政安晨:【Keras机器学习示例演绎】(七)—— 利用 NeRF 进行 3D 体积渲染

news2024/11/18 19:54:52

目录

简介

设置

下载并加载数据

NeRF 模型

训练

可视化训练步骤

推理

渲染三维场景

可视化视频

结论


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:NeRF 中显示的体积渲染的最小实现。

简介


在本示例中,我们将介绍 Ben Mildenhall 等人的研究论文 NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 的最小实现

作者提出了一种巧妙的方法,即通过神经网络对体积场景函数进行建模,从而合成场景的新颖视图。

为了帮助大家直观地理解这个问题,让我们从下面这个问题开始:是否可以向神经网络提供图像中某个像素的位置,并要求网络预测该位置的颜色?

(下图:给定图像坐标的神经网络

作为输入,并要求预测坐标处的颜色

假设神经网络会记忆(过拟合)图像。这意味着,我们的神经网络将在其权重中编码整个图像。我们可以根据每个位置查询神经网络,它最终会重建整个图像。

(下图 :训练有素的神经网络从头开始重现图像。)

现在的问题是,我们如何将这一想法扩展到三维体积场景的学习中?

要实现与上述类似的过程,就需要了解每个体素(体积像素)。

事实证明,这是一项相当具有挑战性的任务。

本文提出了一种使用少量场景图像学习三维场景的简约而优雅的方法。

他们放弃了使用体素进行训练。该网络学习对体积场景进行建模,从而生成三维场景的新视图(图像),而模型在训练时并未显示这些视图。

要充分了解这一过程,需要了解一些先决条件。我们将以这样一种方式来安排示例,以便您在开始实施前掌握所有必要的知识。

设置

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

# Setting random seed to obtain reproducible results.
import tensorflow as tf

tf.random.set_seed(42)

import keras
from keras import layers

import os
import glob
import imageio.v2 as imageio
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt

# Initialize global variables.
AUTO = tf.data.AUTOTUNE
BATCH_SIZE = 5
NUM_SAMPLES = 32
POS_ENCODE_DIMS = 16
EPOCHS = 20

下载并加载数据

npz 数据文件包含图像、相机姿势和焦距。如下图 所示,图像是从多个摄像机角度拍摄的。

(下图 :多角度拍摄

要在这种情况下理解摄像机的姿势,我们必须首先让自己认为,摄像机是真实世界和二维图像之间的映射。

请看下面的等式:

其中 x 是二维图像点,X 是三维世界点,P 是摄像机矩阵。P 是一个 3 x 4 矩阵,在将现实世界中的物体映射到图像平面上起着至关重要的作用。

摄像机矩阵是一个仿射变换矩阵,它与 3 x 1 列[图像高度、图像宽度、焦距]相连接,从而产生姿态矩阵。

该矩阵的尺寸为 3 x 5,其中第一个 3 x 3 块为摄像机视角。轴线为[向下、向右、向后]或[-y、x、z],其中摄像机朝向前方-z。

(下图 :仿射变换

COLMAP 框架为 [右、下、前] 或 [x、-y、-z]。点击此处了解更多有关 COLMAP 的信息。

# Download the data if it does not already exist.
url = (
    "http://cseweb.ucsd.edu/~viscomp/projects/LF/papers/ECCV20/nerf/tiny_nerf_data.npz"
)
data = keras.utils.get_file(origin=url)

data = np.load(data)
images = data["images"]
im_shape = images.shape
(num_images, H, W, _) = images.shape
(poses, focal) = (data["poses"], data["focal"])

# Plot a random image from the dataset for visualization.
plt.imshow(images[np.random.randint(low=0, high=num_images)])
plt.show()

数据管道


在了解了摄像机矩阵的概念以及三维场景到二维图像的映射之后,我们来谈谈反向映射,即从二维图像到三维场景的映射。

我们需要讨论使用光线投射和追踪进行体积渲染的问题,这些都是常见的计算机图形技术。本节将帮助你快速掌握这些技术。

考虑一幅有 N 个像素的图像。我们用光线穿过每个像素,并对光线上的一些点进行采样。如下图  所示,射线的参数方程通常为 r(t) = o + td,其中 t 为参数,o 为原点,d 为单位方向向量。

(下图 :r(t) = o + td,其中 t 为 3

在下图 中,我们考虑了一条射线,并对射线上的一些随机点进行了采样。

这些采样点都有一个唯一的位置(x、y、z),射线有一个视角(theta、phi)。视角尤其有趣,因为我们可以用多种不同的方式将光线射穿一个像素,每种方式都有一个独特的视角。

