系列文章目录
STM32单片机系列专栏
C语言术语和结构总结专栏
文章目录
1. 直流电机和驱动简介
2. 驱动电路原理
3. 代码实现
3.1 PWM.c
3.2 PWM.h
3.3 MOTOR.c
3.4 MOTOR.h
3.5 main.c
3.6 完整工程文件
PWM和OC输出比较详解:
STM32定时器的OC比较和PWM
1. 直流电机和驱动简介
直流电机是一种将电能转换为机械能的设备,主要通过控制电压和电流来调节其速度和转向。电机的速度可以通过改变供电的电压或电流来控制,而转向可以通过改变电流方向来实现。电机通常由永磁体和旋转的电枢(带导体线圈的部分)组成,电流通过电枢导体产生磁场与永磁体互相作用产生力矩,从而驱动电机旋转。
因为直流电机属于大功率器件,GPIO无法直接驱动,所以需要配合电机驱动。所以电机驱动是介于控制器(如微控制器)和电机之间的设备,作为电机的电源管理系统。驱动器负责接收低电压控制信号,并转换成可以直接驱动电机的高电压功率信号。驱动器能够控制电机的启动、停止、速度、扭矩和旋转方向。
市场上有很多类型的驱动,例如TB6612、L911、L298N、DRV8833等等。TB6612是一款小型、高效的电机驱动芯片,适用于小型直流电机或步进电机。它可以处理较高的电流和电压,同时还提供过热保护和欠压锁定功能。TB6612芯片具有两个H桥,可以驱动两个电机或一个双向电机。
驱动电路中使用的H桥结构用于控制电机的旋转方向。通过在H桥的四个开关之间切换(这些开关通常是晶体管或MOSFET),可以改变流经电机的电流方向。H桥也可以用来实现PWM调速,即通过调节开关的开合时间比例来控制电机的平均电压和速度。
2. 驱动电路原理
上图为TB6612的硬件电路,其中:
- VM: 电机供电输入,通常需要提供4.5-10V的直流电压。
- VCC: 逻辑供电输入,用于IC内部逻辑电路,电压范围通常是2.7-5.5V,和主控使用同一个电源。
- GND: 接地引脚。
- STBY: 待机模式控制引脚,当此引脚为高电平时,电机驱动器工作;为低电平时,驱动器处于待机状态。如果不需要这个功能直接接3.3v即可。
- PWMA/B: PWM信号输入,用于控制电机的速度。
- AIN1/A2, BIN1/B2: 电机旋转方向控制输入,通过改变这些引脚的高低电平,可以控制电机的旋转方向。这两个信号和PWMA一起,通过低功率的控制信号来控制VM将电路输入给AO端,实现控制大功率设备。
- AO1/AO2, BO1/BO2: 连接到电机的输出引脚。
STM32 | 电机 | 驱动 |
/ | / | VM(4.5-10V) |
3.3V | / | VCC |
GND | / | GND |
/ | 电机1 | AO1/AO2 |
/ | 电机2 | BO1/BO2 |
PA0 | / | PWMA |
PA4 | / | AIN2 |
PA5 | / | AIN1 |
PA1 | / | PWMB |
PA6 | / | BIN1 |
PA7 | / | BIN2 |
3.3V | / | STBY |
下图解释了不同的高低电平输入,对应的电机状态。
3. 代码实现
代码实现的功能为:
要使用的库函数文件依然为:stm32f10x_tim.h,拖到最下面,在这里可以找到定时器TIM需要使用到的函数。
3.1 PWM.c
#include "stm32f10x.h" // Device header
//PWM初始化
void PWM_Init(void)
{
//开启时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); //开启TIM2的时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //开启GPIOA的时钟
//GPIO初始化
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure); //将PA2引脚初始化为复用推挽输出
//受外设控制的引脚,均需要配置为复用模式
//配置时钟源
TIM_InternalClockConfig(TIM2); //选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟
//时基单元初始化
TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; //定义结构体变量
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数
TIM_TimeBaseInitStructure.TIM_Period = 100 - 1; //计数周期,即ARR的值
TIM_TimeBaseInitStructure.TIM_Prescaler = 36 - 1; //预分频器,即PSC的值
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0; //重复计数器,高级定时器才会用到
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure); //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元
//输出比较初始化
TIM_OCInitTypeDef TIM_OCInitStructure; //定义结构体变量
TIM_OCStructInit(&TIM_OCInitStructure); //结构体初始化,若结构体没有完整赋值
//则最好执行此函数,给结构体所有成员都赋一个默认值
//避免结构体初值不确定的问题
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //输出比较模式,选择PWM模式1
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性,选择为高,若选择极性为低,则输出高低电平取反
