目录
- 1.背景
- 2.算法原理
- 2.1算法思想
- 2.2算法过程
- 3.结果展示
- 4.参考文献
1.背景
2020年,S Kaur等人受到囊状虫群自然行为启发,提出了囊状虫群算法(Tunicate Swarm Algorithm, TSA)。
2.算法原理
2.1算法思想
TSA模拟了囊状虫群在导航和觅食过程中的喷射推进和群体行为,群体行为会更新其他搜索代理关于最优解的位置。
2.2算法过程
冲突避免
为了避免个体之间的冲突,A 表示计算新的个体位置:
A
⃗
=
G
⃗
M
⃗
G
⃗
=
c
2
+
c
3
−
F
⃗
F
⃗
=
2
⋅
c
1
(1)
\begin{aligned}&\vec{A}=\frac{\vec{G}}{\vec{M}}\\&\vec{G}=c_{2}+c_{3}-\vec{F}\\&\vec{F}=2\cdot c_{1}\end{aligned}\tag{1}
A=MGG=c2+c3−FF=2⋅c1(1)
其中,G代表重力,F代表洋流驱动力,M代表个体间相互作用力:
M
⃗
=
[
P
m
i
n
+
c
1
⋅
P
m
a
x
−
P
m
i
n
]
(2)
\vec{M}=\begin{bmatrix}P_{min}+c_1\cdot P_{max}-P_{min}\end{bmatrix}\tag{2}
M=[Pmin+c1⋅Pmax−Pmin](2)
向最优领域个体移动
P
D
⃗
=
∣
F
S
⃗
−
r
a
n
d
⋅
P
p
(
x
)
⃗
∣
(3)
\vec{PD}=\mid\vec{FS}-r_{and}\cdot\vec{P_{p}(x)}\mid \tag{3}
PD=∣FS−rand⋅Pp(x)∣(3)
其中,FS代表食物位置(最优适应度)。
位置收敛
囊状虫群个体向最优个体收敛:
P
p
(
x
)
⃗
=
{
F
S
⃗
+
A
⃗
⋅
P
D
⃗
,
if
r
a
n
d
≥
0.5
F
S
⃗
−
A
⃗
⋅
P
D
⃗
,
if
r
a
n
d
<
0.5
(4)
\vec{P_p(x)}=\begin{cases} \vec{FS}+\vec{A}\cdot\vec{PD},&\text{if}r_{and}\geq0.5\\ \vec{FS}-\vec{A}\cdot\vec{PD},&\text{if}r_{and}<0.5\end{cases}\tag{4}
Pp(x)={FS+A⋅PD,FS−A⋅PD,ifrand≥0.5ifrand<0.5(4)
种群行为
模拟囊状虫群体行为,保存前两个最优解,并根据最优个体位置更新其他搜索个体的位置:
P
p
(
x
+
1
⃗
)
=
P
p
(
x
)
⃗
+
P
p
(
x
+
1
⃗
)
2
+
c
1
(5)
P_{p}(\vec{x+1})=\frac{\vec{P_{p}(x)}+P_{p}(\vec{x+1})}{2+c_{1}}\tag{5}
Pp(x+1)=2+c1Pp(x)+Pp(x+1)(5)
伪代码
3.结果展示
使用测试框架,测试TSA性能 一键run.m
- 【智能算法】省时方便,智能算法统计指标——一键运行~
CEC2017-F14
4.参考文献
[1] Kaur S, Awasthi L K, Sangal A L, et al. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization[J]. Engineering Applications of Artificial Intelligence, 2020, 90: 103541.