深入浅出一文图解Vision Mamba(ViM)

news2024/10/5 21:23:41

文章目录

    • 引言:Mamba
    • 第一章:环境安装
      • 1.1安装教程
      • 1.2问题总结
      • 1.3安装总结
    • 第二章:即插即用模块
      • 2.1模块一:Mamba Vision
        • 代码:models_mamba.py
        • 运行结果
      • 2.2模块二:MambaIR
        • 代码:MambaIR
        • 运行结果
    • 第三章:经典文献阅读与追踪
      • 经典论文
      • Mamba系列论文追踪
    • 第四章:Mamba理论与分析
    • 第五章:总结和展望


引言:Mamba

2024年04月29日16:06:08,今天开始记录mamba模块的学习与使用过程。


第一章:环境安装

亲测,根据下文的安装步骤,即可成功!

使用代码Vision Mamba:https://github.com/hustvl/Vim

git clone https://github.com/hustvl/Vim.git

1.1安装教程

安装教程:下载好vision mamba后,根据下面的教程一步一步安装即可成功。

vision mamba 运行训练记录,解决bimamba_type错误

1.2问题总结

问题总结:遇见的问题可以参考这个链接,总结的比较全面。

Mamba 环境安装踩坑问题汇总及解决方法

1.3安装总结

关键就是下载causal_conv1dmamba_ssm,最好是下载离线的whl文件,然后再用pip进行安装。值得注意的一点就是要用官方项目里的mamba_ssm替换安装在conda环境里的mamba_ssm。


第二章:即插即用模块

2.1模块一:Mamba Vision

Github:https://github.com/hustvl/Vim;
下载代码,配置好环境后,用下面的代码替换Vim/vim/models_mamba.py,即可直接运行;

运行指令

python models_mamba.py
代码:models_mamba.py
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import torch
import torch.nn as nn
from functools import partial
from torch import Tensor
from typing import Optional

from timm.models.vision_transformer import VisionTransformer, _cfg
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_, lecun_normal_

from timm.models.layers import DropPath, to_2tuple
from timm.models.vision_transformer import _load_weights

import math

from collections import namedtuple

from mamba_ssm.modules.mamba_simple import Mamba
from mamba_ssm.utils.generation import GenerationMixin
from mamba_ssm.utils.hf import load_config_hf, load_state_dict_hf

from rope import *
import random

try:
    from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
except ImportError:
    RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None


__all__ = [
    'vim_tiny_patch16_224', 'vim_small_patch16_224', 'vim_base_patch16_224',
    'vim_tiny_patch16_384', 'vim_small_patch16_384', 'vim_base_patch16_384',
]


class PatchEmbed(nn.Module):
    """ 2D Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, stride=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = ((img_size[0] - patch_size[0]) // stride + 1, (img_size[1] - patch_size[1]) // stride + 1)
        self.num_patches = self.grid_size[0] * self.grid_size[1]
        self.flatten = flatten

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, H, W = x.shape
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
        x = self.norm(x)
        return x
    

class Block(nn.Module):
    def __init__(
        self, dim, mixer_cls, norm_cls=nn.LayerNorm, fused_add_norm=False, residual_in_fp32=False,drop_path=0.,
    ):
        """
        Simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection"

        This Block has a slightly different structure compared to a regular
        prenorm Transformer block.
        The standard block is: LN -> MHA/MLP -> Add.
        [Ref: https://arxiv.org/abs/2002.04745]
        Here we have: Add -> LN -> Mixer, returning both
        the hidden_states (output of the mixer) and the residual.
        This is purely for performance reasons, as we can fuse add and LayerNorm.
        The residual needs to be provided (except for the very first block).
        """
        super().__init__()
        self.residual_in_fp32 = residual_in_fp32
        self.fused_add_norm = fused_add_norm
        self.mixer = mixer_cls(dim)
        self.norm = norm_cls(dim)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        if self.fused_add_norm:
            assert RMSNorm is not None, "RMSNorm import fails"
            assert isinstance(
                self.norm, (nn.LayerNorm, RMSNorm)
            ), "Only LayerNorm and RMSNorm are supported for fused_add_norm"

    def forward(
        self, hidden_states: Tensor, residual: Optional[Tensor] = None, inference_params=None
    ):
        r"""Pass the input through the encoder layer.

        Args:
            hidden_states: the sequence to the encoder layer (required).
            residual: hidden_states = Mixer(LN(residual))
        """
        if not self.fused_add_norm:
            if residual is None:
                residual = hidden_states
            else:
                residual = residual + self.drop_path(hidden_states)
            
            hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype))
            if self.residual_in_fp32:
                residual = residual.to(torch.float32)
        else:
            fused_add_norm_fn = rms_norm_fn if isinstance(self.norm, RMSNorm) else layer_norm_fn
            if residual is None:
                hidden_states, residual = fused_add_norm_fn(
                    hidden_states,
                    self.norm.weight,
                    self.norm.bias,
                    residual=residual,
                    prenorm=True,
                    residual_in_fp32=self.residual_in_fp32,
                    eps=self.norm.eps,
                )
            else:
                hidden_states, residual = fused_add_norm_fn(
                    self.drop_path(hidden_states),
                    self.norm.weight,
                    self.norm.bias,
                    residual=residual,
                    prenorm=True,
                    residual_in_fp32=self.residual_in_fp32,
                    eps=self.norm.eps,
                )    
        hidden_states = self.mixer(hidden_states, inference_params=inference_params)
        return hidden_states, residual

