【C++庖丁解牛】C++11---lambda表达式 | 包装器

news2024/11/22 23:41:24
🍁你好,我是 RO-BERRY
📗 致力于C、C++、数据结构、TCP/IP、数据库等等一系列知识
🎄感谢你的陪伴与支持 ,故事既有了开头,就要画上一个完美的句号,让我们一起加油

在这里插入图片描述


目录

  • 1. lambda表达式
    • 1.1 C++98中的一个例子
    • 1.2 lambda表达式
    • 1.3 lambda表达式语法
    • 1.4. 捕获列表说明
    • 1.5 函数对象与lambda表达式
  • 2.包装器
    • 2.1 bind


1. lambda表达式

1.1 C++98中的一个例子

在C++98中,如果想要对一个数据集合中的元素进行排序,可以使用std::sort方法。

#include <algorithm>
#include <functional>
int main()
{
	int array[] = { 4,1,8,5,3,7,0,9,2,6 };
	// 默认按照小于比较,排出来结果是升序
	std::sort(array, array + sizeof(array) / sizeof(array[0]));
	// 如果需要降序,需要改变元素的比较规则
	std::sort(array, array + sizeof(array) / sizeof(array[0]), greater<int>());
	return 0;
}

在这里,greater是一个函数对象(function object),它是C++标准库中的一个模板类,用于比较两个元素的大小关系。greater是一个用于降序排序的比较器,它会将较大的元素排在前面。

如果待排序元素为自定义类型,需要用户定义排序时的比较规则:

#include<iostream>
using namespace std;
#include <algorithm>
#include <functional>
#include <string>
#include <vector>
struct Goods
{
	string _name;  // 名字
	double _price; // 价格
	int _evaluate; // 评价
	Goods(const char* str, double price, int evaluate)
		:_name(str)
		, _price(price)
		, _evaluate(evaluate)
	{}
};
struct ComparePriceLess
{
	bool operator()(const Goods& gl, const Goods& gr)
	{
		return gl._price < gr._price;
	}
};
struct ComparePriceGreater
{
	bool operator()(const Goods& gl, const Goods& gr)
	{
		return gl._price > gr._price;
	}
};
int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,3 }, { "菠萝", 1.5, 4 } };
	sort(v.begin(), v.end(), ComparePriceLess());
	sort(v.begin(), v.end(), ComparePriceGreater());
}

随着C++语法的发展,人们开始觉得上面的写法太复杂了,每次为了实现一个algorithm算法,都要重新去写一个类,如果每次比较的逻辑不一样,还要去实现多个类,特别是相同类的命名,这些都给编程者带来了极大的不便。因此,在C++11语法中出现了Lambda表达式。


1.2 lambda表达式

int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,3 }, { "菠萝", 1.5, 4 } };
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2){
		return g1._price < g2._price; });
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._price > g2._price; });
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._evaluate < g2._evaluate; });
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._evaluate > g2._evaluate; });
}

上述代码就是使用C++11中的lambda表达式来解决,可以看出lambda表达式实际是一个匿名函数。


1.3 lambda表达式语法

lambda表达式书写格式:[capture-list] (parameters) mutable -> return-type { statement }

  1. lambda表达式各部分说明
  • [capture-list] : 捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据[]来判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda函数使用。
  • (parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以连同()一起省略
  • mutable:默认情况下,lambda函数总是一个const函数,mutable可以取消其常量性。使用该修饰符时,参数列表不可省略(即使参数为空)。
  • ->returntype:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回值时此部分可省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推导。
  • {statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获到的变量。

注意:

在lambda函数定义中,参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为空。因此C++11中最简单的lambda函数为:[]{}; 该lambda函数不能做任何事情。

int main()
{
	//局部的匿名函数对象----简单的add函数
	auto add = [](int a,int b)->int{return a+b};
	cout<<add( 1 , 2 )<<endl;
	
	// 最简单的lambda表达式, 该lambda表达式没有任何意义
	[] {};

	// 省略参数列表和返回值类型,返回值类型由编译器推导为int
	int a = 3, b = 4;
	[=] {return a + 3; };

	// 省略了返回值类型,无返回值类型
	auto fun1 = [&](int c) {b = a + c; };
	fun1(10);
	cout << a << " " << b << endl;

	// 各部分都很完善的lambda函数
	auto fun2 = [=, &b](int c)->int {return b += a + c; };  //这里捕捉的是等于号也就是全局的变量,&b就是给b取别名便于给b进行修改操作
	cout << fun2(10) << endl;   //--- b = b(13) + a(3) + c(10)   ---输出为26

