NPKit介绍
NPKit (Networking Profiling Kit) is a profiling framework designed for popular collective communication libraries (CCLs), including Microsoft MSCCL, NVIDIA NCCL and AMD RCCL.
It enables users to insert customized profiling events into different CCL components, especially into giant GPU kernels.
These events are then automatically placed onto a unified timeline in Google Trace Event Format, which users can then leverage trace viewer to understand CCLs’ workflow and performance.
以NCCL为例,如何使用?
Usage
-
NCCL 2.17.1-1版本,将文件夹下的
npkit-for-nccl-2.17.1-1.diff
添加到你的nccl源文件中。 -
NPKit只有在CPU和GPU没以后overlap的时候使用,所以
NPKIT_FLAGS
也要遵从这个规则。同时npkit_launcher.sh
里面的参数也要对应正确。 -
nccl_test
和npkit_runner.sh
对应参数正确. 仅支持每个线程有1个GPU, 因此nccl_test
运行参数记得是-g 1
-
运行
bash npkit_launcher.sh
. -
生成文件
npkit_event_trace.json
,可以用谷歌浏览器打开看。在浏览器那一栏输入chrome://tracing
, 然后打开对应文件即可。
import argparse
import os
import json
from queue import Queue
def parse_npkit_event_header(npkit_event_header_path):
npkit_event_def = {'id_to_type': {}, 'type_to_id': {}}
with open(npkit_event_header_path, 'r') as f:
lines = [x.strip() for x in f.readlines() if len(x.strip()) != 0]
line_idx = 0
while line_idx < len(lines):
if lines[line_idx].startswith('#define NPKIT_EVENT_'):
fields = lines[line_idx].split()
if len(fields) == 3:
event_type = fields[1]
event_id = int(fields[2], 0)
npkit_event_def['type_to_id'][event_type] = event_id
npkit_event_def['id_to_type'][event_id] = event_type
line_idx += 1
return npkit_event_def
def parse_gpu_clock_scale(gpu_clock_file_path):
with open(gpu_clock_file_path, 'r') as f:
freq_in_khz = f.read()
return float(freq_in_khz) * 1e3 / 1e6
def parse_cpu_clock_scale(cpu_clock_den_file_path, cpu_clock_num_file_path):
with open(cpu_clock_num_file_path, 'r') as f:
num = float(f.read())
with open(cpu_clock_den_file_path, 'r') as f:
den = float(f.read())
return den / num / 1e6
def parse_gpu_event(event_bytes):
return {
'id': int.from_bytes(event_bytes[0:1], byteorder='little', signed=False),
'size': int.from_bytes(event_bytes[1:5], byteorder='little', signed=False),
'rsvd': int.from_bytes(event_bytes[5:8], byteorder='little', signed=False),
'timestamp': int.from_bytes(event_bytes[8:16], byteorder='little', signed=False)
}
def parse_cpu_event(event_bytes):
return {
'id': int.from_bytes(event_bytes[0:1], byteorder='little', signed=False),
'size': int.from_bytes(event_bytes[1:5], byteorder='little', signed=False),
'slot': int.from_bytes(event_bytes[5:8], byteorder='little', signed=False),
'timestamp': int.from_bytes(event_bytes[8:16], byteorder='little', signed=False)
}
def parse_gpu_event_file(npkit_dump_dir, npkit_event_def, rank, buf_idx, gpu_clock_scale, cpu_clock_scale):
gpu_event_file_path = os.path.join(npkit_dump_dir, 'gpu_events_rank_%d_buf_%d' % (rank, buf_idx))
raw_event_size = 16
curr_cpu_base_time = None
curr_gpu_base_time = None
gpu_events = []
event_type_to_seq = {}
with open(gpu_event_file_path, 'rb') as f:
raw_content = f.read()
raw_content_size = len(raw_content)
raw_content_idx = 0
while raw_content_idx < raw_content_size:
parsed_gpu_event = parse_gpu_event(raw_content[raw_content_idx : raw_content_idx + raw_event_size])
if npkit_event_def['id_to_type'][parsed_gpu_event['id']] == 'NPKIT_EVENT_TIME_SYNC_CPU':
curr_cpu_base_time = parsed_gpu_event['timestamp'] / cpu_clock_scale
curr_gpu_base_time = None
elif npkit_event_def['id_to_type'][parsed_gpu_event['id']] == 'NPKIT_EVENT_TIME_SYNC_GPU':
if curr_gpu_base_time is None:
curr_gpu_base_time = parsed_gpu_event['timestamp'] / gpu_clock_scale
else:
if curr_gpu_base_time is None:
curr_gpu_base_time = parsed_gpu_event['timestamp'] / gpu_clock_scale
event_type = npkit_event_def['id_to_type'][parsed_gpu_event['id']]
phase = 'B' if event_type.endswith('_ENTRY') else 'E'
gpu_events.append({
'ph': phase,
'ts': curr_cpu_base_time + parsed_gpu_event['timestamp'] / gpu_clock_scale - curr_gpu_base_time,
'pid': rank,
'tid': buf_idx + 1
})
if phase == 'B':
if event_type not in event_type_to_seq:
event_type_to_seq[event_type] = 0
gpu_events[-1].update({
'name': event_type,
'cat': 'GPU',
'args': {
'rank': rank,
'buf_idx': buf_idx,
'seq': event_type_to_seq[event_type],
'rsvd_0': parsed_gpu_event['rsvd'],
'size_0': parsed_gpu_event['size']
}
})
event_type_to_seq[event_type] += 1
else:
gpu_events[-1]['args'] = {'size': parsed_gpu_event['size'], 'rsvd': parsed_gpu_event['rsvd']}
