【论文阅读】互连网络的负载平衡路由算法 (RLB RLBth)

news2024/11/18 14:01:36
  • 前言
  • Oblivious Load Balancing 不经意路由负载平衡
    • 1. oblivious routing 不经意/无关路由的背景知识
      • 1. oblivious routing, adaptive routing & minimal/non-minimal routing algorithms
    • 2. Balancing a 1-Dimensional ring: RLB and RLBth 一维 ring 的 RLB and RLBth
      • 1. Motivation of Balancing load 平衡负载的动机
      • 2. 一维 ring 的 RLB and RLBth
  • References

前言

A. Singh. Load-Balanced Routing in Interconnection Networks.PhD thesis, Stanford University, 2005.

总结自 A. Singh 的博士毕业论文 —— Load-Balanced Routing in Interconnection Networks

Oblivious Load Balancing 不经意路由负载平衡

文章提出了用于 torus 网络的随机、非最小、不经意路由算法——RLB和RLBth

1. oblivious routing 不经意/无关路由的背景知识

不经意算法仅使用源节点和目标节点的身份来选择从源到目标的路径。换句话说,路由决策是“忽略”网络状态的。不经意的算法可能会使用随机化来在可能的路径之间进行选择。根据路线的长度,它们也可以被分类为最小或非最小。

1. oblivious routing, adaptive routing & minimal/non-minimal routing algorithms

  • 不经意路由算法(oblivious routing algorithms)仅根据消息源和目的地的身份在这些路径之间进行选择,而自适应算法(adaptive algorithms)则可以根据网络状态(拥塞信息)做出决策。

  • 不经意的算法和自适应算法都可以使用**随机化(Randomization)**来在替代路径中进行选择。

  • 最小算法(Minimal algorithms)沿着从源到目的地的最短路径路由所有数据包,而非最小算法(non-minimal)可能沿着更长的路径路由数据包,即进行了绕远如 VAL 路由算法。

  • 常见的不经意算法 oblivious routing 包括——DOR、VAL 和 ROMM

    • 维序路由(DOR),有时称为 e-cube routing,首先由 Sullivan 和 Bashkow 在A LARGE SCALE, HOMOGENOUS, FULLY DISTRIBUTED PARALLEL MACHINE, II 一文中首次提出[1]。**在 DOR 算法中,每个数据包首先只在一个维度上传递,只有当该维度的坐标一致后,再进入下一个维度进行传输。**由于其简单性,它已被大量用于互连网络中。但 DOR 在对抗性流量(adversarial traffic)模式上的糟糕表现引出了自适应路由方面的大量工作。
    • Valiant 首先提出了如何使用随机化为任意流量模式提供有保证的吞吐量[2]。即将**路由分为两个阶段,第一阶段从源节点路由至全局中随机选择的中间节点(intermediate node),第二阶段从中间节点路由至目标节点。两个阶段的具体路由算法都使用 DOR。**虽然 VAL 路由算法能够进行负载的平衡,在最坏模式下保证一定的性能,但是其破坏了局部性(locality),在本地流量甚至平均流量上性能较差。
    • 为了在获得随机化优势的同时保留局部性,Nesson 和 Johnson 提出了 ROMM 路由算法[3],即随机、不经意、多阶段最小路由(Randomized, Oblivious, Multi-phase Minimal routing)。**与 VAL 一样需要两个阶段,但 ROMM 通过从最小象限(minimal quadrant)(即源节点和目标节点坐标所构成的象限)中随机选择的中间节点路由每个数据包,确保生成的路径严格最小。**虽然[31]报告了一些排列的良好结果,但 ROMM 实际上比 DOR 具有更低的最坏情况吞吐量。问题在于使用最小路由(minimal routing),不可能在对抗模式上实现良好的负载平衡。

2. Balancing a 1-Dimensional ring: RLB and RLBth 一维 ring 的 RLB and RLBth

1. Motivation of Balancing load 平衡负载的动机

下图 1.4 显示了8 node的 ring 的简化版本。对于良性流量模式,如最近邻居 (NN),来自节点的所有流量均等分配到其相邻节点之间(一半到节点 i+1,一半到节点 i-1,模8/模k)。由于每个单向通道具有带宽b,因此如果流量只是沿着最小路径路由,则每个节点都可以以最佳速率2b (吞吐量, 2b) 注入流量。我们称这种流量为良性(benign),因为如果使用最小路由来路由数据包,所有通道自然会实现负载平衡

在这里插入图片描述

而对于对抗流量模式,我们考虑 ring 的 MR 的最坏情况流量(worst-case traffic)、龙卷风(TOR)流量。在 TOR 中,来自节点 i 的所有流量几乎绕环的一半发送到节点 i+3(i + k/2 - 1)。图 1.5 显示了最小路由 TOR 导致顺时针通道上的高负载,保持逆时针通道完全空闲。这会导致相当大的负载不平衡,吞吐量较差(单向通道带宽为b,每个顺时针通道需要维持3条不同数据流,故吞吐量为b/3)。

