【补充】图神经网络前传——图论

news2024/11/20 9:33:06

本文作为对图神经网络的补充。主要内容是看书。

仅包含Introduction to Graph Theory前五章以及其他相关书籍的相关内容(如果后续在实践中发现前五章不够,会补上剩余内容)

引入

什么是图?

如上图所示的路线图和电路图都可以使用点和线表示,如下图:

图中的点P,Q,R,S和T被称为顶点(vertices),而图中的线被称为边(edges)。整张图被称为图(graph)。注意PS和QT两条线相交点并不是顶点,参考前面的图,这里的“焦点”并不是路口或者是两条电线教会的地方。

顶点的度(degree),是以该顶点为终点的边的个数,比如图中的顶点Q的度是4(PQ,TQ,SQ,RQ)。

上面这张图也可以表示其他的情况,比如,P,Q,R,S和T表示足球队,边代表队伍之间的比赛,那么队伍P就和Q,S和T三个队伍比赛过,但是没有与队伍R比过赛。这种情况下,度就可以理解为对应队伍参加比赛的数目。

如果我们把PS边扯到矩形PQST外面,得到的图(⬇️)荏苒可以告诉我们P S两个地点之间有一条路/P S之间连了一条电线/P S两个足球队之间进行了比赛。我们丢失的信息可能是路线的长度或者电线是直的。

 因此,图仅仅代表点之间是如何连接的,任何测量得到的属性都不重要。因此虽然PS被扯到外面了,但是与前面的图是同一个图。

类似的,即使⬆️这张图长得完全不像了,但是仍然是同一张图。

现在,我们假设QS、ST道路拥堵,我们需要建造更多的路来缓解交通压力,如下图:

此时,QS、ST之间的边被称为多重边(multiple edges)。

现在,我们有一辆车要在P点停车(感觉这里说做U turn更好理解),此时在P点加一条边,此时这条边被称为自环(loop)

没有loop以及multiple edges的图被称为简单图(simple graphs)

将道路设置为单行道,即为有向图(directed graphs,简写为digraphs),如上图所示。单行道的方向使用箭头表示。

许多图论都包含了各种各样的“移动方式”,即从一个顶点移动到另一个顶点。比如从P点到Q点,我们可以P —> Q —> R,P —> S —> Q —> T —> S —> R,前者走了两步,后者走了五步。如果同一个顶点出现次数不超过一次,则称这种“移动方式”为一条路(path)。

P —> T —> S —> R为一条路

Q —> S —> T —> Q是一个环

这里关于Eulerian和Hamiltonian graph的描述不是很清楚,采用其他材料补充。

在访问每个顶点时沿着每条边正好走一次的回路被称为欧拉回路(Eulerian circuit),这个图被称为欧拉图(Eulerian graph)(死去的记忆开始攻击我了)

如果连通图中存在闭合遍历,则该图称为哈密顿图(Hamiltonian Graph),除了根顶点或起始顶点外,该图的每个顶点都经过一次。哈密顿图的另一个定义是如果有一个连通图,它包含哈密顿电路,那么这个图就被称为哈密顿图。

Certain graph problems deal with finding a path between two vertices such that each edge is traversed exactly once, or finding a path between two vertices while visiting each vertex exactly once. These paths are better known as Euler path and Hamiltonian path respectively.

Mathematics | Euler and Hamiltonian Paths - GeeksforGeeks

有些图有两个或者更多的部分组成->非连通图

任意两个顶点之间都连了一条路径->连通图

如果每一对顶点之间只连了一条边->称为树(tree)

可以看出树是连通图,但是没有环

图的边没有交叉的图称为平面图(planar graph)

(在第6章中介绍的是染色问题,提到了高中的时候用到过的四色定理,考虑有空去看看~)

定义

 如上图,简单图G的顶点集合为V(G),{u, v, w, z},边的集合为E(G),包含:uv, uw, vw, wz

在任何简单图中,最多有一条边连接给定的一对顶点。

简单图的很多结论可以推广到更general的图中(即使加上环和多重边)

图:G = (V, E)

其中V表示顶点的集合,E是未排序的顶点对的集合,E中的元素即为边。

相邻(adjacent):假设u v是图G = (V, E)的两个顶点,若有\{u, v\}\in E,则称u v是相邻的,即\{u, v\}是图G中的一条边,称u为v的邻居(neighbour)。

关联(incident):若顶点v和边e的关系为v\in e,则称顶点v和边e关联。

自环(loop):(v,v), v\in V
这里的(v,v)表示边连接的两个顶点是同一个

多重边(multiple edge):当一条边e = (u,v)在边的集合E中出现多次,称为多重边

简单图:没有环&多重边

同构(Isomorphism)

