【C 数据结构】深度优先搜索、广度优先搜索

news2024/12/24 8:16:15

文章目录

  • 【 1. DFS 深度优先搜索 】
    • 1.1 基本原理
    • 1.2 C 实现
  • 【 2. BFS 广度优先搜索 】
    • 2.1 基本原理
    • 2.2 C 实现
  • 【 3. 深度优先生成树、广度优先生成树 】
  • 【 4. 深度优先生成森林、广度优先生成森林 】
    • 4.1 深度优先生成森林
    • 4.2 广度优先生成森林

  • 对存储的图中的顶点进行遍历搜索,常用的遍历方式有两种:深度优先搜索和广度优先搜索。

【 1. DFS 深度优先搜索 】

1.1 基本原理

  • 深度优先搜索的过程 类似于树的先序遍历,首先从例子中体会深度优先搜索。例如下图是一个无向图,采用深度优先算法遍历这个图的过程为:
    • 首先任意找一个未被遍历过的顶点,例如从 V1 开始,由于 V1 率先访问过了,所以,需要标记 V1 的状态为访问过;
    • 然后遍历 V1 的邻接点,例如访问 V2 ,并做标记,然后访问 V2 的邻接点,例如 V4 (做标记),然后 V8 ,然后 V5 ;
    • 当继续遍历 V5 的邻接点时,根据之前做的标记显示,所有V5 的邻接点都被访问过了。此时,从 V5 回退到 V8 ,看 V8 是否有未被访问过的邻接点,如果没有,继续回退到 V4 , V2 ,V1 ;
    • 通过查看 V1 ,找到一个未被访问过的顶点 V3 ,继续遍历,然后访问 V3 邻接点 V6 ,然后 V7 ;
    • 由于 V7 没有未被访问的邻接点,所以回退到 V6 ,继续回退至 V3 ,最后到达 V1 ,发现没有未被访问的;
    • 最后一步需要判断是否所有顶点都被访问,如果还有没被访问的,以未被访问的顶点为第一个顶点,继续依照上边的方式进行遍历。
    • 根据上边的过程,可以得到下图通过深度优先搜索获得的顶点的遍历次序为:
      V1、V2、V4、V8、 V5、V3、V6、V7
      在这里插入图片描述
  • 总结:深度优先搜索,是从图中的一个顶点出发,每次遍历当前访问顶点的临接点,一直到访问的顶点没有未被访问过的临接点为止。然后采用依次回退的方式(深度优先搜索是一个不断回溯的过程),查看来的路上每一个顶点是否有其它未被访问的临接点。访问完成后,判断图中的顶点是否已经全部遍历完成,如果没有,以未访问的顶点为起始点,重复上述过程。

1.2 C 实现

  • 深度优先搜索算法遍历图的实现代码为:
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#define MAX_VERtEX_NUM 20         //顶点的最大个数
#define VertexType int            //顶点的数据类型
#define VRType int                //顶点之间的关系的变量类型
#define InfoType char             //存储弧或边额外信息的指针变量类型
bool visited[MAX_VERtEX_NUM];     //设置全局数组,记录标记顶点是否被访问过

//边的信息结构体
typedef struct {
    VRType adj;         //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
    InfoType* info;     //弧或边额外含有的信息指针
}ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];

//图结构体
typedef struct {
    VertexType vexs[MAX_VERtEX_NUM];   //一维数据数组
    AdjMatrix  arcs;                   //二维关系数组,即邻接矩阵
    int vexnum, arcnum;                //图的顶点数和弧(边)数
}MGraph;

//根据顶点本身数据,判断出顶点在二维数组中的位置
int LocateVex(MGraph* G, VertexType v) {
    int i = 0;
    //遍历一维数组,找到变量v
    for (; i < G->vexnum; i++) {
        if (G->vexs[i] == v) {
            break;
        }
    }
    //如果找不到,输出提示语句,返回-1
    if (i > G->vexnum) {
        printf("no such vertex.\n");
        return -1;
    }
    return i;
}

//构造无向图
void CreateDN(MGraph* G) {
    scanf("%d,%d", &(G->vexnum), &(G->arcnum));
    for (int i = 0; i < G->vexnum; i++) {
        scanf("%d", &(G->vexs[i]));
    }
    for (int i = 0; i < G->vexnum; i++) {
        for (int j = 0; j < G->vexnum; j++) {
            G->arcs[i][j].adj = 0;
            G->arcs[i][j].info = NULL;
        }
    }
    for (int i = 0; i < G->arcnum; i++) {
        int v1, v2;
        scanf("%d,%d", &v1, &v2);
        int n = LocateVex(G, v1);
        int m = LocateVex(G, v2);
        if (m == -1 || n == -1) {
            printf("no this vertex\n");
            return;
        }
        G->arcs[n][m].adj = 1;
        G->arcs[m][n].adj = 1;//无向图的二阶矩阵沿主对角线对称
    }
}