    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)


def create_block(
    d_model,
    ssm_cfg=None,
    norm_epsilon=1e-5,
    drop_path=0.,
    rms_norm=False,
    residual_in_fp32=False,
    fused_add_norm=False,
    layer_idx=None,
    device=None,
    dtype=None,
    if_bimamba=False,
    bimamba_type="none",
    if_devide_out=False,
    init_layer_scale=None,
):
    if if_bimamba:
        bimamba_type = "v1"
    if ssm_cfg is None:
        ssm_cfg = {}
    factory_kwargs = {"device": device, "dtype": dtype}
    mixer_cls = partial(Mamba, layer_idx=layer_idx, bimamba_type=bimamba_type, if_devide_out=if_devide_out, init_layer_scale=init_layer_scale, **ssm_cfg, **factory_kwargs)
    norm_cls = partial(
        nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs
    )
    block = Block(
        d_model,
        mixer_cls,
        norm_cls=norm_cls,
        drop_path=drop_path,
        fused_add_norm=fused_add_norm,
        residual_in_fp32=residual_in_fp32,
    )
    block.layer_idx = layer_idx
    return block


# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
def _init_weights(
    module,
    n_layer,
    initializer_range=0.02,  # Now only used for embedding layer.
    rescale_prenorm_residual=True,
    n_residuals_per_layer=1,  # Change to 2 if we have MLP
):
    if isinstance(module, nn.Linear):
        if module.bias is not None:
            if not getattr(module.bias, "_no_reinit", False):
                nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)

    if rescale_prenorm_residual:
        # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
        #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
        #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
        #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
        #
        # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
        for name, p in module.named_parameters():
            if name in ["out_proj.weight", "fc2.weight"]:
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                # Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
                # We need to reinit p since this code could be called multiple times
                # Having just p *= scale would repeatedly scale it down
                nn.init.kaiming_uniform_(p, a=math.sqrt(5))
                with torch.no_grad():
                    p /= math.sqrt(n_residuals_per_layer * n_layer)


def segm_init_weights(m):
    if isinstance(m, nn.Linear):
        trunc_normal_(m.weight, std=0.02)
        if isinstance(m, nn.Linear) and m.bias is not None:
            nn.init.constant_(m.bias, 0)
    elif isinstance(m, nn.Conv2d):
        # NOTE conv was left to pytorch default in my original init
        lecun_normal_(m.weight)
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, (nn.LayerNorm, nn.GroupNorm, nn.BatchNorm2d)):
        nn.init.zeros_(m.bias)
        nn.init.ones_(m.weight)


class VisionMamba(nn.Module):
    def __init__(self, 
                 img_size=224, 
                 patch_size=16, 
                 stride=16,
                 depth=24, 
                 embed_dim=192, 
                 channels=3, 
                 num_classes=1000,
                 ssm_cfg=None, 
                 drop_rate=0.,
                 drop_path_rate=0.1,
                 norm_epsilon: float = 1e-5, 
                 rms_norm: bool = False, 
                 initializer_cfg=None,
                 fused_add_norm=False,
                 residual_in_fp32=False,
                 device=None,
                 dtype=None,
                 ft_seq_len=None,
                 pt_hw_seq_len=14,
                 if_bidirectional=False,
                 final_pool_type='none',
                 if_abs_pos_embed=False,
                 if_rope=False,
                 if_rope_residual=False,
                 flip_img_sequences_ratio=-1.,
                 if_bimamba=False,
                 bimamba_type="none",
                 if_cls_token=False,
                 if_devide_out=False,
                 init_layer_scale=None,
                 use_double_cls_token=False,
                 use_middle_cls_token=False,
                 **kwargs):
        factory_kwargs = {"device": device, "dtype": dtype}
        # add factory_kwargs into kwargs
        kwargs.update(factory_kwargs) 
        super().__init__()
        self.residual_in_fp32 = residual_in_fp32
        self.fused_add_norm = fused_add_norm
        self.if_bidirectional = if_bidirectional
        self.final_pool_type = final_pool_type
        self.if_abs_pos_embed = if_abs_pos_embed
        self.if_rope = if_rope
        self.if_rope_residual = if_rope_residual
        self.flip_img_sequences_ratio = flip_img_sequences_ratio
        self.if_cls_token = if_cls_token
        self.use_double_cls_token = use_double_cls_token
        self.use_middle_cls_token = use_middle_cls_token
        self.num_tokens = 1 if if_cls_token else 0

        # pretrain parameters
        self.num_classes = num_classes
        self.d_model = self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models

        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, stride=stride, in_chans=channels, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        if if_cls_token:
            if use_double_cls_token:
                self.cls_token_head = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
                self.cls_token_tail = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
                self.num_tokens = 2
            else:
                self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
                # self.num_tokens = 1
            
        if if_abs_pos_embed:
            self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, self.embed_dim))
            self.pos_drop = nn.Dropout(p=drop_rate)

        if if_rope:
            half_head_dim = embed_dim // 2
            hw_seq_len = img_size // patch_size
            self.rope = VisionRotaryEmbeddingFast(
                dim=half_head_dim,
                pt_seq_len=pt_hw_seq_len,
                ft_seq_len=hw_seq_len
            )
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()


