PotatoPie 4.0 实验教程(25) —— FPGA实现摄像头图像直方图均衡变换

news2025/1/10 20:46:57

图像的直方图均衡是什么?

图像的直方图均衡是一种用于增强图像对比度的图像处理技术。在直方图均衡中,图像的像素值被重新分配,以使得图像的直方图变得更均匀,即各个像素值的分布更加平衡。这意味着直方图中每个像素值的频率大致相同,从而使得图像的对比度增强。

直方图均衡可以应用于灰度图像和彩色图像,并且通常用于图像增强、图像预处理以及计算机视觉应用中。它有以下几个主要作用和优势:

  1. 增强对比度:直方图均衡可以增强图像的对比度,使得图像中的细节更加清晰、突出。通过重新分配像素值,可以拉伸直方图,使得图像中的像素值范围更广,从而增加了图像的动态范围。

  2. 消除背景噪声:直方图均衡可以帮助消除图像中的背景噪声,提高图像的质量。通过增强图像的对比度,可以更好地区分目标与背景,减少背景噪声的影响。

  3. 提高图像质量:直方图均衡可以改善图像的视觉质量,使图像更加清晰、生动,提高了图像的观赏性和识别性。

  4. 改善图像分割和特征提取:直方图均衡可以使得图像中不同目标的灰度级别更加明显,有利于图像分割和特征提取。这对于后续的图像分析、目标检测和识别等任务非常重要。

  5. 预处理步骤:直方图均衡通常作为图像预处理的一部分,用于提高后续图像处理算法的性能和准确性。例如,在图像识别、目标跟踪和计算机视觉任务中,对图像进行直方图均衡可以改善算法的鲁棒性和准确率。

总的来说,直方图均衡是一种简单而有效的图像增强技术,可以提高图像的质量和可用性,使得图像在各种应用领域中都能取得更好的效果。

直方图均衡算法的步骤

直方图均衡的步骤通常包括以下几个阶段:

  1. 计算图像的灰度直方图:统计图像中每个灰度级别的像素数量。
  2. 计算累积分布函数(CDF):对灰度直方图进行归一化处理,得到像素值的累积分布函数,该函数描述了每个灰度级别在图像中出现的累积概率。
  3. 根据CDF进行像素值映射:使用累积分布函数对图像的像素值进行重新映射,以使得图像的直方图更加均匀。通常情况下,这涉及到将原始像素值映射到新的像素值,以便在直方图中实现更均匀的分布。
  4. 应用像素值映射:根据映射关系,将图像中的每个像素值替换为对应的新值,从而完成直方图均衡化。

python实现图像的直方图均衡变换源码

PotatoPie 4.0 实验教程(25) —— FPGA实现摄像头图像直方图均衡变换-Anlogic-安路论坛-FPGA CPLD-ChipDebug

这段代码实现了图像的直方图均衡化,并使用 Matplotlib 库在 Python 中进行可视化展示。以下是对代码功能的详细说明:

  1. 导入必要的库

    • os:用于处理文件路径。
    • numpy:用于数组操作和数学计算。
    • cv2:OpenCV 库,用于图像处理。
    • matplotlib.pyplot:用于绘制图像和直方图。
  2. 获取图像路径

    • 使用 os.path.dirname 和 os.path.abspath 函数获取当前 Python 脚本所在目录的路径。
    • 使用 os.path.join 函数构造图像文件的完整路径。
  3. 读取图像

    • 使用 OpenCV 的 cv2.imread 函数读取图像。
  4. 将图像转换为灰度图像

    • 使用 OpenCV 的 cv2.cvtColor 函数将彩色图像转换为灰度图像。
  5. 计算直方图

    • 创建一个长度为 256 的数组 histogram,用于存储灰度级别的像素数量。
    • 使用双重循环遍历图像的每个像素,并在 histogram 中累计每个灰度级别的像素数量。
  6. 计算累积分布函数