delta_time = gpu_events[-1]['ts'] - gpu_events[-2]['ts']
gpu_events[-1]['args']['bw (GB/s)'] = 0. if delta_time == 0. else gpu_events[-1]['args']['size'] / delta_time / 1e3
raw_content_idx += raw_event_size
return gpu_events
def parse_cpu_event_file(npkit_dump_dir, npkit_event_def, rank, channel, cpu_clock_scale):
cpu_event_file_path = os.path.join(npkit_dump_dir, 'cpu_events_rank_%d_channel_%d' % (rank, channel))
raw_event_size = 16
cpu_events = []
event_type_to_seq = {}
fiber_is_usable = []
fiber_open_ts = []
slot_to_fiber_id = {}
channel_shift = 1000
with open(cpu_event_file_path, 'rb') as f:
raw_content = f.read()
raw_content_size = len(raw_content)
raw_content_idx = 0
while raw_content_idx < raw_content_size:
parsed_cpu_event = parse_cpu_event(raw_content[raw_content_idx : raw_content_idx + raw_event_size])
event_type = npkit_event_def['id_to_type'][parsed_cpu_event['id']]
phase = 'B' if event_type.endswith('_ENTRY') else 'E'
cpu_events.append({
'ph': phase,
'ts': parsed_cpu_event['timestamp'] / cpu_clock_scale,
'pid': rank
})
slot = parsed_cpu_event['slot']
if phase == 'B':
# Open fiber event
fiber_id = 0
while fiber_id < len(fiber_is_usable):
if fiber_is_usable[fiber_id]:
break
fiber_id += 1
if fiber_id == len(fiber_is_usable):
fiber_is_usable.append(True)
fiber_open_ts.append(0.0)
slot_to_fiber_id[slot] = fiber_id
fiber_open_ts[fiber_id] = cpu_events[-1]['ts']
fiber_is_usable[fiber_id] = False
if event_type not in event_type_to_seq:
event_type_to_seq[event_type] = 0
cpu_events[-1].update({
'name': event_type,
'cat': 'CPU',
'args': {
'rank': rank,
'channel': channel,
'slot': parsed_cpu_event['slot'],
'seq': event_type_to_seq[event_type],
'size_0': parsed_cpu_event['size']
}
})
event_type_to_seq[event_type] += 1
else:
# Close fiber event
fiber_id = slot_to_fiber_id[slot]
slot_to_fiber_id.pop(slot)
last_ts = fiber_open_ts[fiber_id]
fiber_is_usable[fiber_id] = True
delta_time = max(0.001, cpu_events[-1]['ts'] - last_ts)
cpu_events[-1]['args'] = {'size': parsed_cpu_event['size']}
cpu_events[-1]['args']['bw (GB/s)'] = 0. if delta_time == 0. else cpu_events[-1]['args']['size'] / delta_time / 1e3
cpu_events[-1]['tid'] = fiber_id + (channel + 1) * channel_shift
raw_content_idx += raw_event_size
return cpu_events
def convert_npkit_dump_to_trace(npkit_dump_dir, output_dir, npkit_event_def):
files_in_dump_dir = next(os.walk(npkit_dump_dir))[2]
gpu_event_files = [x for x in files_in_dump_dir if x.startswith('gpu_events_rank_')]
cpu_event_files = [x for x in files_in_dump_dir if x.startswith('cpu_events_rank_')]
ranks = list(set([int(x.split('_rank_')[1].split('_')[0]) for x in gpu_event_files]))
buf_indices = list(set([int(x.split('_buf_')[1].split('_')[0]) for x in gpu_event_files]))
channels = list(set([int(x.split('_channel_')[1].split('_')[0]) for x in cpu_event_files]))
trace = {'traceEvents': []}
for rank in ranks:
cpu_clock_den_file_path = os.path.join(npkit_dump_dir, 'cpu_clock_period_den_rank_%d' % rank)
cpu_clock_num_file_path = os.path.join(npkit_dump_dir, 'cpu_clock_period_num_rank_%d' % rank)
cpu_clock_scale = parse_cpu_clock_scale(cpu_clock_den_file_path, cpu_clock_num_file_path)
gpu_clock_file_path = os.path.join(npkit_dump_dir, 'gpu_clock_rate_rank_%d' % rank)
gpu_clock_scale = parse_gpu_clock_scale(gpu_clock_file_path)
for buf_idx in buf_indices:
gpu_events = parse_gpu_event_file(npkit_dump_dir, npkit_event_def, rank, buf_idx, gpu_clock_scale, cpu_clock_scale)
trace['traceEvents'].extend(gpu_events)
for channel in channels:
cpu_events = parse_cpu_event_file(npkit_dump_dir, npkit_event_def, rank, channel, cpu_clock_scale)
trace['traceEvents'].extend(cpu_events)
trace['traceEvents'].sort(key=lambda x : x['ts'])
trace['displayTimeUnit'] = 'ns'
os.makedirs(output_dir, exist_ok=True)
with open(os.path.join(output_dir, 'npkit_event_trace.json'), 'w') as f:
json.dump(trace, f)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--npkit_dump_dir', type=str, required=True, help='NPKit dump directory.')
parser.add_argument('--npkit_event_header_path', type=str, required=True, help='Path to npkit_event.h.')
parser.add_argument('--output_dir', type=str, required=True, help='Path to output directory.')
args = parser.parse_args()
npkit_event_def = parse_npkit_event_header(args.npkit_event_header_path)
convert_npkit_dump_to_trace(args.npkit_dump_dir, args.output_dir, npkit_event_def)