在这里插入图片描述

如果要在 TOR 等对抗模式上获得良好的性能,需要非最小路由(绕环的长距离)路由一些流量以平衡负载。先按照 Valiant 的建议,通过完全随机化路由 (VAL) 来平衡 TOR 流量,从节点 i 发送到随机中间节点 j,然后从 j 发送到 i+3。这两个阶段中的每一个阶段都是完全随机的路由,因此每个阶段平均使用 2 个 links,故整个路由使用 4 个 links。而最小路由是 3 个 links。即使 VAL 平均比最小路由多遍历一个链路 link,VAL 的每节点吞吐量在 TOR 上更高,为b/2(其使用了双向的channels,且每条 link 上平均有两条数据流)。纯随机路由的问题在于它破坏了局部性。对于 NN 流量模式,吞吐量仍然为 b/2,而 MR 为 2b。文章提出的路由算法,努力在不牺牲良性流量固有的局部性的情况下实现良好的最坏情况性能

2. 一维 ring 的 RLB and RLBth

**在对抗性流量中,最小路由算 MIN 无法均衡负载,使得一个 8 node ring 的吞吐量降低至 b/3。**任何 k-ary n-cube 的网络容量为 2B/N = 8b/k(用 UR 流量的理想吞吐量作为网络容量,将吞吐量和提供的负载归一化为网络容量,Bw 为对分带宽,一般为双向带宽,B/N 为一个单向通道的带宽,故网络容量为 2B/N)。

所以一个 8 node ring 在最小路由和 TOR 流量模式下的吞吐量为 b/3 即 0.33b,33.3%的网络容量。一般而言,最小路由 MIN 的吞吐量会逐渐降低到 25% 的容量,这意味着最坏情况下的性能非常差。即 b/(k/2-1) / (8b/k) = k/8 / (k/2-1),当对于较大的 k 时,吞吐量小于 0.25。

未完待续…

References

[1] L. G. Valiant and G. J. Brebner, “Universal schemes for parallel communication,” in Proceedings of the thirteenth annual ACM symposium on Theory of computing - STOC ’81, Milwaukee, Wisconsin, United States: ACM Press, 1981, pp. 263–277. doi: 10.1145/800076.802479.
[2] H. Sullivan, S. Associates, T. R. Bashkow, and D. Klappholz, “A LARGE SCALE, HOMOGENOUS, FULLY DISTRIBUTED PARALLEL MACHINE, II”.
[3] T. Nesson and S. L. Johnsson, “ROMM routing on mesh and torus networks,” in Proceedings of the seventh annual ACM symposium on Parallel algorithms and architectures - SPAA ’95, Santa Barbara, California, United States: ACM Press, 1995, pp. 275–287. doi: 10.1145/215399.215455.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1621121.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaEE初阶之IO流快速顿悟一(超详细)

目录 题外话 正题 IO流 Java.io.FileInputStream int read() int read(byte[] b) 关于异常 Java7的新特性: try-with-resources ( 资源自动关闭) Java.io.FileOutputStream void write(int b) void write(byte[] b) 小结 题外话 十年青铜无人问,一朝顿悟冲王者 前天…

会声会影滤镜怎么用 会声会影滤镜效果怎么调 会声会影视频制作教程

在进行视频剪辑时,合理地运用滤镜效果可以提升视频的观赏性,使你的作品更加出彩。这篇文章便一起来学习会声会影滤镜怎么用,会声会影滤镜效果怎么调。 一、会声会影滤镜怎么用 使用会声会影的滤镜效果非常简单,以下是具体的操作…

Linux部署MySQL

部署MySQL 先停掉虚拟机中的MySQL,确保你的虚拟机已经安装Docker,且网络开通的情况下,执行下面命令即可安装MySQL: docker run -d \ --name mysql \ -p 3306:3306 \ -e TZAsia/Shanghai \ -e MYSQL_ROOT_PASSWORD123 \ mysql 安…

13. Spring AOP(一)思想及使用

1. 什么是Spring AOP AOP的全称是Aspect Oriented Programming,也就是面向切面编程,是一种思想。它是针对OOP(面向对象编程)的一种补充,是对某一类事情的集中处理。比如一个博客网站的登陆验证功能,在用户进行新增、编辑、删除博…

【算法分析与设计】重复的DNA

📝个人主页:五敷有你 🔥系列专栏:算法分析与设计 ⛺️稳中求进,晒太阳 题目 DNA序列 由一系列核苷酸组成,缩写为 A, C, G 和 T.。 例如,"ACGAATTCCG" 是一个 DNA序列 。 在研究…

【架构方法论(一)】架构的定义与架构要解决的问题

文章目录 一. 架构定义与架构的作用1. 系统与子系统2. 模块与组件3. 框架与架构4. 重新定义架构:4R 架构 二、架构设计的真正目的-别掉入架构设计的误区1. 是为了解决软件复杂度2. 简单的复杂度分析案例 三. 案例思考 本文关键字 架构定义 架构与系统的关系从业务逻…