    • 创建一个长度为 256 的数组 cumulative_distribution,用于存储每个灰度级别的累积分布函数值。
    • 使用双重循环遍历直方图,计算每个灰度级别的累积像素数量,并将其除以总像素数得到累积分布函数值。
  7. 计算直方图均衡化的灰度值映射表

    • 创建一个长度为 256 的数组 LUT,用于存储直方图均衡化后的灰度值映射表。
    • 将累积分布函数值乘以 255 并四舍五入,得到灰度值映射表。
  8. 直方图均衡化

    • 创建一个与原始图像相同大小的数组 image_equal,用于存储直方图均衡化后的图像。
    • 使用双重循环遍历原始图像的每个像素,根据灰度值映射表将每个像素的灰度值替换为均衡化后的灰度值。
  9. 可视化

    • 使用 Matplotlib 的 plt.imshow 和 plt.bar 函数分别显示原始图像和其直方图。
    • 使用 Matplotlib 的 plt.plot 函数绘制累积分布函数曲线。
    • 使用 Matplotlib 的 plt.show 函数显示图像及其直方图的子图布局。

通过以上步骤,代码实现了直方图均衡化并可视化显示了原始图像、均衡化后的图像、直方图以及累积分布函数。

MATLAB实现图像的直方图均衡变换源码

上面的代码实现了图像的直方图均衡化,具体步骤如下:

  1. 读取图像并转换为灰度图像: 使用imread函数读取名为’dog.png’的图像,并使用rgb2gray函数将彩色图像转换为灰度图像。

  2. 计算直方图: 首先创建一个256×1的零矩阵histogram,用于存储灰度级别的直方图。然后使用嵌套的循环遍历图像的每个像素点,将每个灰度级别出现的频数累加到相应的直方图位置上。

  3. 计算累积分布函数: 创建一个256×1的零矩阵cumulative_distribution,用于存储累积分布函数的值。然后通过循环计算累积分布函数的值,其中使用变量sum累积直方图的频数,并将其除以图像的总像素数(行数乘以列数)得到归一化后的累积分布函数。

  4. 计算灰度值映射表: 创建一个256×1的零矩阵LUT,用于存储直方图均衡化后的灰度值映射表。然后通过循环遍历累积分布函数,对每个灰度级别的累积分布函数值乘以255并四舍五入,得到灰度值映射表。

  5. 直方图均衡化: 创建一个与原始图像大小相同的零矩阵image_equal,用于存储直方图均衡化后的图像。然后通过嵌套的循环遍历原始图像的每个像素点,根据灰度值映射表将每个像素点的灰度值替换为对应的直方图均衡化后的灰度值。

  6. 显示结果: 使用subplot函数将原始图像、直方图、直方图均衡化后的图像以及其直方图和累积分布图显示在一个图像窗口中。标题使用中文显示,并指定使用微软雅黑字体。

工程分析

链接直达

https://item.taobao.com/item.htm?ft=t&id=776516984361

工程层次图

demo18相比,只是多了一个img_histogram的模块,也就是下面这一段代码,在从SDRAM读出来之后,经它处理后再输出hdmi_tx模块。

img_histogram u_img_histogram
(
    .i_clk          (clk_pixel                ),
    .i_rst_n        (sys_rst_n                ),
    .i_hs           (VGA_HS                   ),
    .i_vs           (VGA_VS                   ),
    .i_de           (VGA_DE                   ),
    .i_x_pos        (lcd_xpos                 ),
    .i_y_pos        (lcd_ypos                 ),
    .o_hs           (histogram_hs             ),
    .o_vs           (histogram_vs             ),
    .o_de           (histogram_de             ),
    .o_r            (histogram_r              ),
    .o_g            (histogram_g              ),
    .o_b            (histogram_b              ) 
);

img_histogram直方图均衡模块源代码分析

从层次图可到这个模块包含两个子ROM模块, 上面这个img_histogram ROM是我们要做直方图均衡的图像数据,dog.png就存在这里,为什么这个实验没有直接对摄像头进行处理,因为直方图需要大量的RAM,而EG4的RAM没有这么大,所以我们用ROM存一个小图来验证这个算法。