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //输出使能
TIM_OCInitStructure.TIM_Pulse = 0; //初始的CCR值
TIM_OC3Init(TIM2, &TIM_OCInitStructure); //将结构体变量交给TIM_OC3Init,配置TIM2的输出比较通道3
//TIM使能
TIM_Cmd(TIM2, ENABLE); //使能TIM2,定时器开始运行
}
//PWM设置CCR
void PWM_SetCompare3(uint16_t Compare)
{
TIM_SetCompare3(TIM2, Compare); //设置CCR3的值
}
RCC_APB1PeriphClockCmd
- TIM2 代表定时器2,它是STM32的一个基础硬件定时器。在STM32的某些系列中,TIM2连接到的是APB1总线。
- ENABLE 是一个宏定义,用来开启某项功能,这里用来开启TIM2的时钟。如果传递 DISABLE 则会关闭外设的时钟。
- 简单来说,RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); 这行代码的作用是开启连接到APB1总线的定时器2(TIM2)的时钟。只有开启了时钟,程序中关于TIM2的其他功能(如计时、计数、PWM发生等)才能正常工作。
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
- GPIO的初始化中,选择AF_PP复用推挽输出,因为对于普通的开漏推挽输出,引脚的控制权是来自于输出数据寄存器的,如果想用定时器来控制引脚,就需要使用复用开漏/推挽输出模式。
时基单元中的数值设置:
代入公式为:
- 频率 = CK_PSC(72M) / (PSC + 1) / (ARR + 1)
- 占空比 = CCR / (ARR + 1)
- 分辨率为 = 1 / (ARR + 1)
- 电机在转动时,如果不想听到电机转动的声音,可以提高PWM,人耳能听到到声音频率为:20Hz - 20000Hz。可以通过减小预分频器来实现,这样可以在提高频率的同时,不影响占空比。
- 720 代表1000Hz,代码中使用36代表20KHz。
3.2 PWM.h
接着是PWM.h文件,这部分引用声明一下即可
#ifndef __PWM_H
#define __PWM_H
void PWM_Init(void);
void PWM_SetCompare3(uint16_t Compare);
#endif
3.3 MOTOR.c
#include "stm32f10x.h" // Device header
#include "PWM.h"
//直流电机初始化
void Motor_Init(void)
{
//开启时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //开启GPIOA的时钟
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure); //将PA4和PA5引脚初始化为推挽输出
PWM_Init(); //初始化直流电机的底层PWM
}
//直流电机设置速度
void Motor_SetSpeed(int8_t Speed)
{
if (Speed >= 0) //如果设置正转的速度值
{
GPIO_SetBits(GPIOA, GPIO_Pin_4); //PA4置高电平
GPIO_ResetBits(GPIOA, GPIO_Pin_5); //PA5置低电平,设置方向为正转
PWM_SetCompare3(Speed); //PWM设置为速度值
}
else //否则,即设置反转的速度值
{
GPIO_ResetBits(GPIOA, GPIO_Pin_4); //PA4置低电平
GPIO_SetBits(GPIOA, GPIO_Pin_5); //PA5置高电平,设置方向为反转
PWM_SetCompare3(-Speed); //PWM设置为负的速度值,因为此时速度值为负数,而PWM只能给正数
}
}
3.4 MOTOR.h
同样进行声明。
#ifndef __MOTOR_H
#define __MOTOR_H
void Motor_Init(void);
void Motor_SetSpeed(int8_t Speed);
#endif
3.5 main.c
主函数中要注意的是:速度大于100时,会立刻反转,如果电机供电不足可能会导致损坏。
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
#include "Motor.h"
#include "Key.h"
uint8_t KeyNum; //定义用于接收按键键码的变量
int8_t Speed; //定义速度变量
int main(void)
{
//模块初始化
OLED_Init(); //OLED初始化
Motor_Init(); //直流电机初始化
Key_Init(); //按键初始化
//显示静态字符串
OLED_ShowString(1, 1, "Speed:"); //1行1列显示字符串Speed:
while (1)
{
KeyNum = Key_GetNum(); //获取按键键码
if (KeyNum == 1) //按键1按下
{
Speed += 20; //速度变量自增20
if (Speed > 100) //速度变量超过100后
{
Speed = -100; //速度变量变为-100
//此操作会让电机旋转方向突然改变,可能会因供电不足而导致单片机复位
//若出现了此现象,则应避免使用这样的操作
}
}
Motor_SetSpeed(Speed); //设置直流电机的速度为速度变量
OLED_ShowSignedNum(1, 7, Speed, 3); //OLED显示速度变量
}
}
3.6 完整工程文件
STM32通过PWM驱动直流电机