	// 复制捕捉x
	int x = 10;
	auto add_x = [x](int a) mutable { x *= 2; return a + x; };
	cout << add_x(10) << endl;
	return 0;
}

在这里插入图片描述

通过上述例子可以看出,lambda表达式实际上可以理解为无名函数,该函数无法直接调用,如果想要直接调用,可借助auto将其赋值给一个变量。


1.4. 捕获列表说明

捕捉列表描述了上下文中那些数据可以被lambda使用,以及使用的方式传值还是传引用。

[var]:表示值传递方式捕捉变量var
[=]:表示值传递方式捕获所有父作用域中的变量(包括this)
[&var]:表示引用传递捕捉变量var
[&]:表示引用传递捕捉所有父作用域中的变量(包括this)
[this]:表示值传递方式捕捉当前的this指针

传值捕捉,其是数据的拷贝
传引用捕捉,就是其数据

注意:

  1. 父作用域指包含lambda函数的语句块
  2. 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。

比如:[=, &a, &b]:以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量
[&,a, this]:值传递方式捕捉变量a和this,引用方式捕捉其他变量

  1. 捕捉列表不允许变量重复传递,否则就会导致编译错误。

比如:[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复

  1. 在块作用域以外的lambda函数捕捉列表必须为空。
  2. 在块作用域中的lambda函数仅能捕捉父作用域中局部变量,捕捉任何非此作用域或者非局部变量都会导致编译报错。
  3. lambda表达式之间不能相互赋值,即使看起来类型相同
void (*PF)();
int main()
{
	auto f1 = [] {cout << "hello world" << endl; };
	auto f2 = [] {cout << "hello world" << endl; };
	// 此处先不解释原因,等lambda表达式底层实现原理看完后,大家就清楚了
 	//f1 = f2;   // 编译失败--->提示找不到operator=()
	// 允许使用一个lambda表达式拷贝构造一个新的副本
	auto f3(f2);
	f3();
	// 可以将lambda表达式赋值给相同类型的函数指针
	PF = f2;
	PF();
	return 0;
}

在这里插入图片描述


1.5 函数对象与lambda表达式

函数对象,又称为仿函数,即可以想函数一样使用的对象,就是在类中重载了operator()运算符的类对象。

class Rate
{
public:
	Rate(double rate) : _rate(rate)
	{}
	double operator()(double money, int year)
	{
		return money * _rate * year;
	}
private:
	double _rate;
};
int main()
{
	// 函数对象
	double rate = 0.49;
	Rate r1(rate);
	r1(10000, 2);
	// lamber
	auto r2 = [=](double monty, int year)->double {return monty * rate * year;
	};
	r2(10000, 2);
	return 0;
}

从使用方式上来看,仿函数与lambda表达式完全一样。

函数对象将rate作为其成员变量,在定义对象时给出初始值即可,lambda表达式通过捕获列表可以直接将该变量捕获到。

在这里插入图片描述
实际在底层编译器对于lambda表达式的处理方式,完全就是按照函数对象的方式处理的,即:如果定义了一个lambda表达式,编译器会自动生成一个类,在该类中重载了operator()。


2.包装器

function包装器
function包装器 也叫作适配器。C++中的function本质是一个类模板,也是一个包装器。
那么我们来看看,我们为什么需要function呢?

ret = func(x);

上面func可能是什么呢?那么func可能是函数名?函数指针?函数对象(仿函数对象)?也有可能是lamber表达式对象?所以这些都是可调用的类型!如此丰富的类型,可能会导致模板的效率低下!
为什么呢?我们继续往下看

template<class F, class T>
T useF(F f, T x)
{
	static int count = 0;
	cout << "count:" << ++count << endl;
	cout << "count:" << &count << endl;
	return f(x);
}
double f(double i)
{
	return i / 2;
}
struct Functor
{
	double operator()(double d)
	{
		return d / 3;
	}
};
int main()
{
	// 函数名
	cout << useF(f, 11.11) << endl;
	
	// 函数对象
	cout << useF(Functor(), 11.11) << endl;
	
	// lamber表达式
	cout << useF([](double d)->double { return d / 4; }, 11.11) << endl;
	
	return 0;
}

在这里插入图片描述
通过上面的程序验证,我们会发现useF函数模板实例化了三份。
包装器可以很好的解决上面的问题

std::function在头文件<functional>
// 类模板原型如下
template <class T> function;     // undefined
template <class Ret, class... Args>
class function<Ret(Args...)>;

模板参数说明:

  • Ret: 被调用函数的返回类型
  • Args…:被调用函数的形参

以下为包装器使用实例:

// 使用方法如下:
#include <functional>
int f(int a, int b)
{
	return a + b;
}
struct Functor
{
public:
	int operator() (int a, int b)
	{
		return a + b;
	}
};
class Plus
{
public:
	static int plusi(int a, int b)
	{
		return a + b;
	}
	double plusd(double a, double b)
	{
		return a + b;
	}
};
int main()
{
	// 函数名(函数指针)
	std::function<int(int, int)> func1 = f;
	cout << func1(1, 2) << endl;

	// 函数对象
	std::function<int(int, int)> func2 = Functor();
	cout << func2(1, 2) << endl;

	// lamber表达式
	std::function<int(int, int)> func3 = [](const int a, const int b)
	{return a + b; };
	cout << func3(1, 2) << endl;

	// 类的成员函数
	std::function<int(int, int)> func4 = &Plus::plusi;
	cout << func4(1, 2) << endl;
	std::function<double(Plus, double, double)> func5 = &Plus::plusd;
	cout << func5(Plus(), 1.1, 2.2) << endl;
	return 0;
}

在这里插入图片描述
有了包装器,如何解决模板的效率低下,实例化多份的问题呢?

#include <functional>
template<class F, class T>
T useF(F f, T x)
{
	static int count = 0;
	cout << "count:" << ++count << endl;
	cout << "count:" << &count << endl;
	return f(x);
}
double f(double i)
{
	return i / 2;
}
struct Functor
{
	double operator()(double d)
	{
		return d / 3;
	}
};
int main()
{
	// 函数名
	std::function<double(double)> func1 = f;
	cout << useF(func1, 11.11) << endl;
	// 函数对象
	std::function<double(double)> func2 = Functor();
	cout << useF(func2, 11.11) << endl;
	// lamber表达式
	std::function<double(double)> func3 = [](double d)->double { return d /4; };
	cout << useF(func3, 11.11) << endl;
	return 0;
}

在这里插入图片描述

2.1 bind

std::bind函数定义在头文件中,是一个函数模板,它就像一个函数包装器(适配器),接受一个可调用对象(callable object),生成一个新的可调用对象来“适应”原对象的参数列表。一般而言,我们用它可以把一个原本接收N个参数的函数fn,通过绑定一些参数,返回一个接收M个(M可以大于N,但这么做没什么意义)参数的新函数。同时,使用std::bind函数还可以实现参数顺序调整等操作。

// 原型如下:
template <class Fn, class... Args>
/* unspecified */ bind (Fn&& fn, Args&&... args);
// with return type (2) 
template <class Ret, class Fn, class... Args>
/* unspecified */ bind (Fn&& fn, Args&&... args);

可以将bind函数看作是一个通用的函数适配器,它接受一个可调用对象,生成一个新的可调用对
象来“适应”原对象的参数列表。

调用bind的一般形式:auto newCallable = bind(callable,arg_list);

  • 其中,newCallable本身是一个可调用对象,arg_list是一个逗号分隔的参数列表,对应给定的callable的参数。当我们调用newCallable时,newCallable会调用callable,并传给它arg_list中的参数。
  • arg_list中的参数可能包含形如_n的名字,其中n是一个整数,这些参数是“占位符”,表示newCallable的参数,它们占据了传递给newCallable的参数的“位置”。数值n表示生成的可调用对象中参数的位置:_1为newCallable的第一个参数,_2为第二个参数,以此类推

在C++11标准中,bind是一个非常实用的函数模板,它允许我们将函数和函数的参数绑定到一起,生成一个新的可调用对象。这个新的可调用对象可以在后续的代码中被多次调用,而不需要再次绑定函数和参数。

bind的语法如下:

#include <functional>
std::bind(函数名, 参数列表)

返回值为一个可调用对象。
例如,我们定义了一个函数f:

void f(int a, int b, int c) {
    std::cout << a << " " << b << " " << c << std::endl;
}

我们可以使用bind将其绑定到参数1和2上,生成一个新的可调用对象g:

auto g = std::bind(f, 1, 2, std::placeholders::_1);

接下来,我们可以像调用函数一样调用g,并传入一个参数3:

g(3);