下面那个u_img_equal_ram_dp 是用来存储直方图映射表。

接下来我们讲述直方图均衡化的FPGA算法关键点:

1. 从ROM读取dog.png的图像数据

由于我们需要在指定位置处理像,而我们显示屏大于图像的尺寸,因此需要行场计数到达指定位置时才从ROM读取图像数据。

我们用这几个参数定义显示处理图像的位置

parameter H_ACTIVE = 160; //显示区域宽度
parameter V_ACTIVE = 120; //显示区域高度
parameter BEGIN_X = 640; //显示起始坐标
parameter BEGIN_Y = 360; //显示起始坐标

然后分别进行/显示区域行计数和列计数,

if(h_cnt == H_ACTIVE - 1'b1)
      h_cnt <= 11'd0;
    else 
      h_cnt <= h_cnt + 11'd1;

..... 省略

    if(v_cnt == V_ACTIVE - 1'b1)
      v_cnt <= 11'd0;
    else 
      v_cnt <= v_cnt + 11'd1;

往下看就看到代码定义ROM的地方了

 

//存储dog.png图片数据的ROM

dog_160x120 u_image_buffer(

.doa ({r_d0,g_d0,b_d0}),

.addra (rd_addr ),

.clka (i_clk )

);

接下来的这行代码处理了图像数据ROM的地址计数。

rd_addr <= v_cnt * H_ACTIVE + h_cnt;

2.图像的灰度化

PotatoPie 4.0 实验教程(25) —— FPGA实现摄像头图像直方图均衡变换-Anlogic-安路论坛-FPGA CPLD-ChipDebug

3.计算直方图

跟matlab和python代码一样,统计一帧图像数据中每个灰度出现的次数

hist_ram[gray_d0[15:8]]<=hist_ram[gray_d0[15:8]]+1'b1;

4.计算累积分布函数建立映射表

PotatoPie 4.0 实验教程(25) —— FPGA实现摄像头图像直方图均衡变换-Anlogic-安路论坛-FPGA CPLD-ChipDebug

5. 将计算结果写映射表的ROM

例化双端RAM用于存储映射表

// 存储直方图均衡化后的灰度值映射表,输出时直接用灰度值作为地址进行查表
ram_dp#(
  .DATA_WIDTH   (8          ),
  .ADDRESS_WIDTH  (8             )
) u_img_equal_ram_dp(
  .i_clk      (i_clk        ),
  .i_data_a    (image_equal    ),
  .i_addr_a    (wr_addr_cnt    ),
  .i_wea      (sum_hist_flag_d3  ),
  .o_qout_a    (          ),
  .i_data_b    (          ),
  .i_addr_b    (gray_d0[15:8]    ),
  .i_web      (          ),
  .o_qout_b    (hist_out      )
);

显示的时候,直接用灰度值作为地址进行查表读出值即可。

管脚约束

与PotatoPie 4.0 实验教程(18) —— FPGA实现OV5640摄像头采集以SDRAM作为显存进行HDMI输出显示相同,不作赘述。

时序约束

与PotatoPie 4.0 实验教程(18) —— FPGA实现OV5640摄像头采集以SDRAM作为显存进行HDMI输出显示相同,不作赘述。

实验结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1629666.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

图像处理到神经网络:线性代数的跨领域应用探索

作者介绍&#xff1a;10年大厂数据\经营分析经验&#xff0c;现任大厂数据部门负责人。 会一些的技术&#xff1a;数据分析、算法、SQL、大数据相关、python 欢迎加入社区&#xff1a;码上找工作 作者专栏每日更新&#xff1a; LeetCode解锁1000题: 打怪升级之旅 python数据分析…