另一个值得注意的地方是采样过程中添加的噪声。

我们在每个样本中都添加了均匀的噪声,这样样本就对应于一个连续的分布。在下图 中,蓝色的点是均匀分布的样本,白色的点(t1、t2、t3)是随机放置在样本之间的。

(下图 :从射线中采样点。

下图展示了整个三维采样过程,可以看到射线从白色图像中射出。

这意味着每个像素都会有相应的光线,而每条光线都会在不同的点上采样。

(下图 :从三维图像的所有像素射出光线

这些采样点是 NeRF 模型的输入。然后要求模型预测该点的 RGB 颜色和体积密度。

(下图 :数据管道

def encode_position(x):
    """Encodes the position into its corresponding Fourier feature.

    Args:
        x: The input coordinate.

    Returns:
        Fourier features tensors of the position.
    """
    positions = [x]
    for i in range(POS_ENCODE_DIMS):
        for fn in [tf.sin, tf.cos]:
            positions.append(fn(2.0**i * x))
    return tf.concat(positions, axis=-1)


def get_rays(height, width, focal, pose):
    """Computes origin point and direction vector of rays.

    Args:
        height: Height of the image.
        width: Width of the image.
        focal: The focal length between the images and the camera.
        pose: The pose matrix of the camera.

    Returns:
        Tuple of origin point and direction vector for rays.
    """
    # Build a meshgrid for the rays.
    i, j = tf.meshgrid(
        tf.range(width, dtype=tf.float32),
        tf.range(height, dtype=tf.float32),
        indexing="xy",
    )

    # Normalize the x axis coordinates.
    transformed_i = (i - width * 0.5) / focal

    # Normalize the y axis coordinates.
    transformed_j = (j - height * 0.5) / focal

    # Create the direction unit vectors.
    directions = tf.stack([transformed_i, -transformed_j, -tf.ones_like(i)], axis=-1)

    # Get the camera matrix.
    camera_matrix = pose[:3, :3]
    height_width_focal = pose[:3, -1]

    # Get origins and directions for the rays.
    transformed_dirs = directions[..., None, :]
    camera_dirs = transformed_dirs * camera_matrix
    ray_directions = tf.reduce_sum(camera_dirs, axis=-1)
    ray_origins = tf.broadcast_to(height_width_focal, tf.shape(ray_directions))

    # Return the origins and directions.
    return (ray_origins, ray_directions)


def render_flat_rays(ray_origins, ray_directions, near, far, num_samples, rand=False):
    """Renders the rays and flattens it.

    Args:
        ray_origins: The origin points for rays.
        ray_directions: The direction unit vectors for the rays.
        near: The near bound of the volumetric scene.
        far: The far bound of the volumetric scene.
        num_samples: Number of sample points in a ray.
        rand: Choice for randomising the sampling strategy.

    Returns:
       Tuple of flattened rays and sample points on each rays.
    """
    # Compute 3D query points.
    # Equation: r(t) = o+td -> Building the "t" here.
    t_vals = tf.linspace(near, far, num_samples)
    if rand:
        # Inject uniform noise into sample space to make the sampling
        # continuous.
        shape = list(ray_origins.shape[:-1]) + [num_samples]
        noise = tf.random.uniform(shape=shape) * (far - near) / num_samples
        t_vals = t_vals + noise

    # Equation: r(t) = o + td -> Building the "r" here.
    rays = ray_origins[..., None, :] + (
        ray_directions[..., None, :] * t_vals[..., None]
    )
    rays_flat = tf.reshape(rays, [-1, 3])
    rays_flat = encode_position(rays_flat)
    return (rays_flat, t_vals)


def map_fn(pose):
    """Maps individual pose to flattened rays and sample points.

    Args:
        pose: The pose matrix of the camera.