        # TODO: release this comment
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        # import ipdb;ipdb.set_trace()
        inter_dpr = [0.0] + dpr
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
                # transformer blocks
        self.layers = nn.ModuleList(
            [
                create_block(
                    embed_dim,
                    ssm_cfg=ssm_cfg,
                    norm_epsilon=norm_epsilon,
                    rms_norm=rms_norm,
                    residual_in_fp32=residual_in_fp32,
                    fused_add_norm=fused_add_norm,
                    layer_idx=i,
                    if_bimamba=if_bimamba,
                    bimamba_type=bimamba_type,
                    drop_path=inter_dpr[i],
                    if_devide_out=if_devide_out,
                    init_layer_scale=init_layer_scale,
                    **factory_kwargs,
                )
                for i in range(depth)
            ]
        )
        
        # output head
        self.norm_f = (nn.LayerNorm if not rms_norm else RMSNorm)(
            embed_dim, eps=norm_epsilon, **factory_kwargs
        )

        # self.pre_logits = nn.Identity()

        # original init
        self.patch_embed.apply(segm_init_weights)
        self.head.apply(segm_init_weights)
        if if_abs_pos_embed:
            trunc_normal_(self.pos_embed, std=.02)
        if if_cls_token:
            if use_double_cls_token:
                trunc_normal_(self.cls_token_head, std=.02)
                trunc_normal_(self.cls_token_tail, std=.02)
            else:
                trunc_normal_(self.cls_token, std=.02)

        # mamba init
        self.apply(
            partial(
                _init_weights,
                n_layer=depth,
                **(initializer_cfg if initializer_cfg is not None else {}),
            )
        )


    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        return {
            i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
            for i, layer in enumerate(self.layers)
        }

    @torch.jit.ignore
    def no_weight_decay(self):
        return {"pos_embed", "cls_token", "dist_token", "cls_token_head", "cls_token_tail"}

    @torch.jit.ignore()
    def load_pretrained(self, checkpoint_path, prefix=""):
        _load_weights(self, checkpoint_path, prefix)

    def forward_features(self, x, inference_params=None, if_random_cls_token_position=False, if_random_token_rank=False):
        # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
        # with slight modifications to add the dist_token
        x = self.patch_embed(x)
        B, M, _ = x.shape

        if self.if_cls_token:
            if self.use_double_cls_token:
                cls_token_head = self.cls_token_head.expand(B, -1, -1)
                cls_token_tail = self.cls_token_tail.expand(B, -1, -1)
                token_position = [0, M + 1]
                x = torch.cat((cls_token_head, x, cls_token_tail), dim=1)
                M = x.shape[1]
            else:
                if self.use_middle_cls_token:
                    cls_token = self.cls_token.expand(B, -1, -1)
                    token_position = M // 2
                    # add cls token in the middle
                    x = torch.cat((x[:, :token_position, :], cls_token, x[:, token_position:, :]), dim=1)
                elif if_random_cls_token_position:
                    cls_token = self.cls_token.expand(B, -1, -1)
                    token_position = random.randint(0, M)
                    x = torch.cat((x[:, :token_position, :], cls_token, x[:, token_position:, :]), dim=1)
                    print("token_position: ", token_position)
                else:
                    cls_token = self.cls_token.expand(B, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
                    token_position = 0
                    x = torch.cat((cls_token, x), dim=1)
                M = x.shape[1]

        if self.if_abs_pos_embed:
            # if new_grid_size[0] == self.patch_embed.grid_size[0] and new_grid_size[1] == self.patch_embed.grid_size[1]:
            #     x = x + self.pos_embed
            # else:
            #     pos_embed = interpolate_pos_embed_online(
            #                 self.pos_embed, self.patch_embed.grid_size, new_grid_size,0
            #             )
            x = x + self.pos_embed
            x = self.pos_drop(x)

        if if_random_token_rank:

            # 生成随机 shuffle 索引
            shuffle_indices = torch.randperm(M)

            if isinstance(token_position, list):
                print("original value: ", x[0, token_position[0], 0], x[0, token_position[1], 0])
            else:
                print("original value: ", x[0, token_position, 0])
            print("original token_position: ", token_position)

            # 执行 shuffle
            x = x[:, shuffle_indices, :]

            if isinstance(token_position, list):
                # 找到 cls token 在 shuffle 之后的新位置
                new_token_position = [torch.where(shuffle_indices == token_position[i])[0].item() for i in range(len(token_position))]
                token_position = new_token_position
            else:
                # 找到 cls token 在 shuffle 之后的新位置
                token_position = torch.where(shuffle_indices == token_position)[0].item()

            if isinstance(token_position, list):
                print("new value: ", x[0, token_position[0], 0], x[0, token_position[1], 0])
            else:
                print("new value: ", x[0, token_position, 0])
            print("new token_position: ", token_position)




        if_flip_img_sequences = False
        if self.flip_img_sequences_ratio > 0 and (self.flip_img_sequences_ratio - random.random()) > 1e-5:
            x = x.flip([1])
            if_flip_img_sequences = True

        # mamba impl
        residual = None
        hidden_states = x
        if not self.if_bidirectional:
            for layer in self.layers:

                if if_flip_img_sequences and self.if_rope:
                    hidden_states = hidden_states.flip([1])
                    if residual is not None:
                        residual = residual.flip([1])

