泰坦尼克号乘客生存情况预测分析2

news2024/12/23 18:42:06

泰坦尼克号乘客生存情况预测分析1
泰坦尼克号乘客生存情况预测分析2
泰坦尼克号乘客生存情况预测分析3
泰坦尼克号乘客生存情况预测分析总


在这里插入图片描述

背景描述

Titanic数据集在数据分析领域是十分经典的数据集,非常适合刚入门的小伙伴进行学习!

泰坦尼克号轮船的沉没是历史上最为人熟知的海难事件之一。1912年4月15日,在她的处女航中,泰坦尼克号在与冰山相撞后沉没,在船上的 2224 名乘客和机组人员中,共造成 1502 人死亡。这场耸人听闻的悲剧震惊了国际社会,从而促进了船舶安全规定的完善。造成海难失事的原因之一是乘客和机组人员没有足够的救生艇。尽管在沉船事件中幸存者有一些运气因素,但有些人比其他人更容易存活下来,究竟有哪些因素影响着最终乘客的生存与否呢?

数据说明

在该数据集中,共包括三个文件,分别代表训练集测试集以及测试集的答案

数据描述:

变量名称PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
变量解释乘客编号是否存活船舱等级姓名性别年龄兄弟姐妹和配偶数量父母与子女数量票的编号票价座位号登船码头
数据类型numericcategoricalcategoricalStringcategoricalcategoricalnumericnumericstringnumericstringcategorical

:以上数据类型均为经过预处理后的数据类型!

数据来源

Titanic Competition : How top LB got their score


目录

    • 背景描述
    • 数据说明
    • 数据来源
  • 二 特征工程
    • 1. 合并训练集与测试集
    • 2. 缺失值处理
      • 2.1 填充Embarked字段
      • 2.2 填充船票Fare字段
      • 2.3 填充年龄Age字段
    • 3 不同特征字段的数据处理
      • 3.1 先对Embarked、Sex以及Pclass等用dummy处理
      • 3.2 票价分级处理
      • 3.3 名字处理
      • 3.4 Cabin处理
      • 3.5 Ticket处理
    • 4. 利用随机森林预测Age缺失值
    • 5. 各特征与Survived的相关系数排序
    • 6. 保存特征处理后的数据
    • 7. 小结

二 特征工程

1. 合并训练集与测试集

在进行特征工程的时候,我们不仅需要对训练数据进行处理,还需要同时将测试数据同训练数据一起处理,使得二者具有相同的数据类型和数据分布。

import pandas as pd

train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
train_and_test = train.append(test, sort=False) # 合并训练集与测试集
PassengerId = test['PassengerId']
train_and_test.shape

在这里插入图片描述

2. 缺失值处理

对Embarked直接用众数填充;
对Fare用均值填充;
对Age,建立模型预测;

2.1 填充Embarked字段

mode = train_and_test['Embarked'].mode().iloc[0] # 找到众数
train_and_test['Embarked'].fillna(mode, inplace=True)
train_and_test.info()

在这里插入图片描述

2.2 填充船票Fare字段

train_and_test['Fare'].mean()

在这里插入图片描述

Fare_mean = train_and_test['Fare'].mean()
train_and_test['Fare'].fillna(Fare_mean, inplace=True)
train_and_test.info()

在这里插入图片描述

2.3 填充年龄Age字段

为尽可能用多的特征去预测Age的值,先对Cabin、Embarked、Name、Sex、Ticket、Pclass等特征进行处理,模型预测见后;

3 不同特征字段的数据处理

3.1 先对Embarked、Sex以及Pclass等用dummy处理

对分类特征进行编码

cols = ['Embarked', 'Sex', 'Pclass']
train_and_test = pd.get_dummies(train_and_test, columns=cols, prefix_sep='__')
train_and_test.info()

在这里插入图片描述

3.2 票价分级处理

我们可以尝试将Fare分桶处理,使用qcut函数。qcut是根据这些值的频率来选择箱子的均匀间隔,每个箱子中含有的数的数量是相同的;

# 临时列
train_and_test['Fare_bin'] = pd.qcut(train_and_test['Fare'], 5)

#编码
train_and_test['Fare_bin_id'] = pd.factorize(train_and_test['Fare_bin'])[0]
fare_bin_dummies_df = pd.get_dummies(train_and_test['Fare_bin_id']).rename(columns=lambda x : 'Fare_' + str(x))
train_and_test = pd.concat([train_and_test, fare_bin_dummies_df], axis=1)
train_and_test.drop(['Fare_bin'], axis=1, inplace=True)