JavaScript云LIS系统源码 前端框架JQuery+EasyUI+后端框架MVC+SQLSuga大型医院云LIS检验系统源码 可直接上项目

JavaScript云LIS系统源码 前端框架JQueryEasyUI后端框架MVCSQLSuga大型医院云LIS检验系统源码 可直接上项目 云LIS系统概述&#xff1a; 云LIS是为区域医疗提供临床实验室信息服务的计算机应用程序&#xff0c;可协助区域内所有临床实验室相互协调并完成日常检验工作&#xff…

02-JVM学习记录-运行时数据区

二、运行时数据区 每个JVM只有一个Runtime实例&#xff0c;只有一个运行时数据区。 虚拟机栈、堆、方法区最重要 方法区和堆与虚拟机的生命周期相同&#xff08;随虚拟机启动而创建&#xff0c;虚拟机退出而销毁&#xff09;&#xff0c;程序计数器、虚拟机栈、本地方法栈生命…

AcrelEMS-MH民航机场智慧能源管平台解决方案【可靠供电/降低能耗/高效运维】

民航机场行业背景 自2012年以来&#xff0c;我国民航运输规模出现了显著增长&#xff0c;旅客运输量&#xff1a;从2012年的3.19亿人次上升至2019年的6.6亿人次&#xff08;注&#xff1a;为剔除疫情影响&#xff0c;此处采取疫情前2019年的数据&#xff0c;下同&#xff09;&…

Docker数据管理与Dockerfile镜像创建

前言 在容器化环境中&#xff0c;如何有效地管理和持久化数据成为了开发人员和运维团队面临的挑战之一&#xff1b;另一方面&#xff0c;镜像的创建是构建容器化应用的基础。优化的镜像设计可以提高部署效率和应用性能&#xff0c;减少资源消耗和运行成本。本文将介绍 Docker …

设计模式之工厂模式FactoryPattern(二)

一、简单工厂 package com.xu.demo.factoryPattern;/*** 简单工厂模式类*/ public class SimpleFactoryPattern {public static Phone create(String name) {//根据输入对象名称判断返回相匹配的对象if("IPhone".equals(name)) {//返回对象return new IPhone();}else…

Visual Studio导入libtorch(Cuda版)

Visual Studio导入libtorch&#xff08;Cuda版&#xff09; 一、安装 官网&#xff1a;https://pytorch.org/get-started/locally/ 相应地选择并下载 二、环境变量配置 解压zip&#xff0c;得到libtorch文件夹&#xff0c;将libtorch\lib和libtorch\bin对应路径添加到系统环…

低频量化周报

低频量化日报&#xff08;2024-04-26&#xff09; 指数分位值指数风险溢价比小规模配债<5亿配债完整数据 整体情况5 批文通过4 发哥通过3 交易所受理2 股东大会通过1 董事会预案可转债策略 双低策略四因子策略网格策略ETF抄底指标<3历史操作记录本周心得最后 指数分位值 …

Linux:Apache和Nginx的区别

Linux&#xff1a;Apache和Nginx的区别 图示工作过程 apache使用的是进程负责到底的工作流程&#xff0c;其特点是稳定&#xff1b;nginx使用了连接复用器这个结构&#xff0c;可以实现一个进程只负责给存储单元提出需求&#xff0c;而不需要负责到底&#xff0c;这样大大提高…

Codeforces Round 941 (Div. 1) E. Connected Cubes(构造)

题目 思路来源 官方题解 题解 可以看下官方题解的7张图&#xff0c;还是比较清晰的&#xff0c;这里直接粘贴一下 来源&#xff1a;Codeforces Round #941 (Div. 1, Div. 2) Editorial - Codeforces &#xff08;1&#xff09;原来的图 &#xff08;2&#xff09;对于偶数行…

【经验分享】MySQL集群部署一:主从模式

目录 前言一、基本介绍1.1、概念1.2、执行流程 二、部署2.1、通用配置2.2、主节点配置2.3、从节点配置2.4、主从测试2.5、谈一谈主节点历史数据同步问题 前言 MySQL的部署模式常见的包括以下几种&#xff1a; 独立服务器部署主从复制部署高可用性集群&#xff08;HA&#xff…