G_1 G_2之间的顶点有一一对应关系,且G_1中连接任意两个顶点的边的个数与G_2中对应相等,则称G_1 G_2同构。

推论:G_1与G_2同构,则G_2与G_1同构(可逆)

G_1与G_2同构,G_2与G_3同构,则G_1与G_3同构(传递)

labelled graph和unlabelled graph(直接看图,上面的是labelled,下面是unlabelled)

连通(connectedness)

我们可以把两个图合并在一起,得到一个更大的图,假设现在有两个图G_1 = (V(G_1), E(G_1))以及图G_2 = (V(G_2), E(G_2))并且两个图的顶点的集合(V(G_1)V(G_2))是不相连的,则图的unionG_1\cup G_2即为顶点集合和边集合的unionV(G_1)\cup V(G_2)E(G_1)\cup E(G_2)

之前讨论的大部分图都是连通的(不能被表述为两个图的union),如果可以拆成两个图,那么就是非连通图

任何非连通图G都可以表示成连通图的union,这里的连通图被称为连通块/连通分量(connected component)

相邻

当图G的顶点v和w之间有一条边vw,我们称顶点v和w是相邻(adjacent)的,且与边相关(incident)。类似的,如果两条边e和f有一个公共的顶点,则称这两条边相邻。

邻接矩阵&关联矩阵

adjacency and incidence matrices

假设有n个顶点,邻接矩阵定义为一个nxn的矩阵,若顶点i和顶点j之间有一条边,则位置(i,j)为1,否则为0。任何邻接矩阵为实矩阵且为对称阵

假设有n个顶点,m条边,关联矩阵为一个nxm的矩阵,若顶点与边相关(这条边有一段连着这个顶点)则为1,否则为0。

如果顶点v的度为0,则称该顶点为孤立点(isolated)

如上图所示的图的度序列为(1,3,6,8)(可以看到环会带来两个度)

handshaking lemma:任何图的所有顶点的度的和是偶数。

说明如果几个人握手,总的握手数目一定是偶数

子图

图G的子图是一个顶点都在V(G)内,边都在E(G)内的图。

导出子图(induced subgraph):是子图,但是摘出来所有完整的边(如果某个点有多条边,只选取边的另一边连着的顶点也在选取的顶点集合中的边。

生成子图(spanning subgraph):是子图,但是顶点全都选出来了

特殊的图

null graphs:边的集合为空的图。注意null graph的每个顶点都是isolated的。

complete graphs:每一对不同的顶点是邻接的简单图。如果有n个顶点,那么边的数目为n(n-1)/2(见下图)

regular graphs:图的每个顶点都有相同的度(见下图)。如果图的每个顶点的度为r,则称图为regular of degree r或r-regular(r阶正则图)。

下图同样称为Petersen graph,是cubic graphs的一个例子,cubic graphs指的是3阶正则图

cycle graphs:二阶正则图。

path graphs:cycle graphs去掉一条边

wheel:给cycle graphs中的每个点都另外一起连到一个新的顶点

如下图:

platonic graphs:属于正则图

bipartite graphs(二部图/二分图):如果图G的顶点集合可以被分为两个不相交的集合A和B,使得图G的每条边都分别连接A中的顶点和B中的顶点。

cubes:正则二部图

路径和循环

连通性

给定一个图G。G中的一条线路(walk)是一个有限的边的序列,可以表示成:

v_0v_1,v_1v_2,......,v_{m-1}v_m

或者

v_0 \rightarrow v_1\rightarrow v_2 \rightarrow \cdot \cdot \cdot \rightarrow v_m

任意两条连续的边是邻接的或者是相同的(有一个自环)。我们称v_0为线路的初始顶点(initial vertex),v_m为线路的最终顶点(final vertex),并且称这个过程为从v_0到v_m的线路(a walk from v_0 to v_m)。线路中经过的边的条数称为线路的长度(length)

但是线路的概念往往太过于笼统了->引入轨迹(trail)的概念。轨迹指的是所有的边都是distinct的线路,如果同时能保证顶点也是distinct,就称为途径(path)。

如果轨迹或途径是封闭(closed)的(即初始顶点=最终顶点,v_0 = v_m)。至少包含一条边的封闭的途径称为环(cycle),请注意,任何的自环以及多重边都是环。

若G为二部图,则G的每个环的长度都是偶数

连通图:任何一对顶点时图中一条途径的两端

非连通图:⬆️不满足

Eulerian graphs

如果一个连通图G存在一条封闭的轨迹包含G中所有的边,则称这条轨迹为Eulerian trail。注意要求每条边都要遍历且只能走一次(一笔画)

如果一个非欧拉图存在一条轨迹可以包含所有的边,称为semi-Eulerian。上图由左到右依次为欧拉图,半欧拉图,非欧拉图。

七桥问题:

引理:若G的每个顶点的度都至少为2,那么G包含一个环

定理:当且仅当连通图G的每个顶点的度都是偶数,这个图才是Eulerian

(题外话,这不就是一笔画问题咩)

Hamiltonian graphs

哈密顿图

是否包含一条封闭的轨迹通过且只通过一次图G中的所有顶点。

一些算法

详见https://www.maths.ed.ac.uk/~v1ranick/papers/wilsongraph.pdf47页

本章暂时跳过

平面性

平面图

平面图(planar graph)指的是图可以被画在一个平面上并且避免交叉(即:没有任何两条边在除了顶点意外的地方在几何上相交)

把左图的一条边扯到外边(中间的图)就得到了一个平面图

同胚的 (homeomorphic):若两个图都可以通过向同一个图的边加入新的度为2的顶点,称两个图同胚

 

对偶图

图论(十三)——平面图和对偶图-CSDN博客

在G的每个面中选择点v*作为G*的顶点,对应G的边e画边e*穿过e,但是不穿过G的其他边,并将与e相邻的面的顶点v*连接起来,这些线就是G*的边

参考:

https://www2.math.ethz.ch/education/bachelor/lectures/fs2016/math/graph_theory/graph_theory_notes.pdf

https://sitn.hms.harvard.edu/flash/2021/graph-theory-101/

https://cseweb.ucsd.edu/~dakane/Math154/154-textbook.pdf

https://www.maths.ed.ac.uk/~v1ranick/papers/wilsongraph.pdf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1636580.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring Security介绍(二) 主要组件(1) SecurityConfigurer

一、介绍 1、介绍 SecurityConfigurer 在 Spring Security 中是一个非常重要的角色。在前面的内容中曾经多次提到过,Spring Security 过滤器链中的每一个过滤器,都是通过 xxxConfigurer 来进行配置的,而这些 xxxConfigurer 实际上都是 Secu…

TCP通信 ,客户端服务端流程

TCP通信 TCP:传输层协议 特点:面向连接的安全的流式传输协议 面向链接 : 连接:三次握手,建立双向链接 断开:四次挥手,双向断开 安全的:通信过程会对通信进行校验,判…

Linux详解:进程创建

文章目录 进程创建fork函数写时拷贝页表fork常规用法fork调用失败的原因 进程创建 fork函数 在linux 中fork函数&#xff0c;它从已经存在的进程中创建一个新的进程&#xff0c;新进程为子进程&#xff0c;而原进程为父进程。 #include<unistd.h> pid_t fork(void);返…

『FPGA通信接口』DDR(3)DDR3颗粒读写测试

文章目录 前言1.配套工程简介2.测试内容与策略3. 测试程序分析4.程序结果分析5.一个IP控制两颗DDR36.传送门 前言 以四颗MT41K512M16HA-125AIT颗粒为例&#xff0c;介绍如何在一块新制板卡上做关于DDR3的器件测试。前面两篇介绍了什么是DDR&#xff0c;并介绍了xilinx给出的FPG…

[Java、Android面试]_24_Compose为什么绘制要比XML快?(高频问答)

欢迎查看合集&#xff1a; Java、Android面试高频系列文章合集 本人今年参加了很多面试&#xff0c;也有幸拿到了一些大厂的offer&#xff0c;整理了众多面试资料&#xff0c;后续还会分享众多面试资料。 整理成了面试系列&#xff0c;由于时间有限&#xff0c;每天整理一点&am…

神经网络反向传播算法

今天我们来看一下神经网络中的反向传播算法&#xff0c;之前介绍了梯度下降与正向传播~ 神经网络的反向传播 专栏&#xff1a;&#x1f48e;实战PyTorch&#x1f48e; 反向传播算法&#xff08;Back Propagation&#xff0c;简称BP&#xff09;是一种用于训练神经网络的算…

一键PDF水印添加工具

一键PDF水印添加工具 引言优点1. 精准定位与灵活布局2. 自由旋转与透明度调控3. 精细化页码选择4. 全方位自定义水印内容5. 无缝整合工作流程 功能详解结语工具示意图【工具链接】 引言 PDF作为最常用的文档格式之一&#xff0c;其安全性和版权保护显得尤为重要。今天&#xff…

qcheckbox互斥 也就是单选 纯代码实现 没有ui界面转到槽

1.init&#xff08;&#xff09;函数把所有的qcheckbox找到&#xff0c;然后通过信号与槽&#xff0c;做到点击哪个qcheckbox&#xff0c;哪个qcheckbox就发出信号 2.checkchange&#xff08;&#xff09;槽函数&#xff0c;通过42行拿到是哪个qcheckbox发出的信号&#xff0c…