//返回第一个与顶点v有边的顶点的下标
int FirstAdjVex(MGraph G, int v)
{
    //查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标
    for (int i = 0; i < G.vexnum; i++) {
        if (G.arcs[v][i].adj) {
            return i;
        }
    }
    return -1;
}

//返回从第w+1个位置开始,与顶点v有边的顶点的下标
int NextAdjVex(MGraph G, int v, int w)
{
    //从前一个访问位置w的下一个位置开始,查找之间有边的顶点
    for (int i = w + 1; i < G.vexnum; i++) {
        if (G.arcs[v][i].adj) {
            return i;
        }
    }
    return -1;
}

//打印输出顶点v的值
void visitVex(MGraph G, int v) {
    printf("%d ", G.vexs[v]);
}

//深度优先搜索核心函数
void DFS(MGraph G, int v) {
    visited[v] = true;//标记为true,表示这个顶点已被处理
    visitVex(G, v);   //输出第v个顶点
    //从该顶点的第一个边开始,一直到最后一个边,对处于边另一端的顶点调用DFS函数
    for (int w = FirstAdjVex(G, v); w >= 0; w = NextAdjVex(G, v, w)) {
        //如果该顶点的标记位false,证明未被访问,调用深度优先搜索函数
        if (!visited[w]){
            DFS(G, w);
        }
    }
}

//对图进行深度优先搜索
void DFSTraverse(MGraph G) 
{
    int v;
    //初始化为visit标记数组false
    for (v = 0; v < G.vexnum; ++v) {
        visited[v] = false;
    }
    //对于每个标记为false的顶点调用深度优先搜索函数
    for (v = 0; v < G.vexnum; v++) {
        //如果该顶点的标记位为false,则调用深度优先搜索函数
        if (!visited[v]) {
            DFS(G, v);
        }
    }
}

int main() {
    MGraph G; //建立一个图的对象
    CreateDN(&G);   //初始化图
    DFSTraverse(G); //深度优先搜索图
    return 0;
}
  • 使用上述程序存储下图的无向图时,输入如下数据,得到DFS的输出结果:
    在这里插入图片描述
//输入如下数据:
8,9
1
2
3
4
5
6
7
8
1,2
2,4
2,5
4,8
5,8
1,3
3,6
6,7
7,3

在这里插入图片描述

【 2. BFS 广度优先搜索 】

2.1 基本原理

  • 广度优先搜索 类似于树的层次遍历。以下图的无向图为例,假设 V1 作为起始点,遍历其所有的邻接点 V2 和 V3 ,以 V2 为起始点,访问邻接点 V4 和 V5 ,以 V3 为起始点,访问邻接点 V6 、 V7 ,以 V4 为起始点访问 V8 ,以 V5 为起始点,由于 V5 所有的起始点已经全部被访问,所有直接略过, V6 和 V7 也是如此。
    以 V1 为起始点的遍历过程结束后,判断图中是否还有未被访问的点,由于图 1 中没有了,所以整个图遍历结束。遍历顶点的顺序为:
    V1、 V2、 v3、V4、 V5、 V6、 V7、 V8
    在这里插入图片描述
  • 总结:广度优先搜索,是从图中的某一顶点出发,遍历每一个顶点时,依次遍历其所有的邻接点,然后再从这些邻接点出发,同样依次访问它们的邻接点。按照此过程,直到图中所有被访问过的顶点的邻接点都被访问到。最后还需要做的操作就是查看图中是否存在尚未被访问的顶点,若有,则以该顶点为起始点,重复上述遍历的过程。

2.2 C 实现

  • 广度优先搜索的实现需要借助 队列 这一特殊数据结构,实现代码为:
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
#define MAX_VERtEX_NUM 20         //顶点的最大个数
#define VertexType int            //顶点的数据类型
#define VRType int                //顶点之间的关系的变量类型
#define InfoType char             //存储弧或边额外信息的指针变量类型
bool visited[MAX_VERtEX_NUM];     //设置全局数组,记录标记顶点是否被访问过

//队列
typedef struct Queue {
    VertexType data;
    struct Queue* next;
}Queue;

//边的信息结构体
typedef struct {
    VRType adj;         //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
    InfoType* info;     //弧或边额外含有的信息指针
}ArcCell, AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];

//图结构体
typedef struct {
    VertexType vexs[MAX_VERtEX_NUM];   //一维数据数组
    AdjMatrix  arcs;                   //二维关系数组,即邻接矩阵
    int vexnum, arcnum;                //图的顶点数和弧(边)数
}MGraph;