3.3 名字处理

对名字Name进行处理,提取其特征;

提取称呼

train_and_test['Title'] = train_and_test['Name'].apply(lambda x : x.split(',')[1].split('.')[0].strip())
train_and_test['Title']

在这里插入图片描述

# 将各式称呼进行统一化处理
# 头衔映射表
titleDict = {
    "Capt" :      "Officer", 
    "Col"  :      "Officer",
    "Major":      "Officer",
    "Jonkheer":   "Royalty",
    "Don":        "Royalty",
    "Sir" :       "Royalty",
    "Dr":         "Officer",
    "Rev":        "Officer",
    "the Countess":"Royalty",
    "Dona":       "Royalty",
    "Mme":        "Mrs",
    "Mlle":       "Miss",
    "Ms":         "Mrs",
    "Mr" :        "Mr",
    "Mrs" :       "Mrs",
    "Miss" :      "Miss",
    "Master" :    "Master",
    "Lady" :      "Royalty"
}
train_and_test['Title'] = train_and_test['Title'].map(titleDict)
train_and_test['Title'].value_counts()

在这里插入图片描述

one_hot编码

train_and_test['Title'] = pd.factorize(train_and_test['Title'])[0]
title_dummies_df = pd.get_dummies(train_and_test['Title'], prefix=train_and_test[['Title']].columns[0])
train_and_test = pd.concat([train_and_test, title_dummies_df], axis=1)
train_and_test.info()

在这里插入图片描述

提取长度特征

train_and_test['Name_length'] = train_and_test['Name'].apply(len)
train_and_test['Name_length']

在这里插入图片描述

3.4 Cabin处理

Cabin缺失值过多,将其分为有无两类,进行编码,如果缺失,即为0,否则为1;

train_and_test.loc[train_and_test.Cabin.isnull(), 'Cabin'] = 'U0'
train_and_test['Cabin'] = train_and_test['Cabin'].apply(lambda x : 0 if x == 'U0' else 1)
train_and_test['Cabin']

在这里插入图片描述

3.5 Ticket处理

Ticket有字母和数字之分,对于不同的字母,可能在很大程度上就意味着船舱等级或者不同船舱的位置,也会对Survived产生一定的影响,所以我们将Ticket中的字母分开,为数字的部分则分为一类。

train_and_test['Ticket_Letter'] = train_and_test['Ticket'].str.split().str[0]
train_and_test['Ticket_Letter'] = train_and_test['Ticket_Letter'].apply(lambda x : 'U0' if x.isnumeric() else x)

# 将Ticket_Letter factorize
train_and_test['Ticket_Letter'] = pd.factorize(train_and_test['Ticket_Letter'])[0]
train_and_test['Ticket_Letter']

在这里插入图片描述

4. 利用随机森林预测Age缺失值

from sklearn.ensemble import RandomForestRegressor  # 随机森林回归

missing_age = train_and_test.drop(['PassengerId', 'Survived', 'Name', 'Ticket'], axis=1) # 去除字符串类型的字段
missing_age_train = missing_age[missing_age['Age'].notnull()]
missing_age_test = missing_age[missing_age['Age'].isnull()]

X_train = missing_age_train.iloc[:,1:]
y_train = missing_age_train.iloc[:,0]
X_test = missing_age_test.iloc[:,1:]

rfr = RandomForestRegressor(n_estimators=1000, n_jobs=-1)
rfr.fit(X_train, y_train)
y_predict = rfr.predict(X_test)
train_and_test.loc[train_and_test['Age'].isnull(), 'Age'] = y_predict
train_and_test.info()

在这里插入图片描述

5. 各特征与Survived的相关系数排序

根据生存情况与其他各特征的相关系数,按系数倒序排序,筛选出重要特征 – 重要特征

train_and_test.corr()['Survived'].abs().sort_values(ascending=False)

在这里插入图片描述

6. 保存特征处理后的数据

train_and_test.to_csv('经过特征工程处理后的数据.csv', index=None)

7. 小结

特征工程这一章主要做了以下工作:

  • 合并训练集和测试集
    • 为了使二者具有相同的数据类型和数据分布;
  • 缺失值处理:
    • Embarked:众数填充;
    • Fare:平均值填充;
    • Age:随机森林预测填充;
  • 各特征字段的数据处理:
    • Embarked,Sex,Pclass: 直接dummy编码;
    • Fare: 先分桶处理,再dummy编码;
    • Name: 先提取称呼,再对称呼进行人群分类,最后dummy处理;
    • cabin:缺失值较多,根据是否缺失划分类别,缺失为0,否则为1;
    • Ticket:只保留其中字母,并对字母进行数字转换;
  • 随机森林建模预测Age缺失值;
  • 对各特征与生存与否进行了相关系数大小排序;

本章主要关于到泰坦尼克号数据的特征工程处理,后续就是建模预测部分了,建模预测打算分两部分,一部分只是简单涉及一些算法,参数全部默认;另一部分,会加些算法调参、优化以及复杂模型等,这几天就会安排上!

如果本文有存在不足的地方,欢迎大家在评论区留言

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1627284.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ionic 中对Input输入框、searchbar进行solr检索

一、概述 Ionic 是一个用于开发跨平台应用程序的开源工具,可以使用 Angular、React 或 Vue 等前端框架。要在 Ionic 应用程序中实现实时与 Solr 通信,可以使用 HTTP 客户端(如 Angular 的 HttpClient 或 Ionic 的 Native HTTP)…

笔记:编写程序,绘制一个展示 2013~2019 财年阿里巴 巴淘宝+天猫平台的 GMV 的柱形图,实现过程如下:

文章目录 前言一、GMV 的柱形图是什么?二、编写代码总结 前言 编写程序。根据实例 2 的要求,绘制一个展示 2013~2019 财年阿里巴 巴淘宝天猫平台的 GMV 的柱形图,实现过程如下: (1) 导入 matplotlib.pypl…

Linux快速部署大语言模型LLaMa3,Web可视化j交互(Ollama+Open Web UI)

本文在个人博客同步发布,前往阅读 1 介绍 本文将介绍使用开源工具Ollama(60.6k⭐)部署LLaMa大模型,以及使用Open WebUI搭建前端Web交互界面的方法。 我们先来过一遍几个相关的概念,对这块比较熟悉的朋友可跳过。 1.1 大规模语言模型 大规…

从递归角度串联二叉树-图论-动态规划

一、深度理解二叉树的前中后序遍历 二叉树遍历框架如下: void traverse(TreeNode* root) {if (root nullptr) {return;}// 前序位置traverse(root->left);// 中序位置traverse(root->right);// 后序位置 }先不管所谓前中后序,单看 traverse 函数…

keytool,openssl的使用

写在前面 在生成公钥私钥,配置https时经常需要用到keytool,openssl工具,本文就一起看下其是如何使用的。 keytool是jdk自带的工具,不需要额外下载,但openssl需要额外下载 。 1:使用keytool生成jks私钥文件…

Office Word自动编号转文本

原理 使用office自带的宏功能,一键替换 过程 调出word的“开发工具”选项 文件->选项->自定义功能区->选中开发工具->确定 创建宏 开发工具->宏->创建宏 编写宏 在弹出来的框里,替换代码为 Sub num2txt() ActiveDocument.…

ArcGIS批量寻找图层要素中的空洞

空洞指的是图层中被要素包围所形成的没有被要素覆盖的地方,当图层要素数量非常庞大时,寻找这些空洞就不能一个一个的通过目测去寻找了,需要通过使用工具来实现这一目标。 一、【要素转线】工具 利用【要素转线】工具可以将空洞同图层要素处于…

电商技术揭秘三十五:智能风控功能架构浅析

相关系列文章 电商技术揭秘相关系列文章合集(1) 电商技术揭秘相关系列文章合集(2) 电商技术揭秘二十八:安全与合规性保障 电商技术揭秘二十九:电商法律合规浅析 电商技术揭秘三十:知识产权保…

WEB攻防-PHP特性-CMS审计实例

前置知识&#xff1a;PHP函数缺陷 测试环境&#xff1a;MetInfo CMS 函数缺陷导致的任意文件读取 漏洞URL&#xff1a;/include/thumb.php?dir 漏洞文件位置&#xff1a;MetInfo6.0.0\app\system\include\module\old_thumb.class.php <?phpdefined(IN_MET) or exit(No…