    Returns:
        Tuple of flattened rays and sample points corresponding to the
        camera pose.
    """
    (ray_origins, ray_directions) = get_rays(height=H, width=W, focal=focal, pose=pose)
    (rays_flat, t_vals) = render_flat_rays(
        ray_origins=ray_origins,
        ray_directions=ray_directions,
        near=2.0,
        far=6.0,
        num_samples=NUM_SAMPLES,
        rand=True,
    )
    return (rays_flat, t_vals)


# Create the training split.
split_index = int(num_images * 0.8)

# Split the images into training and validation.
train_images = images[:split_index]
val_images = images[split_index:]

# Split the poses into training and validation.
train_poses = poses[:split_index]
val_poses = poses[split_index:]

# Make the training pipeline.
train_img_ds = tf.data.Dataset.from_tensor_slices(train_images)
train_pose_ds = tf.data.Dataset.from_tensor_slices(train_poses)
train_ray_ds = train_pose_ds.map(map_fn, num_parallel_calls=AUTO)
training_ds = tf.data.Dataset.zip((train_img_ds, train_ray_ds))
train_ds = (
    training_ds.shuffle(BATCH_SIZE)
    .batch(BATCH_SIZE, drop_remainder=True, num_parallel_calls=AUTO)
    .prefetch(AUTO)
)

# Make the validation pipeline.
val_img_ds = tf.data.Dataset.from_tensor_slices(val_images)
val_pose_ds = tf.data.Dataset.from_tensor_slices(val_poses)
val_ray_ds = val_pose_ds.map(map_fn, num_parallel_calls=AUTO)
validation_ds = tf.data.Dataset.zip((val_img_ds, val_ray_ds))
val_ds = (
    validation_ds.shuffle(BATCH_SIZE)
    .batch(BATCH_SIZE, drop_remainder=True, num_parallel_calls=AUTO)
    .prefetch(AUTO)
)

NeRF 模型

该模型为多层感知器(MLP),以 ReLU 作为非线性。

某论文节选:

"我们通过限制网络仅预测体积密度 sigma 与位置 x 的函数关系,同时允许预测 RGB 颜色 c 与位置和观察方向的函数关系,从而使表示法与多视角一致。为此,MLP 首先使用 8 个全连接层(每层使用 ReLU 激活和 256 个通道)处理输入的 3D 坐标 x,并输出 sigma 和 256 维特征向量。然后,将该特征向量与摄像机光线的观察方向连接起来,并传递给另外一个全连接层(使用 ReLU 激活和 128 个通道),该层输出与视图相关的 RGB 颜色"。

在这里,我们采用了最小化的实现方式,使用了 64 个密集单元,而不是论文中提到的 256 个。

def get_nerf_model(num_layers, num_pos):
    """Generates the NeRF neural network.

    Args:
        num_layers: The number of MLP layers.
        num_pos: The number of dimensions of positional encoding.

    Returns:
        The `keras` model.
    """
    inputs = keras.Input(shape=(num_pos, 2 * 3 * POS_ENCODE_DIMS + 3))
    x = inputs
    for i in range(num_layers):
        x = layers.Dense(units=64, activation="relu")(x)
        if i % 4 == 0 and i > 0:
            # Inject residual connection.
            x = layers.concatenate([x, inputs], axis=-1)
    outputs = layers.Dense(units=4)(x)
    return keras.Model(inputs=inputs, outputs=outputs)


def render_rgb_depth(model, rays_flat, t_vals, rand=True, train=True):
    """Generates the RGB image and depth map from model prediction.

    Args:
        model: The MLP model that is trained to predict the rgb and
            volume density of the volumetric scene.
        rays_flat: The flattened rays that serve as the input to
            the NeRF model.
        t_vals: The sample points for the rays.
        rand: Choice to randomise the sampling strategy.
        train: Whether the model is in the training or testing phase.

    Returns:
        Tuple of rgb image and depth map.
    """
    # Get the predictions from the nerf model and reshape it.
    if train:
        predictions = model(rays_flat)
    else:
        predictions = model.predict(rays_flat)
    predictions = tf.reshape(predictions, shape=(BATCH_SIZE, H, W, NUM_SAMPLES, 4))

    # Slice the predictions into rgb and sigma.
    rgb = tf.sigmoid(predictions[..., :-1])
    sigma_a = tf.nn.relu(predictions[..., -1])

    # Get the distance of adjacent intervals.
    delta = t_vals[..., 1:] - t_vals[..., :-1]
    # delta shape = (num_samples)
    if rand:
        delta = tf.concat(
            [delta, tf.broadcast_to([1e10], shape=(BATCH_SIZE, H, W, 1))], axis=-1
        )
        alpha = 1.0 - tf.exp(-sigma_a * delta)
    else:
        delta = tf.concat(
            [delta, tf.broadcast_to([1e10], shape=(BATCH_SIZE, 1))], axis=-1
        )
        alpha = 1.0 - tf.exp(-sigma_a * delta[:, None, None, :])