//根据顶点本身数据,判断出顶点在二维数组中的位置
int LocateVex(MGraph* G, VertexType v) {
    int i = 0;
    //遍历一维数组,找到变量v
    for (; i < G->vexnum; i++) {
        if (G->vexs[i] == v) {
            break;
        }
    }
    //如果找不到,输出提示语句,返回-1
    if (i > G->vexnum) {
        printf("no such vertex.\n");
        return -1;
    }
    return i;
}

//构造无向图
void CreateDN(MGraph* G) {
    scanf("%d,%d", &(G->vexnum), &(G->arcnum));
    for (int i = 0; i < G->vexnum; i++) {
        scanf("%d", &(G->vexs[i]));
    }
    for (int i = 0; i < G->vexnum; i++) {
        for (int j = 0; j < G->vexnum; j++) {
            G->arcs[i][j].adj = 0;
            G->arcs[i][j].info = NULL;
        }
    }
    for (int i = 0; i < G->arcnum; i++) {
        int v1, v2;
        scanf("%d,%d", &v1, &v2);
        int n = LocateVex(G, v1);
        int m = LocateVex(G, v2);
        if (m == -1 || n == -1) {
            printf("no this vertex\n");
            return;
        }
        G->arcs[n][m].adj = 1;
        G->arcs[m][n].adj = 1;//无向图的二阶矩阵沿主对角线对称
    }
}

//返回第一个与顶点v有边的顶点的下标
int FirstAdjVex(MGraph G, int v)
{
    //查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标
    for (int i = 0; i < G.vexnum; i++) {
        if (G.arcs[v][i].adj) {
            return i;
        }
    }
    return -1;
}

//返回从第w+1个位置开始,与顶点v有边的顶点的下标
int NextAdjVex(MGraph G, int v, int w)
{
    //从前一个访问位置w的下一个位置开始,查找之间有边的顶点
    for (int i = w + 1; i < G.vexnum; i++) {
        if (G.arcs[v][i].adj) {
            return i;
        }
    }
    return -1;
}

//打印输出顶点v的值
void visitVex(MGraph G, int v) {
    printf("%d ", G.vexs[v]);
}

//初始化队列
void InitQueue(Queue** Q) {
    (*Q) = (Queue*)malloc(sizeof(Queue));
    (*Q)->next = NULL;
}

//顶点元素v进队列
void EnQueue(Queue** Q, VertexType v) {
    Queue* element = (Queue*)malloc(sizeof(Queue));
    element->data = v;
    element->next = NULL;
    Queue* temp = (*Q);
    while (temp->next != NULL){
        temp = temp->next;
    }
    temp->next = element;
}

//队头元素出队列,队列新的队头元素值赋给u
void DeQueue(Queue** Q, int* u) {
    (*u) = (*Q)->next->data;
    (*Q)->next = (*Q)->next->next;
}

//判断队列是否为空
bool QueueEmpty(Queue* Q) {
    if (Q->next == NULL) {
        return true;
    }
    return false;
}
//广度优先搜索
void BFSTraverse(MGraph G) {
    int v;
    //将用做标记的visit数组初始化为false
    for (v = 0; v < G.vexnum; ++v) {
        visited[v] = false;
    }
    //对于每个标记为false的顶点调用深度优先搜索函数
    Queue* Q;  //创建1个队列指针Q
    InitQueue(&Q);
    for (v = 0; v < G.vexnum; v++) {    // [对每个顶点v循环]
        if (!visited[v]) {
            visited[v] = true;      //标记为true,表示这个顶点已被处理
            visitVex(G,v);          //输出第v个顶点
            EnQueue(&Q, G.vexs[v]); //将第v个顶点入队
            while (!QueueEmpty(Q)) {    // [判断队列是否为空]
                int u;
                DeQueue(&Q, &u);      //出队,并将新的队头的值赋值给u
                u = LocateVex(&G, u); //新的队头的值对应的下标
                for (int w = FirstAdjVex(G,u); w >= 0; w = NextAdjVex(G, u, w)) { //将队头u的所有临接点遍历,并入队
                    if (!visited[w]) {
                        visited[w] = true;
                        visitVex(G, w);
                        EnQueue(&Q, G.vexs[w]);
                    }
                }
            }
        }
    }
}

int main() {
    MGraph G;      //建立一个图的对象
    CreateDN(&G);  //初始化图
    BFSTraverse(G);//广度优先搜索图
    return 0;
}
  • 使用上述程序存储下图的无向图时,输入如下数据,得到DFS的输出结果:
    在这里插入图片描述
//输入数据如下:
8,9
1
2
3
4
5
6
7
8
1,2
2,4
2,5
4,8
5,8
1,3
3,6
6,7
7,3