                # rope about
                if self.if_rope:
                    hidden_states = self.rope(hidden_states)
                    if residual is not None and self.if_rope_residual:
                        residual = self.rope(residual)

                if if_flip_img_sequences and self.if_rope:
                    hidden_states = hidden_states.flip([1])
                    if residual is not None:
                        residual = residual.flip([1])

                hidden_states, residual = layer(
                    hidden_states, residual, inference_params=inference_params
                )
        else:
            # get two layers in a single for-loop
            for i in range(len(self.layers) // 2):
                if self.if_rope:
                    hidden_states = self.rope(hidden_states)
                    if residual is not None and self.if_rope_residual:
                        residual = self.rope(residual)

                hidden_states_f, residual_f = self.layers[i * 2](
                    hidden_states, residual, inference_params=inference_params
                )
                hidden_states_b, residual_b = self.layers[i * 2 + 1](
                    hidden_states.flip([1]), None if residual == None else residual.flip([1]), inference_params=inference_params
                )
                hidden_states = hidden_states_f + hidden_states_b.flip([1])
                residual = residual_f + residual_b.flip([1])

        if not self.fused_add_norm:
            if residual is None:
                residual = hidden_states
            else:
                residual = residual + self.drop_path(hidden_states)
            hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
        else:
            # Set prenorm=False here since we don't need the residual
            fused_add_norm_fn = rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn
            hidden_states = fused_add_norm_fn(
                self.drop_path(hidden_states),
                self.norm_f.weight,
                self.norm_f.bias,
                eps=self.norm_f.eps,
                residual=residual,
                prenorm=False,
                residual_in_fp32=self.residual_in_fp32,
            )

        # return only cls token if it exists
        if self.if_cls_token:
            if self.use_double_cls_token:
                return (hidden_states[:, token_position[0], :] + hidden_states[:, token_position[1], :]) / 2
            else:
                if self.use_middle_cls_token:
                    return hidden_states[:, token_position, :]
                elif if_random_cls_token_position:
                    return hidden_states[:, token_position, :]
                else:
                    return hidden_states[:, token_position, :]

        if self.final_pool_type == 'none':
            return hidden_states[:, -1, :]
        elif self.final_pool_type == 'mean':
            return hidden_states.mean(dim=1)
        elif self.final_pool_type == 'max':
            return hidden_states
        elif self.final_pool_type == 'all':
            return hidden_states
        else:
            raise NotImplementedError

    def forward(self, x, return_features=False, inference_params=None, if_random_cls_token_position=False, if_random_token_rank=False):
        x = self.forward_features(x, inference_params, if_random_cls_token_position=if_random_cls_token_position, if_random_token_rank=if_random_token_rank)
        if return_features:
            return x
        x = self.head(x)
        if self.final_pool_type == 'max':
            x = x.max(dim=1)[0]
        return x


@register_model
def vim_tiny_patch16_224_bimambav2_final_pool_mean_abs_pos_embed_with_midclstok_div2(pretrained=False, **kwargs):
    model = VisionMamba(
        patch_size=16, embed_dim=192, depth=24, rms_norm=True, residual_in_fp32=True, fused_add_norm=True, final_pool_type='mean', if_abs_pos_embed=True, if_rope=False, if_rope_residual=False, bimamba_type="v2", if_cls_token=True, if_devide_out=True, use_middle_cls_token=True, **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="to.do",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model

@register_model
def vim_tiny_patch16_stride8_224_bimambav2_final_pool_mean_abs_pos_embed_with_midclstok_div2(pretrained=False, **kwargs):
    model = VisionMamba(
        patch_size=16, stride=8, embed_dim=192, depth=24, rms_norm=True, residual_in_fp32=True, fused_add_norm=True, final_pool_type='mean', if_abs_pos_embed=True, if_rope=False, if_rope_residual=False, bimamba_type="v2", if_cls_token=True, if_devide_out=True, use_middle_cls_token=True, **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="to.do",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model

@register_model
def vim_small_patch16_224_bimambav2_final_pool_mean_abs_pos_embed_with_midclstok_div2(pretrained=False, **kwargs):
    model = VisionMamba(
        patch_size=16, embed_dim=384, depth=24, rms_norm=True, residual_in_fp32=True, fused_add_norm=True, final_pool_type='mean', if_abs_pos_embed=True, if_rope=False, if_rope_residual=False, bimamba_type="v2", if_cls_token=True, if_devide_out=True, use_middle_cls_token=True, **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="to.do",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model

@register_model
def vim_small_patch16_stride8_224_bimambav2_final_pool_mean_abs_pos_embed_with_midclstok_div2(pretrained=False, **kwargs):
    model = VisionMamba(
        patch_size=16, stride=8, embed_dim=384, depth=24, rms_norm=True, residual_in_fp32=True, fused_add_norm=True, final_pool_type='mean', if_abs_pos_embed=True, if_rope=False, if_rope_residual=False, bimamba_type="v2", if_cls_token=True, if_devide_out=True, use_middle_cls_token=True, **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="to.do",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model

if __name__ == '__main__':
    # cuda or cpu
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(device)

    # 实例化模型得到分类结果
    inputs = torch.randn(1, 3, 224, 224).to(device)
    model = vim_small_patch16_stride8_224_bimambav2_final_pool_mean_abs_pos_embed_with_midclstok_div2(pretrained=False).to(device)
    print(model)
    outputs = model(inputs)
    print(outputs.shape)

    # 实例化mamba模块,输入输出特征维度不变 B C H W
    x = torch.rand(10, 16, 64, 128).to(device)
    B, C, H, W = x.shape
    print("输入特征维度:", x.shape)
    x = x.view(B, C, H * W).permute(0, 2, 1)
    print("维度变换:", x.shape)
    mamba = create_block(d_model=C).to(device)
    # mamba模型代码中返回的是一个元组:hidden_states, residual
    hidden_states, residual = mamba(x)
    x = hidden_states.permute(0, 2, 1).view(B, C, H, W)
    print("输出特征维度:", x.shape)
运行结果

在这里插入图片描述


2.2模块二:MambaIR

B站UP主:@箫张跋扈

视频地址:Mamba Back!一种来自于Mamba领域的即插即用模块(TimeMachine),用于时间序列任务!