    # Get transmittance.
    exp_term = 1.0 - alpha
    epsilon = 1e-10
    transmittance = tf.math.cumprod(exp_term + epsilon, axis=-1, exclusive=True)
    weights = alpha * transmittance
    rgb = tf.reduce_sum(weights[..., None] * rgb, axis=-2)

    if rand:
        depth_map = tf.reduce_sum(weights * t_vals, axis=-1)
    else:
        depth_map = tf.reduce_sum(weights * t_vals[:, None, None], axis=-1)
    return (rgb, depth_map)

训练


训练步骤是作为自定义 keras.Model 子类的一部分实现的,这样我们就可以使用 model.fit 功能。

class NeRF(keras.Model):
    def __init__(self, nerf_model):
        super().__init__()
        self.nerf_model = nerf_model

    def compile(self, optimizer, loss_fn):
        super().compile()
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.loss_tracker = keras.metrics.Mean(name="loss")
        self.psnr_metric = keras.metrics.Mean(name="psnr")

    def train_step(self, inputs):
        # Get the images and the rays.
        (images, rays) = inputs
        (rays_flat, t_vals) = rays

        with tf.GradientTape() as tape:
            # Get the predictions from the model.
            rgb, _ = render_rgb_depth(
                model=self.nerf_model, rays_flat=rays_flat, t_vals=t_vals, rand=True
            )
            loss = self.loss_fn(images, rgb)

        # Get the trainable variables.
        trainable_variables = self.nerf_model.trainable_variables

        # Get the gradeints of the trainiable variables with respect to the loss.
        gradients = tape.gradient(loss, trainable_variables)

        # Apply the grads and optimize the model.
        self.optimizer.apply_gradients(zip(gradients, trainable_variables))

        # Get the PSNR of the reconstructed images and the source images.
        psnr = tf.image.psnr(images, rgb, max_val=1.0)

        # Compute our own metrics
        self.loss_tracker.update_state(loss)
        self.psnr_metric.update_state(psnr)
        return {"loss": self.loss_tracker.result(), "psnr": self.psnr_metric.result()}

    def test_step(self, inputs):
        # Get the images and the rays.
        (images, rays) = inputs
        (rays_flat, t_vals) = rays

        # Get the predictions from the model.
        rgb, _ = render_rgb_depth(
            model=self.nerf_model, rays_flat=rays_flat, t_vals=t_vals, rand=True
        )
        loss = self.loss_fn(images, rgb)

        # Get the PSNR of the reconstructed images and the source images.
        psnr = tf.image.psnr(images, rgb, max_val=1.0)

        # Compute our own metrics
        self.loss_tracker.update_state(loss)
        self.psnr_metric.update_state(psnr)
        return {"loss": self.loss_tracker.result(), "psnr": self.psnr_metric.result()}

    @property
    def metrics(self):
        return [self.loss_tracker, self.psnr_metric]


test_imgs, test_rays = next(iter(train_ds))
test_rays_flat, test_t_vals = test_rays

loss_list = []


class TrainMonitor(keras.callbacks.Callback):
    def on_epoch_end(self, epoch, logs=None):
        loss = logs["loss"]
        loss_list.append(loss)
        test_recons_images, depth_maps = render_rgb_depth(
            model=self.model.nerf_model,
            rays_flat=test_rays_flat,
            t_vals=test_t_vals,
            rand=True,
            train=False,
        )

        # Plot the rgb, depth and the loss plot.
        fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(20, 5))
        ax[0].imshow(keras.utils.array_to_img(test_recons_images[0]))
        ax[0].set_title(f"Predicted Image: {epoch:03d}")

        ax[1].imshow(keras.utils.array_to_img(depth_maps[0, ..., None]))
        ax[1].set_title(f"Depth Map: {epoch:03d}")

        ax[2].plot(loss_list)
        ax[2].set_xticks(np.arange(0, EPOCHS + 1, 5.0))
        ax[2].set_title(f"Loss Plot: {epoch:03d}")

        fig.savefig(f"images/{epoch:03d}.png")
        plt.show()
        plt.close()


num_pos = H * W * NUM_SAMPLES
nerf_model = get_nerf_model(num_layers=8, num_pos=num_pos)

model = NeRF(nerf_model)
model.compile(
    optimizer=keras.optimizers.Adam(), loss_fn=keras.losses.MeanSquaredError()
)