【MRI重建】Cartesian采样中data consistency 常规数据一致性实现(pytorch)

关于 在MRI重建中,data consistency 可以帮助加快MRI图像重建和减少模型重建带来的重建误差。 工具 方法实现 x_rec: 重建图像, (batch_size,2,H,W) mask: 欠采样模版,(batch_size,2,H,W) k_un: 真实欠采样采集数据, (batch_size,2,H,W) torch.view_as_complex: 将实数数据…

【图解计算机网络】TCP协议三次握手与四次挥手

TCP协议三次握手与四次挥手 三次握手流程为什么是三次握手&#xff0c;而不是两次或四次四次挥手流程TIME_WAIT 为什么要等待 2MSL为什么握手是三次&#xff0c;挥手是四次&#xff1f; 三次握手流程 首先是客户端&#xff08;也就是我们的浏览器&#xff09;发送一个SYN标志位…

数字电路-可预置倒计时器Multisim仿真

数字电路之于FPGA意义重大。本可预置倒计时器设计采用40106作为振荡电路&#xff0c;由74LSl92、74LS47D和七段共阴数码管构成计时电路&#xff0c;具有启动/预置、暂停/继续计时和报警功能。紫色文字是超链接&#xff0c;点击自动跳转至相关博文。持续更新&#xff0c;原创不易…

鸿蒙内核源码分析(进程管理篇) | 谁在管理内核资源?

官方基本概念 从系统的角度看&#xff0c;进程是资源管理单元。进程可以使用或等待CPU、使用内存空间等系统资源&#xff0c;并独立于其它进程运行。 OpenHarmony内核的进程模块可以给用户提供多个进程&#xff0c;实现了进程之间的切换和通信&#xff0c;帮助用户管理业务程序…

rust前端web开发框架yew使用

构建完整基于 rust 的 web 应用,使用yew框架 trunk 构建、打包、发布 wasm web 应用 安装后会作为一个系统命令&#xff0c;默认有两个特性开启 rustls - 客户端与服务端通信的 tls 库update_check - 用于应用启动时启动更新检查&#xff0c;应用有更新时提示用户更新。nati…

MySQL数据库常见SQL语句宝典

一 、常用操作数据库的命令 1.查看所有的数据库 : show databases;2.创建一个数据库 : create database if not exists 数据库名;3.删除一个数据库 : drop database if exists 数据库名;4.选择一张表 (注意在建表之前必须要选择数据库) : use 表名;* --tab 键的上面&#x…

【学习笔记三十】EWM和PP集成的后台配置和前台演示

一、EWM和PP集成概述 在S4HANA版本中&#xff0c;PP模块强化了生产线的概念&#xff0c;并与EWM集成&#xff0c;使用生产供应区&#xff08;PSA&#xff09;的功能。PSA的基本配置包括在ERP系统中创建PSA、定义工作中心、将PSA分配给工作中心、在EWM中创建PSA、匹配ERP和EWM中…

【JavaSE】_继承

目录 1.继承的概念 2. 继承语法 3. 父类成员的访问 3.1 子类中访问父类的成员变量 3.1.1 子类和父类不存在同名成员变量 3.1.2 子类和父类成员变量同名 3.2 子类中访问父类的成员方法 3.2.1 成员方法名不同 3.2.2 成员方法名相同 4. super关键字 5. 子类构造方法 6.…

Swin Transformer—— 基于Transformer的图像识别模型

概述 Swin Transformer是微软研究院于2021年在ICCV上发表的一篇论文&#xff0c;因其在多个视觉任务中的出色表现而被评为当时的最佳论文。它引入了移动窗口的概念&#xff0c;提出了一种层级式的Vision Transformer&#xff0c;将Shifted Windows&#xff08;移动窗口&#x…