这样,函数f就会以1、2和3作为参数依次被调用。


下面是一个使用实例

#include <functional>
int Plus(int a, int b)
{
	return a + b;
}
class Sub
{
public:
	int sub(int a, int b)
	{
		return a - b;
	}
};
int main()
{
	//表示绑定函数plus 参数分别由调用 func1 的第一,二个参数指定
	std::function<int(int, int)> func1 = std::bind(Plus, placeholders::_1,placeholders::_2);
	//auto func1 = std::bind(Plus, placeholders::_1, placeholders::_2);
	//func2的类型为 function<void(int, int, int)> 与func1类型一样
	//表示绑定函数 plus 的第一,二为: 1, 2
	auto  func2 = std::bind(Plus, 1, 2);
	cout << func1(1, 2) << endl;
	cout << func2() << endl;
	Sub s;
	// 绑定成员函数
	std::function<int(int, int)> func3 = std::bind(&Sub::sub, s,
		placeholders::_1, placeholders::_2);
	// 参数调换顺序
	std::function<int(int, int)> func4 = std::bind(&Sub::sub, s,
		placeholders::_2, placeholders::_1);
	cout << func3(1, 2) << endl;
	cout << func4(1, 2) << endl;
	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1638454.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

「C++ 内存管理篇 00」指针

目录 一、变量&#xff0c;变量名和指针 1. 什么是变量&#xff1f; 2. 变量名和指针 3. 使用指针获取数据 二、指针变量和数组变量 三、编译器对指针的等级有着严格的检查 四、指针的加减 1. 存放指针的变量的加减 2. 存放指针的变量的自增自减 3. 两个指针相减 一、变量&…

【前端】-【防止接口重复请求】

文章目录 需求实现方案方案一方案二方案三 需求 对整个的项目都做一下接口防止重复请求的处理 实现方案 方案一 思路&#xff1a;通过使用axios拦截器&#xff0c;在请求拦截器中开启全屏Loading&#xff0c;然后在响应拦截器中将Loading关闭。 代码&#xff1a; 问题&…

CD-PAN复合纳米纤维膜

CD-PAN复合纳米纤维膜可能是通过某种特定的方法&#xff0c;如溶剂热反应或水热反应等&#xff0c;将CdS纳米颗粒与PAN&#xff08;聚丙烯腈&#xff09;纳米纤维结合起来的复合材料。 这种复合纳米纤维膜可能会继承CdS的光电性质和PAN纳米纤维的机械性能&#xff0c;从而在某些…

Golang | Leetcode Golang题解之第61题旋转链表

题目&#xff1a; 题解&#xff1a; func rotateRight(head *ListNode, k int) *ListNode {if k 0 || head nil || head.Next nil {return head}n : 1iter : headfor iter.Next ! nil {iter iter.Nextn}add : n - k%nif add n {return head}iter.Next headfor add > …

R语言4版本安装mvstats(纯新手)

首先下载mvstats.R文件 下载mvstats.R文件点此链接&#xff1a;https://download.csdn.net/download/m0_62110645/89251535 第一种方法 找到mvstats.R的文件安装位置&#xff08;R语言的工作路径&#xff09; getwd() 将mvstats.R保存到工作路径 在R中输入命令 source(&qu…

Day27:阻塞队列、Kafka入门、发送系统通知、显示系统

阻塞队列BlockingQueue BlockingQueue 解决线程通信的问题。阻塞方法:put、take。 生产者消费者模式 生产者:产生数据的线程。消费者:使用数据的线程。 &#xff08;Thread1生产者&#xff0c;Thread2消费者&#xff09; 实现类 ArrayBlockingQueueLinkedBlockingQueuePr…

软件工程专业就业方向及前景分析

软件工程专业作为一门应用广泛且持续发展的学科&#xff0c;其就业方向多样&#xff0c;就业前景十分乐观&#xff0c;以下是上大学网&#xff08;www.sdaxue.com)整理的软件工程专业一些主要的就业方向及该领域的总体前景分析&#xff0c;供大家参考&#xff01; 就业方向&…

一文理解前端如何调用后端(java)方法

阅读完文章大约需要3~5分钟 文章目录 一、什么是后端方法路径&#xff1f;二、ajax、axios调用后端方法总结 一、什么是后端方法路径&#xff1f; 这里针对的是 java 后端项目中在 controller 文件夹中的类文件&#xff0c;这类文件的后缀一般都会带有 controller&#xff0c…

如何远程访问连接管理器?