# Create a directory to save the images during training.
if not os.path.exists("images"):
    os.makedirs("images")

model.fit(
    train_ds,
    validation_data=val_ds,
    batch_size=BATCH_SIZE,
    epochs=EPOCHS,
    callbacks=[TrainMonitor()],
)


def create_gif(path_to_images, name_gif):
    filenames = glob.glob(path_to_images)
    filenames = sorted(filenames)
    images = []
    for filename in tqdm(filenames):
        images.append(imageio.imread(filename))
    kargs = {"duration": 0.25}
    imageio.mimsave(name_gif, images, "GIF", **kargs)


create_gif("images/*.png", "training.gif")

演绎展示:

Epoch 1/20
  1/16 ━[37m━━━━━━━━━━━━━━━━━━━  3:54 16s/step - loss: 0.0948 - psnr: 10.6234

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1699908753.457905   65271 device_compiler.h:187] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.

 1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 924ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 29s 889ms/step - loss: 0.1091 - psnr: 9.8283 - val_loss: 0.0753 - val_psnr: 11.5686
Epoch 2/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 477ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 16s 926ms/step - loss: 0.0633 - psnr: 12.4819 - val_loss: 0.0657 - val_psnr: 12.1781
Epoch 3/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 474ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 16s 921ms/step - loss: 0.0589 - psnr: 12.6268 - val_loss: 0.0637 - val_psnr: 12.3413
Epoch 4/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 470ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 15s 915ms/step - loss: 0.0573 - psnr: 12.8150 - val_loss: 0.0617 - val_psnr: 12.4789
Epoch 5/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 477ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 15s 918ms/step - loss: 0.0552 - psnr: 12.9703 - val_loss: 0.0594 - val_psnr: 12.6457
Epoch 6/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 476ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 15s 894ms/step - loss: 0.0538 - psnr: 13.0895 - val_loss: 0.0533 - val_psnr: 13.0049
Epoch 7/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 473ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 16s 940ms/step - loss: 0.0436 - psnr: 13.9857 - val_loss: 0.0381 - val_psnr: 14.4764
Epoch 8/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 475ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 15s 919ms/step - loss: 0.0325 - psnr: 15.1856 - val_loss: 0.0294 - val_psnr: 15.5187
Epoch 9/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 478ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 16s 927ms/step - loss: 0.0276 - psnr: 15.8105 - val_loss: 0.0259 - val_psnr: 16.0297
Epoch 10/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 474ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 16s 952ms/step - loss: 0.0251 - psnr: 16.1994 - val_loss: 0.0252 - val_psnr: 16.0842
Epoch 11/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 474ms/step

16/16 ━━━━━━━━━━━━━━━━━━━━ 15s 909ms/step - loss: 0.0239 - psnr: 16.3749 - val_loss: 0.0228 - val_psnr: 16.5269
Epoch 12/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 474ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 19s 1s/step - loss: 0.0215 - psnr: 16.8117 - val_loss: 0.0186 - val_psnr: 17.3930
Epoch 13/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 474ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 16s 923ms/step - loss: 0.0188 - psnr: 17.3916 - val_loss: 0.0174 - val_psnr: 17.6570
Epoch 14/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 476ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 16s 973ms/step - loss: 0.0175 - psnr: 17.6871 - val_loss: 0.0172 - val_psnr: 17.6644
Epoch 15/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 468ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 15s 919ms/step - loss: 0.0172 - psnr: 17.7639 - val_loss: 0.0161 - val_psnr: 18.0313
Epoch 16/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 477ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 16s 915ms/step - loss: 0.0150 - psnr: 18.3860 - val_loss: 0.0151 - val_psnr: 18.2832
Epoch 17/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 473ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 16s 926ms/step - loss: 0.0154 - psnr: 18.2210 - val_loss: 0.0146 - val_psnr: 18.4284
Epoch 18/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 468ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 16s 959ms/step - loss: 0.0145 - psnr: 18.4869 - val_loss: 0.0134 - val_psnr: 18.8039
Epoch 19/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 473ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 16s 933ms/step - loss: 0.0136 - psnr: 18.8040 - val_loss: 0.0138 - val_psnr: 18.6680
Epoch 20/20
 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 472ms/step

 16/16 ━━━━━━━━━━━━━━━━━━━━ 15s 916ms/step - loss: 0.0131 - psnr: 18.9661 - val_loss: 0.0132 - val_psnr: 18.8687

100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:00<00:00, 59.40it/s]