在这里插入图片描述

【 3. 深度优先生成树、广度优先生成树 】

  • 无向图遍历过程中所经历过的图中的顶点和边的组合,就是图的生成树或者生成森林。
    在这里插入图片描述
  • 由深度优先搜索得到的树为 深度优先生成树。例如,当对上图的无向图使用深度优先搜索算法时,假设 V1 作为遍历的起始点,涉及到的顶点和边的遍历顺序为(不唯一):
    V1、V2、V4、V8、V5、V3、V6、V7。
    此种遍历顺序构建的生成树为:
    在这里插入图片描述
  • 同理,广度优先搜索生成的树为 广度优先生成树,对该无向图以顶点 V1 为起始点进行广度优先搜索遍历得到的树,如下图所示:
    在这里插入图片描述

【 4. 深度优先生成森林、广度优先生成森林 】

  • 前言回顾:详情见:【C 数据结构】图。
    ① 非连通图在进行遍历时,实则是对非连通图中每个连通分量分别进行遍历,在遍历过程经过的每个顶点和边,就构成了每个连通分量的生成树;
    ② 非连通图的多个连通分量构成的多个生成树为非连通图的生成森林。

4.1 深度优先生成森林

  • 对下图 a 的非连通图采用深度优先搜索算法遍历时,得到的深度优先生成森林(由 3 个深度优先生成树构成)如下图 b 所示(不唯一)。

在这里插入图片描述

  • C 实现:
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
#define MAX_VERtEX_NUM 20         //顶点的最大个数
#define VertexType int            //顶点的数据类型
#define VRType int                //顶点之间的关系的变量类型
bool visited[MAX_VERtEX_NUM];     //设置全局数组,记录标记顶点是否被访问过

//边的信息结构体
typedef struct 
{
    VRType adj;     //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
}ArcCell, AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];

//图结构体
typedef struct {
    VertexType vexs[MAX_VERtEX_NUM];   //一维数据数组
    AdjMatrix  arcs;                   //二维关系数组,即邻接矩阵
    int vexnum, arcnum;                //图的顶点数和弧(边)数
}MGraph;

//孩子兄弟表示法的链表结点结构
typedef struct CSNode {
    VertexType data;
    struct CSNode* lchild;//孩子结点
    struct CSNode* nextsibling;//兄弟结点
}*CSTree, CSNode;

//根据顶点本身数据,判断出顶点在二维数组中的位置
int LocateVex(MGraph G, VertexType v) {
    int i = 0;
    //遍历一维数组,找到变量v
    for (; i < G.vexnum; i++) {
        if (G.vexs[i] == v) {
            break;
        }
    }
    //如果找不到,输出提示语句,返回-1
    if (i > G.vexnum) {
        printf("no such vertex.\n");
        return -1;
    }
    return i;
}
//构造无向图
void CreateDN(MGraph* G) {
    scanf("%d,%d", &(G->vexnum), &(G->arcnum));
    getchar();
    for (int i = 0; i < G->vexnum; i++) {
        scanf("%d", &(G->vexs[i]));
    }
    for (int i = 0; i < G->vexnum; i++) {
        for (int j = 0; j < G->vexnum; j++) {
            G->arcs[i][j].adj = 0;
        }
    }
    for (int i = 0; i < G->arcnum; i++) {
        int v1, v2;
        scanf("%d,%d", &v1, &v2);
        int n = LocateVex(*G, v1);
        int m = LocateVex(*G, v2);
        if (m == -1 || n == -1) {
            printf("no this vertex\n");
            return;
        }
        G->arcs[n][m].adj = 1;
        G->arcs[m][n].adj = 1;//无向图的二阶矩阵沿主对角线对称
    }
}

//返回第一个与顶点v有边的顶点的下标
int FirstAdjVex(MGraph G, int v)
{
    //查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标
    for (int i = 0; i < G.vexnum; i++) {
        if (G.arcs[v][i].adj) {
            return i;
        }
    }
    return -1;
}