前端零代码开发实践:页面嵌套+逻辑连线0开发扩展组件,实现切换开关控制扇叶转动。能无代码封装扩展组件,有别于常规的web组态或低代码平台

前言: 官网:http://www.uiotos.net/ 什么是 UIOTOS? 这是一款拥有独创专利技术的前端零代码工具,专注于解决前端界面开发定制难题,原型即应用!具有页面嵌套、属性继承、节点连线等全新特性,学习门槛低…

OpenCV 如何实现边缘检测器

返回:OpenCV系列文章目录(持续更新中......) 上一篇:OpenCV如何实现拉普拉斯算子的离散模拟 下一篇 :OpenCV系列文章目录(持续更新中......) 目标 在本教程中,您将学习如何: 使用 OpenCV 函数…

基于RK3588的全国产鸿蒙边缘计算工控机在智能交通ETC收费系统的应用

1.1 产品简介 基于智能交通、工业互联等行业快速智能化发展的需求,以 OpenHarmony 为框架开发嵌入 HamonyOS,打造了具有高智能、高可靠、高安全的自主 可控的边缘处理器 XM-RK3588。 图 1-1 边缘处理器 HamonyOS强化 IoT 互联互动能力,让边缘…

【JAVA基础之IO】字节流、字符流以及乱码问题

🔥作者主页:小林同学的学习笔录 🔥mysql专栏:小林同学的专栏 目录 1. IO概述 1.1 什么是IO 1.2 IO的分类 1.3 字节和字符流的顶级父类 2. 字节流 2.1 一切皆为字节 2.2 字节输出流【OutputStream】 2.3 FileOutputStream类…

【Python】自定义修改pip下载模块默认的安装路径

因为电脑下载了Anaconda提供的默认Python 3.9 以及后期下载的python3.10所以在Pychram进行项目开发时,发现一些库怎么导入都导入不了,手动install也是失败,后期在cmd里面发现python以及pip配置有点儿混乱,导致执行命令时&#xff…

学习c语音的自我感受

因为是自学,所以走过不少弯路。去年,受知乎“python性能弱”风潮的影响,学过go,rust。 在学习这些新语言的时候,由衷感受到,或是本身侧重方向的原因(如go侧重服务器),或是语言太新不…

01-服务与服务间的通信

这里是极简版,仅用作记录 概述 前端和后端可以使用axios等进行http请求 服务和服务之间也是可以进行http请求的spring封装的RestTemplate可以进行请求 用法 使用bean注解进行依赖注入 在需要的地方,自动注入RestTemplate进行服务和服务之间的通信 注…

探索React Router:实现动态二级路由

我有一个路由配置的二维数组,想根据这个数组结合路由组件来动态生成路由,应该怎么样实现。在 React Router 6 中渲染二级路由的方式跟 React Router 65相比有一些变化,但核心思路仍然是利用 Route 组件和路由嵌套的方式。下面是具体的步骤: 定义路由数组…

C系统编程:从零手搓一个shell

背景 这么久没更新就是在干这件事!!因为系统编程已经学的差不多了,所以想找几个项目练练手,之前就一直想写一个自己的shell!!现在终于有机会实现了。 首先说明一下我的操作系统:Arch linux 服务…

C++ - STL详解(七)— stack和queue的介绍及使用

目录 一. stack 1.1 stack的介绍 1.2 stack的定义 1.3 stack的使用 ​编辑 二. queue 2.1 queue的介绍 2.2 queue的定义 2.3 queue的使用 一. stack 1.1 stack的介绍 stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除…

redis底层数据结构之ziplist

目录 一、概述二、ziplist结构三、Entry结构四、为什么ZipList特别省内存五、ziplist的缺点 redis底层数据结构已完结👏👏👏: ☑️redis底层数据结构之SDS☑️redis底层数据结构之ziplist☑️redis底层数据结构之quicklist☑️red…

ETL工具-nifi干货系列 第十六讲 nifi Process Group实战教程,一文轻松搞定

1、目前nifi系列已经更新了10多篇教程了,跟着教程走的同学应该已经对nifi有了初步的解,但是我相信同学们应该有一个疑问:nifi设计好的数据流列表在哪里?如何同时运行多个数据流?如启停单个数据流? 带着这些…

第二期书生浦语大模型训练营第四次笔记

大模型微调技术 大模型微调是一种通过在预训练模型的基础上,有针对性地微调部分参数以适应特定任务需求的方法。 微调预训练模型的方法 微调所有层:将预训练模型的所有层都参与微调,以适应新的任务。 微调顶层:只微调预训练模型…

Pandas数据分析小技巧

Pandas数据分析小技巧:提升数据处理效率与准确性的秘诀 Pandas是一个强大的Python数据分析库,它提供了快速、灵活且富有表现力的数据结构,使得数据清洗、转换、分析等操作变得简单而高效。本文将介绍一些Pandas数据分析的小技巧,…