可视化训练步骤


在这里,我们看到了训练步骤。随着损失的减少,渲染图像和深度图的效果越来越好。在本地系统中,你将看到生成的 training.gif 文件。

推理


在本节中,我们要求模型构建新的场景视图。在训练步骤中,我们给模型提供了 106 个场景视图。训练图像集合不可能包含场景的每个角度。经过训练的模型可以用一组稀疏的训练图像来表示整个三维场景。

在这里,我们向模型提供不同的姿势,并要求它给出与该摄像机视角相对应的二维图像。如果我们推断出所有 360 度视角的模型,那么它就能从四周提供整个场景的概览。

# Get the trained NeRF model and infer.
nerf_model = model.nerf_model
test_recons_images, depth_maps = render_rgb_depth(
    model=nerf_model,
    rays_flat=test_rays_flat,
    t_vals=test_t_vals,
    rand=True,
    train=False,
)

# Create subplots.
fig, axes = plt.subplots(nrows=5, ncols=3, figsize=(10, 20))

for ax, ori_img, recons_img, depth_map in zip(
    axes, test_imgs, test_recons_images, depth_maps
):
    ax[0].imshow(keras.utils.array_to_img(ori_img))
    ax[0].set_title("Original")

    ax[1].imshow(keras.utils.array_to_img(recons_img))
    ax[1].set_title("Reconstructed")

    ax[2].imshow(keras.utils.array_to_img(depth_map[..., None]), cmap="inferno")
    ax[2].set_title("Depth Map")

演绎展示:

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 475ms/step

渲染三维场景


在这里,我们将合成新颖的 3D 视图,并将所有视图拼接在一起,以渲染包含 360 度视图的视频。

def get_translation_t(t):
    """Get the translation matrix for movement in t."""
    matrix = [
        [1, 0, 0, 0],
        [0, 1, 0, 0],
        [0, 0, 1, t],
        [0, 0, 0, 1],
    ]
    return tf.convert_to_tensor(matrix, dtype=tf.float32)


def get_rotation_phi(phi):
    """Get the rotation matrix for movement in phi."""
    matrix = [
        [1, 0, 0, 0],
        [0, tf.cos(phi), -tf.sin(phi), 0],
        [0, tf.sin(phi), tf.cos(phi), 0],
        [0, 0, 0, 1],
    ]
    return tf.convert_to_tensor(matrix, dtype=tf.float32)


def get_rotation_theta(theta):
    """Get the rotation matrix for movement in theta."""
    matrix = [
        [tf.cos(theta), 0, -tf.sin(theta), 0],
        [0, 1, 0, 0],
        [tf.sin(theta), 0, tf.cos(theta), 0],
        [0, 0, 0, 1],
    ]
    return tf.convert_to_tensor(matrix, dtype=tf.float32)


def pose_spherical(theta, phi, t):
    """
    Get the camera to world matrix for the corresponding theta, phi
    and t.
    """
    c2w = get_translation_t(t)
    c2w = get_rotation_phi(phi / 180.0 * np.pi) @ c2w
    c2w = get_rotation_theta(theta / 180.0 * np.pi) @ c2w
    c2w = np.array([[-1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) @ c2w
    return c2w


rgb_frames = []
batch_flat = []
batch_t = []

# Iterate over different theta value and generate scenes.
for index, theta in tqdm(enumerate(np.linspace(0.0, 360.0, 120, endpoint=False))):
    # Get the camera to world matrix.
    c2w = pose_spherical(theta, -30.0, 4.0)

    #
    ray_oris, ray_dirs = get_rays(H, W, focal, c2w)
    rays_flat, t_vals = render_flat_rays(
        ray_oris, ray_dirs, near=2.0, far=6.0, num_samples=NUM_SAMPLES, rand=False
    )

    if index % BATCH_SIZE == 0 and index > 0:
        batched_flat = tf.stack(batch_flat, axis=0)
        batch_flat = [rays_flat]

        batched_t = tf.stack(batch_t, axis=0)
        batch_t = [t_vals]

        rgb, _ = render_rgb_depth(
            nerf_model, batched_flat, batched_t, rand=False, train=False
        )

        temp_rgb = [np.clip(255 * img, 0.0, 255.0).astype(np.uint8) for img in rgb]

        rgb_frames = rgb_frames + temp_rgb
    else:
        batch_flat.append(rays_flat)
        batch_t.append(t_vals)

rgb_video = "rgb_video.mp4"
imageio.mimwrite(rgb_video, rgb_frames, fps=30, quality=7, macro_block_size=None)

