票订票系统 一、前言 二、系统设计 三、系统功能设计 1会员信息管理 2 车次信息管理 3订票订单管理 4留言板管理 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取: 博主介绍…

小区服务|基于SprinBoot+vue的小区服务管理系统(源码+数据库+文档)

目录 基于SprinBootvue的小区服务管理系统 一、前言 二、系统设计 三、系统功能设计 1管理员登录 2 客服聊天管理、反馈管理管理 3 公告信息管理 4公告类型管理 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取: 博…

cmake的使用方法: 生成库文件

一. 简介 前面文章学习了针对单个 .c文件,cmake 工具是如何编译的? 针对包含多个 .c文件,cmake工具又是如何编译的?文章如下: cmake的使用方法: 单个源文件的编译-CSDN博客 cmake的使用方法: 多个源文件的编译-CS…

css---浮动知识点精炼汇总

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 浮动简单理解与介绍 这是我们普通的页面标签效果。 每个标签从上到下依次排列。 浮动顾名思义就是让这个标签飞翔起来。 他飞起来后,后面的标签来到他的位置上。 而浮动的标签就会显示在标签的上面。…

【webrtc】MessageHandler 9: 基于线程的消息处理:执行Port销毁自己

Port::Port 构造的时候,就触发了一个异步操作,但是这个操作是要在 thread 里执行的,因此要通过post 消息 MSG_DESTROY_IF_DEAD 到thread跑:port的创建并米有要求在thread中 但是port的析构却在thread里 这是为啥呢?

Redis__事务

文章目录 😊 作者:Lion J 💖 主页: https://blog.csdn.net/weixin_69252724 🎉 主题:Redis__事务 ⏱️ 创作时间:2024年05月02日 ———————————————— 这里写目录标题 文章目…

【机器学习】机器学习在教育领域的应用场景探索

🧑 作者简介:阿里巴巴嵌入式技术专家,深耕嵌入式人工智能领域,具备多年的嵌入式硬件产品研发管理经验。 📒 博客介绍:分享嵌入式开发领域的相关知识、经验、思考和感悟,欢迎关注。提供嵌入式方向…

Easy TCP Analysis上线案例库功能,为用户提供一个TCP抓包分析案例分享学习的平台

​案例库,提供给用户相互分享TCP抓包故障排查案例或是经典学习案例的功能,任何用户都可从案例库查看其它用户分享的案例,每个用户也都可以上传自己的案例,经过平台审核去重即可展示在案例库。 对于学习,最典型的三次握…

智能物联网与Web3:连接未来数字生活的桥梁

随着科技的不断进步,智能物联网(IoT)和Web3技术正成为数字化时代的关键驱动力。智能物联网将各种物理设备连接到互联网,使其能够感知环境、收集数据并与其他设备通信,而Web3技术则以去中心化、安全性和透明性为核心&am…

吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.9-1.10

目录 第二门课: 改善深层神经网络:超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)第一周:深度学习的 实践层面 (Practical aspects of Deep Learning)1.9 归一…

Dom获取属性操作

目录 1. 基本认知 1.1 目的和内容 1.2 什么是DOM 1.3 DOM对象 1.4 DOM树 2. 获取DOM元素对象 2.1 选择匹配到的第一个元素 2.2 选择匹配到的多个元素 2.3 其他获取DOM元素方法 3. 操作元素内容 3.1 元素对象.innerText 属性 3.2 元素对象.innerHTML 属性 4. 操作元…

力扣题目:寻找数组的中心下标

力扣题目:寻找数组的中心下标 题目链接: 724.寻找数组的中心下标 题目描述 代码思路 根据题目内容,维护好前后缀和,然后从左到右遍历寻找合适的下标 代码纯享版 class Solution {public int pivotIndex(int[] nums) {int sumleft 0, su…

Visual Studio安装MFC开发组件

MFC由于比较古老了,Visual Studio默认没有这个开发组件。最近由于一些原因,需要使用这个库,这就需要另外安装。 参考了网上的一些资料,根据实际使用,其实很多步骤不是必须的。 https://zhuanlan.zhihu.com/p/68117276…