//返回从第w+1个位置开始,与顶点v有边的顶点的下标
int NextAdjVex(MGraph G, int v, int w)
{
    //从前一个访问位置w的下一个位置开始,查找之间有边的顶点
    for (int i = w + 1; i < G.vexnum; i++) {
        if (G.arcs[v][i].adj) {
            return i;
        }
    }
    return -1;
}

void DFSTree(MGraph G, int v, CSTree* T) {
    //将正在访问的该顶点的标志位设为true
    visited[v] = true;
    bool first = true;
    CSTree q   = NULL;
    //依次遍历该顶点的所有邻接点
    for (int w = FirstAdjVex(G, v); w >= 0; w = NextAdjVex(G, v, w)) {
        //如果该临界点标志位为false,说明还未访问
        if (!visited[w]) {
            //为该邻接点初始化为结点
            CSTree p = (CSTree)malloc(sizeof(CSNode));
            p->data = G.vexs[w];
            p->lchild = NULL;
            p->nextsibling = NULL;
            //该结点的第一个邻接点作为孩子结点,其它邻接点作为孩子结点的兄弟结点
            if (first) {
                (*T)->lchild = p;
                first = false;
            }
            //否则,为兄弟结点
            else {
                q->nextsibling = p;
            }
            q = p;
            //以当前访问的顶点为树根,继续访问其邻接点
            DFSTree(G, w, &q);
        }
    }
}

//深度优先搜索生成森林并转化为二叉树
void DFSForest(MGraph G, CSTree* T) {
    (*T) = NULL;
    //每个顶点的标记为初始化为false
    for (int v = 0; v < G.vexnum; v++) {
        visited[v] = false;
    }
    CSTree q = NULL;
    //遍历每个顶点作为初始点,建立深度优先生成树
    for (int v = 0; v < G.vexnum; v++) {
        //如果该顶点的标记位为false,证明未访问过
        if (!(visited[v])) {
            //新建一个结点,表示该顶点
            CSTree p = (CSTree)malloc(sizeof(CSNode));
            p->data = G.vexs[v];
            p->lchild = NULL;
            p->nextsibling = NULL;
            //如果树未空,则该顶点作为树的树根
            if (!(*T)) {
                (*T) = p;

            }
            //该顶点作为树根的兄弟结点
            else {
                q->nextsibling = p;
            }
            //每次都要把q指针指向新的结点,为下次添加结点做铺垫
            q = p;
            //以该结点为起始点,构建深度优先生成树
            DFSTree(G, v, &p);
        }
    }
}

//前序遍历二叉树
void PreOrderTraverse(CSTree T) {
    if (T) {
        printf("%d ", T->data);
        PreOrderTraverse(T->lchild);
        PreOrderTraverse(T->nextsibling);
    }
    return;
}

int main() {
    MGraph G;    //建立一个图的对象
    CreateDN(&G);//初始化图
    CSTree T;
    DFSForest(G, &T);
    PreOrderTraverse(T);
    return 0;
}
  • 使用上述程序存储下图的无向图,输入如下数据,构建深度优先生成森林,得到DFS的输出结果:
    在这里插入图片描述
  • 构建的深度优先生成森林用孩子兄弟表示法如下所示:3 种颜色的树各代表一棵深度优先生成树,使用孩子兄弟表示法表示,也就是将三棵树的树根相连,第一棵树的树根作为整棵树的树根。
    在这里插入图片描述
//输入数据如下所示:
13,13
1
2
3
4
5
6
7
8
9
10
11
12
13
1,2
1,3
1,6
1,12
2,13
4,5
7,8
7,10
7,9
8,10
11,12
11,13
12,13

在这里插入图片描述

4.2 广度优先生成森林

  • 非连通图采用广度优先搜索算法进行遍历时,经过的顶点以及边的集合为该图的 广度优先生成森林
  • C 实现:
#include <stdio.h>
#include <stdlib.h>
#define MAX_VERtEX_NUM 20                   //顶点的最大个数
#define VRType int                          //表示顶点之间的关系的变量类型
#define InfoType char                       //存储弧或者边额外信息的指针变量类型
#define VertexType int                      //图中顶点的数据类型
typedef enum{false,true}bool;               //定义bool型常量
bool visited[MAX_VERtEX_NUM];               //设置全局数组,记录标记顶点是否被访问过
typedef struct {
    VRType adj;                             //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
    InfoType * info;                        //弧或边额外含有的信息指针
}ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];

typedef struct {
    VertexType vexs[MAX_VERtEX_NUM];        //存储图中顶点数据
    AdjMatrix arcs;                         //二维数组,记录顶点之间的关系
    int vexnum,arcnum;                      //记录图的顶点数和弧(边)数
}MGraph;

typedef struct CSNode{
    VertexType data;
    struct CSNode * lchild;//孩子结点
    struct CSNode * nextsibling;//兄弟结点
}*CSTree,CSNode;

typedef struct Queue{
    CSTree data;//队列中存放的为树结点
    struct Queue * next;
}Queue;