怎么用微信小程序实现远程控制台球室

怎么用微信小程序实现远程控制台球室呢&#xff1f; 本文描述了使用微信小程序调用HTTP接口&#xff0c;实现控制台球室&#xff0c;控制球台上方的照明灯&#xff0c;单台设备可控制多张球台的照明灯。 可选用产品&#xff1a;可根据实际场景需求&#xff0c;选择对应的规格 …

PVDF-SiO₂复合纳米纤维膜

PVDF-SiO₂复合纳米纤维膜是一种结合了聚偏氟乙烯&#xff08;PVDF&#xff09;和二氧化硅&#xff08;SiO₂&#xff09;纳米粒子的新型复合材料。这种材料通常通过静电纺丝技术或其他纤维制备技术制备而成&#xff0c;具有许多良好的性能和广泛的应用前景。 PVDF是一种热塑性…

中兴UME网管LTE共享参数配置-PLMN添加

本文为中兴设备UME网管电联中频共享参数配置&#xff0c;PLMN添加参数配置部分&#xff0c;因UME与U&#xff13;&#xff11;网管添加PLMN配置区别较大&#xff0c;UME网管需同时配置运营商EN&#xff0d;DC策略&#xff0c;相关配置流程及参数配置如下文。 PLMN eNodeB CU …

《Python编程从入门到实践》day19

#昨日知识点回顾 使用unittest模块测试单元和类 #今日知识点学习 第12章 武装飞船 12.1 规划项目 游戏《外星人入侵》 12.2 安装pygame 终端管理器执行 pip install pygame 12.3 开始游戏项目 12.3.1 创建Pygame窗口及响应用户输入 import sysimport pygameclass…

一个类实现Mybatis的SQL热更新

引言 平时用SpringBootMybatis开发项目&#xff0c;如果项目比较大启动时间很长的话&#xff0c;每次修改Mybatis在Xml中的SQL就需要重启一次。假设项目重启一次需要5分钟&#xff0c;那修改10次SQL就过去了一个小时&#xff0c;成本有点太高了。关键是每次修改完代码之后再重…

【webrtc】MessageHandler 2: 基于线程的消息处理:以PeerConnectionClient为例

PeerConnectionClient 前一篇 nullaudiopoller 并么有场景线程,而是就是在当前线程直接执行的, PeerConnectionClient 作为一个独立的客户端,默认的是主线程。 PeerConnectionClient 同时维护客户端的信令状态,并且通过OnMessage实现MessageHandler 消息处理。 目前只处理一…

CCF-CSP真题题解:201403-1 相反数

201403-1 相反数 #include <iostream> #include <cstring> #include <algorithm> using namespace std;const int MAXN 510;int n, a[MAXN]; int cnt[MAXN];int main() {scanf("%d", &n);for (int i 0; i < n; i) { scanf("%d"…

【分治算法】【Python实现】最接近点对

文章目录 [toc]问题描述一维最接近点对算法Python实现 二维最接近点对算法分治算法时间复杂性Python实现 个人主页&#xff1a;丷从心 系列专栏&#xff1a;分治算法 学习指南&#xff1a;Python学习指南 问题描述 给定平面上 n n n个点&#xff0c;找其中的一对点&#xff…

Python 深度学习(二)

原文&#xff1a;zh.annas-archive.org/md5/98cfb0b9095f1cf64732abfaa40d7b3a 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 第五章&#xff1a;图像识别 视觉可以说是人类最重要的感官之一。我们依赖视觉来识别食物&#xff0c;逃离危险&#xff0c;认出朋友和家人…

【C++题解】1044. 找出最经济型的包装箱型号

问题&#xff1a;1044. 找出最经济型的包装箱型号 类型&#xff1a;多分支结构 题目描述&#xff1a; 已知有 A&#xff0c;B&#xff0c;C&#xff0c;D&#xff0c;E 五种包装箱&#xff0c;为了不浪费材料&#xff0c;小于 10 公斤的用 A 型&#xff0c;大于等于 10 公斤小…

浅论汽车研发项目数字化管理之道

随着汽车行业竞争不断加剧&#xff0c;汽车厂商能否快速、高质地推出贴合市场需求的新车型已经成为车企竞争的重要手段&#xff0c;而汽车研发具备流程复杂、专业领域多、协作难度大、质量要求高等特点&#xff0c;企业如果缺少科学健全的项目管理体系&#xff0c;将会在汽车研…

应用监控(Prometheus + Grafana)

可用于应用监控的系统有很多&#xff0c;有的需要埋点(切面)、有的需要配置Agent(字节码增强)。现在使用另外一个监控系统 —— Grafana。 Grafana 监控面板 这套监控主要用到了 SpringBoot Actuator Prometheus Grafana 三个模块组合的起来使用的监控。非常轻量好扩展使用。…