ElasticSearch语句中must,must_not,should 组合关系

前言&#xff1a; 在实际应用中&#xff0c;发现当bool中同时使用must和should 没有达到想要的想过&#xff0c;而是只展示了must中的命中数据&#xff0c;所以打算探究一下bool中 三种逻辑关系的组合。 上述查询语句只展示了must的结果&#xff0c;没有should中的结果&#…

Kafka 3.x.x 入门到精通(06)Kafka进阶

Kafka 3.x.x 入门到精通&#xff08;06&#xff09;——对标尚硅谷Kafka教程 3. Kafka进阶3.1 Controller选举3.2 Broker上线下线3.3 数据偏移量定位3.4 Topic删除3.5 日志清理和压缩3.7 页缓存3.8 零拷贝3.9 顺写日志3.10 Linux集群部署3.10.1 集群规划3.10.2 安装虚拟机(略)3…

MemFire解决方案-物联网数据平台解决方案

方案背景 随着各种通讯、传感技术发展&#xff0c;数据通讯成本的急剧下降&#xff0c;数以万亿计的智能设备&#xff08;智能手环、智能电表、智能手机、各种传感器设备等&#xff09;接入网络&#xff0c;并源源不断的产生海量的实时数据。这些海量数据的价值挖掘&#xff0…

15.Blender Eevee和Cycles渲染引擎对比

初步介绍 Eevee是实时渲染的引擎&#xff0c;会省略一些解算方式&#xff0c;尤其对光线和阴影 Cycles会考虑这些因素&#xff0c;所以会对光线和阴影的表达更加真实&#xff0c;有一个实时光线追踪的功能 Cycles渲染完之后&#xff0c;每移动一次画面&#xff0c;都会重新渲染…

机器学习之Scikit-learn基础教程

Scikit-learn&#xff08;简称sklearn&#xff09;是一个广泛使用的Python机器学习库&#xff0c;它提供了各种算法和工具&#xff0c;用于数据挖掘和数据分析。本教程将介绍sklearn的基本概念和使用方法。 1. 安装Scikit-learn 如果你还没有安装scikit-learn&#xff0c;可以…

设计模式学习笔记 - 开源实战五(下):总结Mybatis中用到的10种设计模式

概述 本章再对 Mybatis 用到的设计模式做一个总结。它用到的设计模式也不少。有些前面章节已经经过了&#xff0c;有些则比较简单。 SqlSessionFactoryBuilder&#xff1a;为什么要用建造者模式来创建 SqlSessionFactory&#xff1f; 在《Mybatis如何权衡易用性、性能和灵活性…

nvm的下载与安装

nvm&#xff08;Node Version Manager&#xff09;是一个用于管理 Node.js 版本的工具&#xff0c;它允许您在同一台计算机上安装和切换不同的 Node.js 版本。 一、下载地址 https://github.com/coreybutler/nvm-windows/releases 二、安装nvm 三、设置环境变量 在命令提示…

python之List列表

1. 高级数据类型 Python中的数据类型可以分为&#xff1a;数字型&#xff08;基本数据类型&#xff09;和非数字型&#xff08;高级数据类型&#xff09; 数字型包含&#xff1a;整型int、浮点型float、布尔型bool、复数型complex 非数字型包含&#xff1a;字符串str、列表l…

URL路由基础与Django处理请求的过程分析

1. URL路由基础 对于高质量的Web应用来讲&#xff0c;使用简洁、优雅的URL设计模式非常有必要。Django框架允许设计人员自由地设计URL模式&#xff0c;而不用受到框架本身的约束。对于URL路由来讲&#xff0c;其主要实现了Web服务的入口。用户通过浏览器发送过来的任何请求&am…

张小泉签约实在智能,用实在Agent打造自动化高

在不少老杭州人的童年记忆里&#xff0c;妈妈裁剪衣服、料理食材、修剪各种物品&#xff0c;用的都是张小泉刀剪。 近日&#xff0c;实在智能与“刀剪第一股”张小泉&#xff08;股票代码&#xff1a;301055.SZ&#xff09;正式达成合作&#xff0c;实在Agent数字员工助力张小…

PT Knockin - 仅需两分钟的在线电子邮件安全检查

我们很高兴向您介绍电子邮件安全评估工具 PT Knockin。 PT Knockin 是一个基于云的 SaaS 解决方案。这意味着企业无需下载或安装任何东西。他们只需访问 PT Knockin 网页&#xff0c;输入电子邮件地址并登录&#xff0c;然后在两分钟内收到电子邮件安全有效性分析报告以及解决…