//根据顶点本身数据,判断出顶点在二维数组中的位置
int LocateVex(MGraph * G,VertexType v){
    int i=0;
    //遍历一维数组,找到变量v
    for (; i<G->vexnum; i++) {
        if (G->vexs[i]==v) {
            break;
        }
    }
    //如果找不到,输出提示语句,返回-1
    if (i>G->vexnum) {
        printf("no such vertex.\n");
        return -1;
    }
    return i;
}
//构造无向图
void CreateDN(MGraph *G){
    scanf("%d,%d",&(G->vexnum),&(G->arcnum));
    for (int i=0; i<G->vexnum; i++) {
        scanf("%d",&(G->vexs[i]));
    }
    for (int i=0; i<G->vexnum; i++) {
        for (int j=0; j<G->vexnum; j++) {
            G->arcs[i][j].adj=0;
            G->arcs[i][j].info=NULL;
        }
    }
    for (int i=0; i<G->arcnum; i++) {
        int v1,v2;
        scanf("%d,%d",&v1,&v2);
        int n=LocateVex(G, v1);
        int m=LocateVex(G, v2);
        if (m==-1 ||n==-1) {
            printf("no this vertex\n");
            return;
        }
        G->arcs[n][m].adj=1;
        G->arcs[m][n].adj=1;//无向图的二阶矩阵沿主对角线对称
    }
}

int FirstAdjVex(MGraph G,int v)
{
    //查找与数组下标为v的顶点之间有边的顶点,返回它在数组中的下标
    for(int i = 0; i<G.vexnum; i++){
        if( G.arcs[v][i].adj ){
            return i;
        }
    }
    return -1;
}
int NextAdjVex(MGraph G,int v,int w)
{
    //从前一个访问位置w的下一个位置开始,查找之间有边的顶点
    for(int i = w+1; i<G.vexnum; i++){
        if(G.arcs[v][i].adj){
            return i;
        }
    }
    return -1;
}

//初始化队列
void InitQueue(Queue ** Q){
    (*Q)=(Queue*)malloc(sizeof(Queue));
    (*Q)->next=NULL;
}
//结点v进队列
void EnQueue(Queue **Q,CSTree T){
    Queue * element=(Queue*)malloc(sizeof(Queue));
    element->data=T;
    element->next=NULL;
   
    Queue * temp=(*Q);
    while (temp->next!=NULL) {
        temp=temp->next;
    }
    temp->next=element;
}
//队头元素出队列
void DeQueue(Queue **Q,CSTree *u){
    (*u)=(*Q)->next->data;
    (*Q)->next=(*Q)->next->next;
}
//判断队列是否为空
bool QueueEmpty(Queue *Q){
    if (Q->next==NULL) {
        return true;
    }
    return false;
}

void BFSTree(MGraph G,int v,CSTree*T){
    CSTree q=NULL;
    Queue * Q;
    InitQueue(&Q);
    //根结点入队
    EnQueue(&Q, (*T));
    //当队列为空时,证明遍历完成
    while (!QueueEmpty(Q)) {
        bool first=true;
        //队列首个结点出队
        DeQueue(&Q,&q);
        //判断结点中的数据在数组中的具体位置
        int v=LocateVex(&G,q->data);
        //已经访问过的更改其标志位
        visited[v]=true;
        //遍历以出队结点为起始点的所有邻接点
        for (int w=FirstAdjVex(G,v); w>=0; w=NextAdjVex(G,v, w)) {
            //标志位为false,证明未遍历过
            if (!visited[w]) {
                //新建一个结点 p,存放当前遍历的顶点
                CSTree p=(CSTree)malloc(sizeof(CSNode));
                p->data=G.vexs[w];
                p->lchild=NULL;
                p->nextsibling=NULL;
                //当前结点入队
                EnQueue(&Q, p);
                //更改标志位
                visited[w]=true;
                //如果是出队顶点的第一个邻接点,设置p结点为其左孩子
                if (first) {
                    q->lchild=p;
                    first=false;
                }
                //否则设置其为兄弟结点
                else{
                    q->nextsibling=p;
                }
                q=p;
            }
        }
    }
}
//广度优先搜索生成森林并转化为二叉树
void BFSForest(MGraph G,CSTree *T){
    (*T)=NULL;
    //每个顶点的标记为初始化为false
    for (int v=0; v<G.vexnum; v++) {
        visited[v]=false;
    }
    CSTree q=NULL;
    //遍历图中所有的顶点
    for (int v=0; v<G.vexnum; v++) {
        //如果该顶点的标记位为false,证明未访问过
        if (!(visited[v])) {
            //新建一个结点,表示该顶点
            CSTree p=(CSTree)malloc(sizeof(CSNode));
            p->data=G.vexs[v];
            p->lchild=NULL;
            p->nextsibling=NULL;
            //如果树未空,则该顶点作为树的树根
            if (!(*T)) {
                (*T)=p;
            }
            //该顶点作为树根的兄弟结点
            else{
                q->nextsibling=p;
            }
            //每次都要把q指针指向新的结点,为下次添加结点做铺垫
            q=p;
            //以该结点为起始点,构建广度优先生成树
            BFSTree(G,v,&p);
        }
    }
}
//前序遍历二叉树
void PreOrderTraverse(CSTree T){
    if (T) {
        printf("%d ",T->data);
        PreOrderTraverse(T->lchild);
        PreOrderTraverse(T->nextsibling);
    }
    return;
}
int main() {
    MGraph G;//建立一个图的变量
    CreateDN(&G);//初始化图
    CSTree T;
    BFSForest(G, &T);
    PreOrderTraverse(T);
    return 0;
}
  • 使用上述程序存储下图的无向图,输入如下数据,构建广度优先生成森林,得到BFS的输出结果:
    在这里插入图片描述
  • 对上图通过广度优先搜索得到的广度优先生成森林用孩子兄弟表示法如下图所示:
    在这里插入图片描述
//输入如下数据:
13,13
1
2
3
4
5
6
7
8
9
10
11
12
13
1,2
1,3
1,6
1,12
2,13
4,5
7,8
7,10
7,9
8,10
11,12
11,13
12,13