演绎展示:

1it [00:01,  1.02s/it]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 475ms/step

6it [00:03,  1.95it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 478ms/step

11it [00:05,  2.11it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 474ms/step

16it [00:07,  2.17it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 477ms/step

25it [00:10,  3.05it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 477ms/step

27it [00:12,  2.14it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 479ms/step

31it [00:14,  2.02it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 472ms/step

36it [00:16,  2.11it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 474ms/step

41it [00:18,  2.16it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 472ms/step

46it [00:21,  2.19it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 475ms/step

51it [00:23,  2.22it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 473ms/step

56it [00:25,  2.24it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 464ms/step

61it [00:27,  2.26it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 474ms/step

66it [00:29,  2.26it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 476ms/step

71it [00:32,  2.26it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 473ms/step

76it [00:34,  2.26it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 475ms/step

81it [00:36,  2.26it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 474ms/step

86it [00:38,  2.26it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 476ms/step

91it [00:40,  2.26it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 465ms/step

96it [00:43,  2.27it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 473ms/step

101it [00:45,  2.28it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 473ms/step

106it [00:47,  2.28it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 473ms/step

111it [00:49,  2.27it/s]

 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 474ms/step

120it [00:52,  2.31it/s]
[swscaler @ 0x67626c0] Warning: data is not aligned! This can lead to a speed loss

可视化视频


在这里,我们可以看到渲染后的 360 度场景视图。该模型仅用了 20 个历时就通过稀疏图像集成功学习了整个体积空间。您可以查看本地保存的渲染视频,名为 rgb_video.mp4。

结论


我们制作了一个 NeRF 的最小实现,以提供对其核心思想和方法的直观认识。这种方法已被用于计算机图形领域的其他各种工作中。

我们鼓励读者将此代码作为示例,使用超参数并观察输出结果。下面我们还提供了经过更多历时训练的模型的输出结果。

培训步骤


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1621048.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

图像预处理工具_CogPolarUnwrapTool

CogPolarUnwrapTool CogPolarUnwrapTool 工具能够将环形区域通过极坐标变换 转换为矩形区域&#xff0c;方便读取 转换的步骤&#xff1a; 1.根据环形到矩形的映射来构建一个转换关系。 2.根据这个转换关系将输出图像中的像素点映射到输入图像。 3.对输入图像中的点像素进行…

浅析未来:深度学习的挑战与机遇

浅析未来&#xff1a;深度学习的挑战与机遇 1 引言 在过去的十年里&#xff0c;深度学习已经从一个相对边缘的研究领域发展成为计算机科学和人工智能中最为活跃和引人注目的领域之一。无论是在图像识别、自然语言处理、还是在更为复杂的决策制定任务中&#xff0c;深度学习技术…

索引!索引!!索引!!!到底什么是索引?

文章目录 索引的概述索引的优劣势优势劣势 索引的分类实现索引的数据结构B 树&#xff08;B-Tree&#xff09;B树&#xff08;B Tree&#xff09;哈希索引&#xff08;Hash Index&#xff09; 前言&#xff1a; 相信接触过编程的同学都听说过 索引&#xff0c;那么到底什么是索…

第六讲-流程挖掘(Process Mining)学习日志之α算法精讲

第六讲-流程挖掘&#xff08;Process Mining&#xff09;学习日志之α算法精讲 通过给定一个简单的事件日志&#xff0c;α算法可以得到一个(希望)能够重演日志的 Petri 网。同时α算法是最早的能够适当处理并发的过程发现算法之一。 参考&#xff1a;PROCESS MINING&#xff1…

【电子元件】常用的二极管、极管规格参数一览表

目录 1. 常用的二极管规格参数1.1 贴片二极管1.2 直插二极管 2. 常用的三极管规格参数2.1 贴片三极管2.2 直插三极管 参考资料 1. 常用的二极管规格参数 1.1 贴片二极管 型号/封装丝印正向压降(Vf) 反向击穿电压(Vr)平均整流电流(Io)/正向工作电流(If)反向电流(Ir)反向恢复时间…

YOLOv9训练损失、精度、mAP绘图功能 | 支持多结果对比,多结果绘在一个图片(消融实验、科研必备)