下载好代码后,把下面的代码放到MambaIR.py文件中,然后再运行即可得到结果。

代码:MambaIR
# Code Implementation of the MambaIR Model
import warnings
warnings.filterwarnings("ignore")
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from typing import Optional, Callable
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, selective_scan_ref
from einops import rearrange, repeat


"""
最近,选择性结构化状态空间模型,特别是改进版本的Mamba,在线性复杂度的远程依赖建模方面表现出了巨大的潜力。
然而,标准Mamba在低级视觉方面仍然面临一定的挑战,例如局部像素遗忘和通道冗余。在这项工作中,我们引入了局部增强和通道注意力来改进普通 Mamba。
通过这种方式,我们利用了局部像素相似性并减少了通道冗余。大量的实验证明了我们方法的优越性。
"""


NEG_INF = -1000000


class ChannelAttention(nn.Module):
    """Channel attention used in RCAN.
    Args:
        num_feat (int): Channel number of intermediate features.
        squeeze_factor (int): Channel squeeze factor. Default: 16.
    """

    def __init__(self, num_feat, squeeze_factor=16):
        super(ChannelAttention, self).__init__()
        self.attention = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
            nn.ReLU(inplace=True),
            nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0),
            nn.Sigmoid())

    def forward(self, x):
        y = self.attention(x)
        return x * y


class CAB(nn.Module):
    def __init__(self, num_feat, is_light_sr= False, compress_ratio=3,squeeze_factor=30):
        super(CAB, self).__init__()
        if is_light_sr: # we use depth-wise conv for light-SR to achieve more efficient
            self.cab = nn.Sequential(
                nn.Conv2d(num_feat, num_feat, 3, 1, 1, groups=num_feat),
                ChannelAttention(num_feat, squeeze_factor)
            )
        else: # for classic SR
            self.cab = nn.Sequential(
                nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1),
                nn.GELU(),
                nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1),
                ChannelAttention(num_feat, squeeze_factor)
            )

    def forward(self, x):
        return self.cab(x)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class DynamicPosBias(nn.Module):
    def __init__(self, dim, num_heads):
        super().__init__()
        self.num_heads = num_heads
        self.pos_dim = dim // 4
        self.pos_proj = nn.Linear(2, self.pos_dim)
        self.pos1 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.pos_dim),
        )
        self.pos2 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.pos_dim)
        )
        self.pos3 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.num_heads)
        )

    def forward(self, biases):
        pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
        return pos

    def flops(self, N):
        flops = N * 2 * self.pos_dim
        flops += N * self.pos_dim * self.pos_dim
        flops += N * self.pos_dim * self.pos_dim
        flops += N * self.pos_dim * self.num_heads
        return flops


class Attention(nn.Module):
    r""" Multi-head self attention module with dynamic position bias.

    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.,
                 position_bias=True):

        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.position_bias = position_bias
        if self.position_bias:
            self.pos = DynamicPosBias(self.dim // 4, self.num_heads)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, H, W, mask=None):
        """
        Args:
            x: input features with shape of (num_groups*B, N, C)
            mask: (0/-inf) mask with shape of (num_groups, Gh*Gw, Gh*Gw) or None
            H: height of each group
            W: width of each group
        """
        group_size = (H, W)
        B_, N, C = x.shape
        assert H * W == N
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4).contiguous()
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))  # (B_, self.num_heads, N, N), N = H*W

        if self.position_bias:
            # generate mother-set
            position_bias_h = torch.arange(1 - group_size[0], group_size[0], device=attn.device)
            position_bias_w = torch.arange(1 - group_size[1], group_size[1], device=attn.device)
            biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))  # 2, 2Gh-1, 2W2-1
            biases = biases.flatten(1).transpose(0, 1).contiguous().float()  # (2h-1)*(2w-1) 2

            # get pair-wise relative position index for each token inside the window
            coords_h = torch.arange(group_size[0], device=attn.device)
            coords_w = torch.arange(group_size[1], device=attn.device)
            coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Gh, Gw
            coords_flatten = torch.flatten(coords, 1)  # 2, Gh*Gw
            relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Gh*Gw, Gh*Gw
            relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Gh*Gw, Gh*Gw, 2
            relative_coords[:, :, 0] += group_size[0] - 1  # shift to start from 0
            relative_coords[:, :, 1] += group_size[1] - 1
            relative_coords[:, :, 0] *= 2 * group_size[1] - 1
            relative_position_index = relative_coords.sum(-1)  # Gh*Gw, Gh*Gw

            pos = self.pos(biases)  # 2Gh-1 * 2Gw-1, heads
            # select position bias
            relative_position_bias = pos[relative_position_index.view(-1)].view(
                group_size[0] * group_size[1], group_size[0] * group_size[1], -1)  # Gh*Gw,Gh*Gw,nH
            relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Gh*Gw, Gh*Gw
            attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nP = mask.shape[0]
            attn = attn.view(B_ // nP, nP, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(
                0)  # (B, nP, nHead, N, N)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class SS2D(nn.Module):
    def __init__(
            self,
            d_model,
            d_state=16,
            d_conv=3,
            expand=2.,
            dt_rank="auto",
            dt_min=0.001,
            dt_max=0.1,
            dt_init="random",
            dt_scale=1.0,
            dt_init_floor=1e-4,
            dropout=0.,
            conv_bias=True,
            bias=False,
            device=None,
            dtype=None,
            **kwargs,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.d_model = d_model
        self.d_state = d_state
        self.d_conv = d_conv
        self.expand = expand
        self.d_inner = int(self.expand * self.d_model)
        self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank

        self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
        self.conv2d = nn.Conv2d(
            in_channels=self.d_inner,
            out_channels=self.d_inner,
            groups=self.d_inner,
            bias=conv_bias,
            kernel_size=d_conv,
            padding=(d_conv - 1) // 2,
            **factory_kwargs,
        )
        self.act = nn.SiLU()

        self.x_proj = (
            nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
            nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
            nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
            nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
        )
        self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0))  # (K=4, N, inner)
        del self.x_proj

        self.dt_projs = (
            self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
                         **factory_kwargs),
            self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
                         **factory_kwargs),
            self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
                         **factory_kwargs),
            self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
                         **factory_kwargs),
        )
        self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0))  # (K=4, inner, rank)
        self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0))  # (K=4, inner)
        del self.dt_projs

        self.A_logs = self.A_log_init(self.d_state, self.d_inner, copies=4, merge=True)  # (K=4, D, N)
        self.Ds = self.D_init(self.d_inner, copies=4, merge=True)  # (K=4, D, N)

        self.selective_scan = selective_scan_fn

        self.out_norm = nn.LayerNorm(self.d_inner)
        self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
        self.dropout = nn.Dropout(dropout) if dropout > 0. else None

    @staticmethod
    def dt_init(dt_rank, d_inner, dt_scale=1.0, dt_init="random", dt_min=0.001, dt_max=0.1, dt_init_floor=1e-4,
                **factory_kwargs):
        dt_proj = nn.Linear(dt_rank, d_inner, bias=True, **factory_kwargs)

        # Initialize special dt projection to preserve variance at initialization
        dt_init_std = dt_rank ** -0.5 * dt_scale
        if dt_init == "constant":
            nn.init.constant_(dt_proj.weight, dt_init_std)
        elif dt_init == "random":
            nn.init.uniform_(dt_proj.weight, -dt_init_std, dt_init_std)
        else:
            raise NotImplementedError

        # Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
        dt = torch.exp(
            torch.rand(d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
            + math.log(dt_min)
        ).clamp(min=dt_init_floor)
        # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
        inv_dt = dt + torch.log(-torch.expm1(-dt))
        with torch.no_grad():
            dt_proj.bias.copy_(inv_dt)
        # Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
        dt_proj.bias._no_reinit = True

        return dt_proj

    @staticmethod
    def A_log_init(d_state, d_inner, copies=1, device=None, merge=True):
        # S4D real initialization
        A = repeat(
            torch.arange(1, d_state + 1, dtype=torch.float32, device=device),
            "n -> d n",
            d=d_inner,
        ).contiguous()
        A_log = torch.log(A)  # Keep A_log in fp32
        if copies > 1:
            A_log = repeat(A_log, "d n -> r d n", r=copies)
            if merge:
                A_log = A_log.flatten(0, 1)
        A_log = nn.Parameter(A_log)
        A_log._no_weight_decay = True
        return A_log

    @staticmethod
    def D_init(d_inner, copies=1, device=None, merge=True):
        # D "skip" parameter
        D = torch.ones(d_inner, device=device)
        if copies > 1:
            D = repeat(D, "n1 -> r n1", r=copies)
            if merge:
                D = D.flatten(0, 1)
        D = nn.Parameter(D)  # Keep in fp32
        D._no_weight_decay = True
        return D

    def forward_core(self, x: torch.Tensor):
        B, C, H, W = x.shape
        L = H * W
        K = 4
        x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)], dim=1).view(B, 2, -1, L)
        xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) # (1, 4, 192, 3136)

        x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs.view(B, K, -1, L), self.x_proj_weight)
        dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2)
        dts = torch.einsum("b k r l, k d r -> b k d l", dts.view(B, K, -1, L), self.dt_projs_weight)
        xs = xs.float().view(B, -1, L)
        dts = dts.contiguous().float().view(B, -1, L) # (b, k * d, l)
        Bs = Bs.float().view(B, K, -1, L)
        Cs = Cs.float().view(B, K, -1, L) # (b, k, d_state, l)
        Ds = self.Ds.float().view(-1)
        As = -torch.exp(self.A_logs.float()).view(-1, self.d_state)
        dt_projs_bias = self.dt_projs_bias.float().view(-1) # (k * d)
        out_y = self.selective_scan(
            xs, dts,
            As, Bs, Cs, Ds, z=None,
            delta_bias=dt_projs_bias,
            delta_softplus=True,
            return_last_state=False,
        ).view(B, K, -1, L)
        assert out_y.dtype == torch.float

        inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L)
        wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
        invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)

        return out_y[:, 0], inv_y[:, 0], wh_y, invwh_y

    def forward(self, x: torch.Tensor, **kwargs):
        B, H, W, C = x.shape

        xz = self.in_proj(x)
        x, z = xz.chunk(2, dim=-1)

        x = x.permute(0, 3, 1, 2).contiguous()
        x = self.act(self.conv2d(x))
        y1, y2, y3, y4 = self.forward_core(x)
        assert y1.dtype == torch.float32
        y = y1 + y2 + y3 + y4
        y = torch.transpose(y, dim0=1, dim1=2).contiguous().view(B, H, W, -1)
        y = self.out_norm(y)
        y = y * F.silu(z)
        out = self.out_proj(y)
        if self.dropout is not None:
            out = self.dropout(out)
        return out