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1633403.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

P6技巧-关于汇总项目Summarize的使用

前言 不知你在使用P6项目时是否察觉到这么一个有趣的现象&#xff0c;在打开一个项目&#xff08;展开详细任务&#xff09;时&#xff0c;在项目页签下可以看到该项目能反馈此时项目的总体进展及完成时间等内容&#xff0c;而当项目关闭时&#xff0c;其前面所展示的进展信息…

2.1.5 EtherChannel 简介

1、EtherChannel 简介 EtherChannel &#xff08;以太网通道&#xff09;是由 Cisco 公司开发的、应用于交换机之间的多链路捆绑技术。它的基本原理是将两台设备间多条以太网链路捆绑在一起组成一条逻辑链路&#xff0c;形成一个端口通道&#xff08;PortChannel&#xff09;&a…

selenium 4.x入门篇(环境搭建、八大元素定位)

背景 Web自动化测现状 1. 属于 E2E 测试 2. 过去通过点点点 3. 好的测试&#xff0c;还需要记录、调试网页的细节 一、selenium4.x环境搭建 一键搭建 pip3 install webdriver-helper 安装后自动的完成&#xff1a; 1. 查看浏览器的版本号 2. 查询操作系统的类型…

生活服务推出品牌实惠团购,覆盖五一假期“吃喝玩乐”多场景

4月26日&#xff0c;抖音生活服务平台上线“跟着大牌过五一”活动会场&#xff0c;携手22家连锁品牌商家&#xff0c;于“五一”前推出优价团购和时令新品&#xff0c;覆盖“吃喝玩乐”多重购物需求&#xff0c;助力假期消费。同时&#xff0c;伴随各地涌现的文旅热潮&#xff…

VUE的生命周期图和各函数

函数 beforeCreate(){ }, created(){ }, beforeMount(){ }, mounted(){ }, beforeUpdate(){ }, updated(){ }, beforeDestroy(){ }, destroyed(){ } 创建时生命周期图 运行时生命周期图

Linux vi\vim编辑器

vi/vim编辑器 一、vi\vim 编辑器的三种工作模式1.命令模式&#xff08;Command mode&#xff09;2.输入模式&#xff08;Insert mode&#xff09;3.底线命令模式&#xff08;Last line mode&#xff09; 二、参考 vi\vim 是 visual interface 的简称&#xff0c;是 Linux 中最经…

docker 虚拟化与docker的概念

一、云计算的三种服务模式 laas、pass、saas 1.1 IaaS: Infrastructure-as-a-Service&#xff08;基础设施即服务&#xff09; 第一层叫做IaaS&#xff0c;有时候也叫做Hardware-as-a-Service&#xff0c;几年前如果你想在办公室或者公司的网站上运行一些企业应用&#xff0c…

Linux网络-文件传输协议之FTP服务(附带命令及截图)

目录 一.FTP简介 二.FTP的数据模式 1.主动模式 2.被动模式 3.两种模式比较 三.安装配置vsftpd 1.安装vsftpd 1.1.安装前关闭防火墙 1.2.安装vsftpd 1.3.查看 1.4.备份 2.配置 3.重启后生效 四.相关实验 1.以win为例 1.1.设置并测试测试连通性 1.2.在终端里创建…

【人工智能基础】聚类实验分析

实验环境&#xff1a;anaconda、jupyter notebook、spyder 实现用到的类库&#xff1a;numpy、matplotlib、scikit-learn k均值聚类&#xff08;K-MEANS&#xff09; k均值聚类的原理&#xff1a; 选定k个聚类中心把数据集中距离聚类中心i最近的点都归属到一个簇根据每个簇中…