远程访问连接管理器是一种方便的工具&#xff0c;可以实现远程访问计算机和网络设备的功能。它使用户能够从任何地点连接到远程计算机&#xff0c;并进行文件传输、桌面共享和远程控制等操作。远程访问连接管理器不仅提供了便利性&#xff0c;还能提高工作效率&#xff0c;并为…

【Vue 2.x】学习vue之二组件

文章目录 Vue二组件第五章es6文件导入出1、导出export 组件&#xff08;component&#xff09;1、定义2、模块化与组件化3、组件的分类1、非单文件组件非单文件三步骤创建组件标准写法简化写法组件的嵌套非单文件的不足之处 2、单文件组件vue单文件组件的使用脚手架创建项目重点…

(学习日记)2024.05.09:UCOSIII第六十三节:常用的结构体(os.h文件)第二部分

之前的章节都是针对某个或某些知识点进行的专项讲解&#xff0c;重点在功能和代码解释。 回到最初开始学μC/OS-III系统时&#xff0c;当时就定下了一个目标&#xff0c;不仅要读懂&#xff0c;还要读透&#xff0c;改造成更适合中国宝宝体质的使用方式。在学完野火的教程后&a…

【JavaEE】线程的概念

文章目录 1、什么是线程2、进程和线程的区别3、多线程的概述4、在Java中实现多线程的方法1.继承Thread类2.实现Runnable接口3.使用匿名内部类来继承Thread类&#xff0c;实现run方法4.使用匿名内部类来实现Runnable接口&#xff0c;实现run方法5.使用 lambda表达式 1、什么是线…

018、Python+fastapi,第一个Python项目走向第18步:ubuntu24.04 安装cuda和pytorch环境

一、说明 我们安装了pytorch环境之后&#xff0c;会用yolo v9 来测试一下&#xff0c;看8g 显存能不能跑下来&#xff0c;上次用无影云电脑&#xff0c;4cpu8g内存直接爆了&#xff0c;云电脑也死机了&#xff0c;提示一直占用内存不释放&#xff0c;我自己的云电脑不能占用内…

基于alpha shapes的边缘点提取(matlab)

1、原理介绍 由Edelsbrunner H提出的alpha shapes算法是一种简单、有效的快速提取边界点算法。其克服了点云边界点形状影响的缺点&#xff0c;可快速准确提取边界点。如下图所示&#xff0c;对于任意形状的平面点云&#xff0c;若一个半径为a的圆&#xff0c;绕其进行滚动&…

类加载子系统之类的生命周期(待完善)

0、前言 文中大量图片来源于 B站 黑马程序员 0.1、类加载子系统在 JVM 中的位置 类加载器负责的事情是&#xff1a;加载、链接、解析 0.2、与类的生命周期相关的虚拟机参数 参数描述-XX:TraceClassLoading打印出加载且初始化的类 1、类的生命周期 堆上的变量在分配空间的时…

如何基于nginx搭建https网站

华子目录 使用nginx的http_ssl模块建立加密传输的网站查看配置文件ssl配置文件的主要参数实验&#xff1a;搭建nginxssl加密认证的web服务器 使用nginx的http_ssl模块建立加密传输的网站 查看 [rootserver ~]# nginx -V #查看是否有--with-http_ssl_module模块&#xff0c;如…

2024五一杯:煤矿深部开采冲击地压危险预测 (详细完整思路,已修改)

背景 了解即可 煤炭是中国的主要能源和重要的工业原料。然而&#xff0c;随着开采深度的增加&#xff0c;地应力增大&#xff0c;井下煤岩动力灾害风险越来越大&#xff0c;严重影响着煤矿的安全高效开采。在各类深部煤岩动力灾害事故中&#xff0c;冲击地压已成为威胁中国煤矿…

BigKey的危害

1.2.1、BigKey的危害 网络阻塞 对BigKey执行读请求时&#xff0c;少量的QPS就可能导致带宽使用率被占满&#xff0c;导致Redis实例&#xff0c;乃至所在物理机变慢 数据倾斜 BigKey所在的Redis实例内存使用率远超其他实例&#xff0c;无法使数据分片的内存资源达到均衡 Redis阻…

Vue---router实现路由跳转

Vue—router实现路由跳转 目录 Vue---router实现路由跳转基本使用路由跳转html实现路由跳转JS实现路由跳转 基本使用 所谓路由&#xff0c;就是将一个个组件映射到不同的路由url中 首先要将App内的内容换成router-view // App.vue <template><div id"app"…

商务谈判技巧与口才训练方法(3篇)

商务谈判技巧与口才训练方法&#xff08;3篇&#xff09; 商务谈判技巧与口才训练方法&#xff08;**篇&#xff09;&#xff1a;技巧篇 一、商务谈判技巧 明确目标&#xff1a;在谈判前&#xff0c;明确自己的谈判目标&#xff0c;并设定好底线和期望的谈判结果。 知己知彼…