class VSSBlock(nn.Module):
    def __init__(
            self,
            hidden_dim: int = 0,
            drop_path: float = 0,
            norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
            attn_drop_rate: float = 0,
            d_state: int = 16,
            expand: float = 2.,
            is_light_sr: bool = False,
            **kwargs,
    ):
        super().__init__()
        self.ln_1 = norm_layer(hidden_dim)
        self.self_attention = SS2D(d_model=hidden_dim, d_state=d_state,expand=expand,dropout=attn_drop_rate, **kwargs)
        self.drop_path = DropPath(drop_path)
        self.skip_scale= nn.Parameter(torch.ones(hidden_dim))
        self.conv_blk = CAB(hidden_dim,is_light_sr)
        self.ln_2 = nn.LayerNorm(hidden_dim)
        self.skip_scale2 = nn.Parameter(torch.ones(hidden_dim))



    def forward(self, input, x_size):
        # x [B,HW,C]
        B, L, C = input.shape
        input = input.view(B, *x_size, C).contiguous()  # [B,H,W,C]
        x = self.ln_1(input)
        x = input*self.skip_scale + self.drop_path(self.self_attention(x))
        x = x*self.skip_scale2 + self.conv_blk(self.ln_2(x).permute(0, 3, 1, 2).contiguous()).permute(0, 2, 3, 1).contiguous()
        x = x.view(B, -1, C).contiguous()
        return x


if __name__ == '__main__':
    # 初始化VSSBlock模块,hidden_dim为128
    block = VSSBlock(hidden_dim=128, drop_path=0.1, attn_drop_rate=0.1, d_state=16, expand=2.0, is_light_sr=False)

    # 将模块转移到合适的设备上
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    block = block.to(device)

    # 生成随机输入张量,尺寸为[B, H*W, C],这里模拟的是批次大小为4,每个图像的尺寸是32x32,通道数为128
    B, H, W, C = 4, 32, 32, 128
    input_tensor = torch.rand(B, H * W, C).to(device)

    # 计算输出
    output_tensor = block(input_tensor, (H, W))

    # 打印输入和输出张量的尺寸
    print("Input tensor size:", input_tensor.size())
    print("Output tensor size:", output_tensor.size())
运行结果

在这里插入图片描述


第三章:经典文献阅读与追踪

Mamba原文:Mamba: Linear-Time Sequence Modeling with Selective State Spaces

经典论文

  1. Vision Mamba@Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model
  2. MambaIR@MambaIR: A Simple Baseline for Image Restoration with State-Space Model
  3. U-Mamba@U-Mamba: Enhancing Long-range Dependency for Biomedical Image Segmentation

Mamba系列论文追踪

Github链接会分享不同领域基于Mamba结构的论文

Mamba_State_Space_Model_Paper_List Public:https://github.com/Event-AHU/Mamba_State_Space_Model_Paper_List


第四章:Mamba理论与分析

未完待续...


第五章:总结和展望

  1. 2024年04月29日16:57:45,今天已完成环境的安装与即插即用模块实例化和相关论文的分享;在近期会充分学习Mamba后对其理论进行分享,帮助快速简要理解原文Mamba相关理论。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1634421.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【MyBatis】进阶使用 (动态SQL)

动态SQL \<if>\<trim>\<where>\<set>\<foreach>\<include> 在填写表单时&#xff0c;有些数据是非必填字段&#xff08;例如性别&#xff0c;年龄等字段&#xff09;&#xff0c;那就需要在接收到参数时判断&#xff0c;根据参数具体的情况…

ROS2 学习笔记(二)常用小工具

1. rqt_console #启动 ros2 run rqt_console rqt_console日志级别&#xff1a;Fatal --> Error --> Warn --> Info --> Debug #修改允许发布的日志级别 ros2 run <package_name> <executable_name> --ros-args --log-level WARN2. launch文件 ROS2中…

TMS320F280049 EQEP模块--QCAP(3)

功能框图 如上图所示&#xff0c;QCAP的核心功能块是CTCU捕获事件控制单元。CTCU以CAPCLK为时钟来计数&#xff0c;在UPEVNT事件时QCTMR值会锁存到QCPRD并重置。此时软件可以读取该QCPRD来计算速度。 速度计算公式 公式 QCAP主要为了在低速模式下使用&#xff0c;速度计算公…

49. 【Android教程】HTTP 使用详解

在你浏览互联网的时候&#xff0c;绝大多数的数据都是通过 HTTP 协议获取到的&#xff0c;也就是说如果你想要实现一个能上网的 App&#xff0c;那么就一定会和 HTTP 打上交道。当然 Android 发展到现在这么多年&#xff0c;已经有很多非常好用&#xff0c;功能非常完善的网络框…

无人机+低空经济:释放中国低空经济动力的必要条件

无人机与低空经济的结合&#xff0c;对于释放中国低空经济动力具有重要的意义。无人机作为低空经济的重要组成部分&#xff0c;可以为低空经济提供新的动力和发展方向。以下是无人机与低空经济结合释放中国低空经济动力的必要条件&#xff1a; 1. 无人机技术的不断发展和创新&a…

InternVL——GPT-4V 的开源替代方案

您的浏览器不支持 video 标签。 在人工智能领域&#xff0c;InternVL 无疑是一颗耀眼的新星。它被认为是最接近 GPT-4V 表现的可商用开源模型&#xff0c;为我们带来了许多惊喜。 InternVL 具备强大的功能&#xff0c;不仅能够处理图像和文本数据&#xff0c;还能精妙地理解…