【Linux开发 第十二篇】搭建JavaEE环境

搭建开发环境 搭建javaEE环境 搭建javaEE环境 在Linux下开发JavaEE需要安装软件包&#xff1a; 安装jdk 安装步骤&#xff1a; 在opt目录下创建jdk目录通过xftp上床到jdk目录中进入到jdk目录中&#xff0c;解压jdk压缩包在/usr/local下创建java目录将解压完成的jdk文件移动…

Docker的介绍及应用

1.什么是Docker 我们在部署大型项目的时候&#xff0c;肯定会遇到这种问题&#xff0c;大学项目组件较多&#xff0c;运行环境复杂&#xff0c;部署时会碰到一些问题&#xff1a;例如node、redis、mysql等这些应用都有自己的依赖和函数库。这种复杂的依赖关系很容易出现兼容问…

笔试刷题-Day11

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 一、游游的水果大礼包 题目链接&#xff1a;https://ac.nowcoder.com/acm/problem/255193 类型&#xff1a;求一个表达式的最值&#xff08;并不是贪心,因为该题条件太少&…

毕业设计注意事项(嘉庚学院2024届更新中)

1.开题 根据学院发的开题报告模板完成&#xff0c;其中大纲部分可参考资料。 2.毕设以及实习 2.1 毕设 根据资料中的毕设评价标准&#xff0c;对照工作量 2.2 实习材料提交 2.2.1 校外实习 实习前&#xff1a;根据学院要求&#xff0c;填写好实习承诺书&#xff0c;实习单位…

贝叶斯统计实战:Python引领的现代数据分析之旅

贝叶斯统计这个名字取自长老会牧师兼业余数学家托马斯贝叶斯(Thomas Bayes&#xff0c;1702—1761)&#xff0c;他最先推导出了贝叶斯定理&#xff0c;该定理于其逝世后的1763年发表。但真正开发贝叶斯方法的第一人是Pierre-Simon Laplace(1749—1827)&#xff0c;因此将其称为…

清华同方电脑c盘满了怎么清理?别慌,学会这几个实用技巧

随着日常使用电脑&#xff0c;C盘&#xff08;通常是系统盘&#xff09;往往会积累大量的文件、程序和系统缓存&#xff0c;导致磁盘空间逐渐减少。当C盘空间不足时&#xff0c;电脑的性能可能会受到影响&#xff0c;甚至导致一些程序无法正常运行。对于清华同方电脑的用户来说…

2000.1-2023.8中国经济政策不确定性指数数据(日度、月度)

2000.1-2023.8中国经济政策不确定性指数数据&#xff08;日度、月度&#xff09; 1、时间&#xff1a;日度&#xff1a;2001.1.1-2022.06.17&#xff0c;月度2000.1-2023.8 2、指标&#xff1a;CNEPU&#xff08;经济政策不确定性指数&#xff09; 3、来源&#xff1a;China…

[BJDCTF 2020]base??(古典密码)

题目&#xff1a; 从题目我们看出dict是一个python的字典&#xff0c;但与原始的base64的表不同&#xff0c;所以我们想到通过替换原始的表&#xff0c;来对密文解密。 my_dict{0: J, 1: K, 2: L, 3: M, 4: N, 5: O, 6: x, 7: y, 8: U, 9: V, 10: z, 11: A, 12: B, 13: C, 14:…

2024五一杯ABC题资料合集+代码+参考论文!!!

一.赛题思路 (赛题出来以后第一时间在群内分享) 二.比赛日期和时间 比赛开始时间:2024年5月1日(周三)10;00 比赛结束时间:2024年5月4日(周六&#xff09;12:00 三.将在明天分享的资料合集如下 4.我们这边会分享22年的题目完整全部的过程 5.数学建模的29个通用模型及MATLAB…

吴恩达2022机器学习专项课程(一)7.2 逻辑回归的简化成本函数

问题预览/关键词 本节课内容逻辑回归的损失函数简化之后的形式是&#xff1f;为什么可以简化&#xff1f;成本函数的通用形式是&#xff1f;逻辑回归成本函数的最终形式是&#xff1f;逻辑回归为什么用对数损失函数计算成本函数&#xff1f;为什么不直接给出逻辑回归损失函数的…

Makefile 快速入门

参考自:Makefile 20分钟入门&#xff0c;简简单单&#xff0c;展示如何使用Makefile管理和编译C代码_哔哩哔哩_bilibili 注: 视频中用的是C&#xff0c;博主这里用C语言实现 喜欢老师的于老师的还请多多点赞&#xff0c;觉得博主写得不错的&#xff0c;也可以点赞、收藏哦 本…