神之浩劫2测试预约 神之浩劫2怎么预约测试资格教程

在备受赞誉的第三人称动作MOBA经典《神之浩劫》的荣耀轨迹上&#xff0c;其续集《神之浩劫2》即将于5月3日&#xff08;北京时间&#xff09;启幕Alpha测试阶段&#xff0c;首度揭露其神秘面纱&#xff0c;届时&#xff0c;14位英勇无畏的英雄将迎接被甄选玩家的驾驭与探索。此…

后端如何处理接口的重复调用

首先是&#xff0c;原理在请求接口之前&#xff0c;使用过滤器拦截数据&#xff0c;来进行判断两次数据是否一致。 1.自定义注解 2.创建一个Handler处理器 3.RepeatSubmitInterceptor的实现类 4.过滤器的配置

JavaEE技术之MySql高级(索引、索引优化、sql实战、View视图、Mysql日志和锁、多版本并发控制)

文章目录 1. MySQL简介2. MySQL安装2.1 MySQL8新特性2.2 安装MySQL2.2.1 在docker中创建并启动MySQL容器&#xff1a;2.2.2 修改mysql密码2.2.3 重启mysql容器2.2.4 常见问题解决 2.3 字符集问题2.4 远程访问MySQL(用户与权限管理)2.4.0 远程连接问题1、防火墙2、账号不支持远程…

场外期权交易合法吗?参与场外期权交易需要符合哪些规定?

场外期权交易是合法的金融交易方式&#xff0c;且得到了相应监管部门的支持和规范。它是一种新型的期权交易方式&#xff0c;具有灵活性高、可以满足特定投资者需求的特点。 文章来源/&#xff1a;股指研究院 场外期权是私下协商的&#xff0c;交易双方可根据个人预期、风险承…

中国移动算网大脑智能升级,助力移动云由云向算新启航!

2024中国移动算力网络大会于4月28日在苏州正式拉开帷幕。中国移动发布全面智能化升级的算网大脑&#xff0c;以“人工智能”赋能算网一体化调度&#xff0c;推动算力网络点亮AI新时代。 会上&#xff0c;中国移动云能力中心副总经理孙少陵发表题为《算网大脑&#xff0c;助力移…

Java字符缓冲区

字符缓冲区是在计算机编程中非常重要的一种数据结构&#xff0c;它主要用于存储和高效地操作字符序列。 在 Java 中&#xff0c;StringBuffer类就是典型的字符缓冲区实现。与String类不同&#xff0c;StringBuffer具有动态可变性&#xff0c;这意味着我们可以在原有的字符序列…

Netty: NIO网络编程

文章目录 一、NIO介绍二、NIO原理三、Buffer1、Buffer原理介绍2、Buffer实现类3、示例4、NIO和BIO的比较 四、Channel1、介绍2、FileChannel介绍3、Buffer和Channel的注意事项 五、Selector六、Selector、Channel和Buffer关系 一、NIO介绍 NIO介绍 二、NIO原理 NIO有三大核心…

吴恩达2022机器学习专项课程(一)8.1 过拟合

目录 什么是过拟合&#xff1f;如何解决过拟合&#xff1f;什么是泛化&#xff1f;它跟过拟合有什么关系&#xff1f;过拟合案例线性回归线性回归的欠拟合线性回归较好的拟合线性回归的过拟合 逻辑回归逻辑回归的欠拟合逻辑回归的较好的拟合逻辑回归的过拟合 总结 什么是过拟合…

Macs Fan Control Pro for mac激活版:macOS 平台的风扇控制软件

Macs Fan Control Pro是一款用于 macOS 平台的风扇控制软件&#xff0c;它允许用户监控和调整 Mac 电脑的风扇转速。以下是该软件的一些特点和功能&#xff1a; Macs Fan Control Pro for mac激活版下载 风扇监控&#xff1a;Macs Fan Control Pro 提供实时的风扇转速监控&…

nn.TransformerEncoderLayer详细解释,使用方法!!

nn.TransformerEncoderLayer nn.TransformerEncoderLayer 是 PyTorch 的 torch.nn 模块中提供的一个类&#xff0c;用于实现 Transformer 编码器的一个单独的层。Transformer 编码器层通常包括一个自注意力机制和一个前馈神经网络&#xff0c;中间可能还包含层归一化&#xff…

SSH和Telnet的区别

SSH&#xff08;Secure Shell&#xff09;和Telnet是两种网络协议&#xff0c;用于远程登录和管理计算机系统。但是它们有以下几个主要的区别&#xff1a; 安全性&#xff1a;SSH是一种加密的协议&#xff0c;可以向服务器传输加密的数据&#xff0c;以防止数据被窃听或篡改。而…

【SSM整合】全注解开发

引入依赖&#xff1a; <dependencies><!--springmvc--><dependency><groupId>org.springframework</groupId><artifactId>spring-webmvc</artifactId><version>6.1.4</version></dependency><!--spring jdbc--…

MAC 本地搭建Dify环境

Dify 介绍 Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务&#xff08;Backend as Service&#xff09;和 LLMOps 的理念&#xff0c;使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员&#xff0c;也能参与到 AI 应用的定义和数据运营过…

最小K个数(力扣面试题17.14)

本文采用的是大堆排序求最小的K个值。需要有堆的数据结构基础哦。 代码展示&#xff1a; /*** Note: The returned array must be malloced, assume caller calls free().*/ void AdjustDown(int* parr,int n,int root)//向下调整 {int parentroot;int child parent*21;while…