一、本文介绍 本文给大家带来的是YOLOv9系列的绘图功能&#xff0c;我将向大家介绍YOLO系列的绘图功能。我们在进行实验时&#xff0c;经常需要比较多个结果&#xff0c;针对这一问题&#xff0c;我写了点代码来解决这个问题&#xff0c;它可以根据训练结果绘制损失(loss)和mA…

怎样用PHP语言实现远程控制三路开关

怎样用PHP语言实现远程控制三路开关呢&#xff1f; 本文描述了使用PHP语言调用HTTP接口&#xff0c;实现控制三路开关&#xff0c;三路开关可控制三路照明、排风扇等电器。 可选用产品&#xff1a;可根据实际场景需求&#xff0c;选择对应的规格 序号设备名称厂商1智能WiFi墙…

园区智慧化转型新篇章:解码智慧技术如何助力园区实现精细化管理,提升运营效率

目录 一、智慧技术概述及其在园区管理中的应用 &#xff08;一&#xff09;物联网技术的应用 &#xff08;二&#xff09;大数据技术的应用 &#xff08;三&#xff09;云计算技术的应用 二、智慧技术助力园区实现精细化管理 &#xff08;一&#xff09;实现资源优化配置…

虚拟主机 克隆机 域名解析

以下情况的处理&#xff1a; [rootlocalhost ~]# yum repolist Loaded plugins: fastestmirror, langpacks Existing lock /var/run/yum.pid: another copy is running as pid 2729. Another app is currently holding the yum lock; waiting for it to exit… The other appli…

<计算机网络自顶向下>

在计算机网络中&#xff0c;网络层包括数据平面和控制平面&#xff0c;它们分别负责网络数据转发和网络路由控制。以下是它们之间的区别&#xff1a; 数据平面&#xff08;Data Plane&#xff09;&#xff1a; 数据平面负责实际的数据传输和转发&#xff0c;它处理网络中的数据…

1593. 拆分字符串使唯一子字符串的数目最大

1593. 拆分字符串使唯一子字符串的数目最大 Java: class Solution {int cnt;int max;Set<String> set;private void dfs(String s, int pos, int len) {if (pos len) {max Math.max(max, cnt);return;}for(int i pos; i < len; i) {String s1 s.substring(pos, i…

制作一个RISC-V的操作系统十三-抢占式多任务和兼容协作式多任务

文章目录 强占式多任务流程代码具体流程兼容协作式多任务&#xff08;软中断&#xff09;寄存器 msip流程代码结果 强占式多任务 流程 抢占式多任务由计时器中断触发&#xff0c;最后在处理程序中切换到下一个进程 代码具体流程 上下文中增加pc寄存器 寄存器保留上下文和切…

npm、yarn与pnpm详解

&#x1f525; npm、yarn与pnpm详解 &#x1f516; 一、npm &#x1f50d; 简介&#xff1a; npm是随Node.js一起安装的官方包管理工具&#xff0c;它为开发者搭建了一个庞大的资源库&#xff0c;允许他们在这个平台上搜索、安装和管理项目所必需的各种代码库或模块。 &#…

借鉴行业巨头,构建策划知识体系,助你成为下一个营销天才

策划是一门理论与实践结合的学问&#xff0c;而策划人需要将理论和实践有机的结合起来&#xff0c;才能实现策划理论知识与实际操作相结合的目的。 很多策划人并不会系统的学习策划知识体系&#xff0c;只是将学到的理论知识碎片化的了解一下&#xff0c;如果没有完整的理论体…

[巅峰极客 2022]smallcontainer

这题我认为是比较有思考意义的。 版本是2.27&#xff0c;有tcachebin&#xff0c;但大部分安全检测都没有。 直接看add函数。 不能得到fastbin&#xff0c;也不能直接0x410分配到unsortedbin了&#xff0c;并且最多同时存在16个chunk。 free后会把指针情况&#xff0c;没有ua…

【基于YOLOv8的森林烟雾火焰检测 附源码 数据集】

基于YOLOv8的森林烟雾火焰检测 附源码 数据集 在森林火灾的早期预防和控制中&#xff0c;森林烟雾火焰检测技术发挥着至关重要的作用。本技术通过先进的传感器和图像识别系统&#xff0c;实时监测森林区域中的烟雾和火焰异常&#xff0c;快速响应可能的火灾发生。森林烟雾火焰…

脚手架搭建项目package.json配置中依赖的版本问题

脚手架搭建项目package.json配置中依赖的版本问题 问题描述&#xff1a;项目刚搭建好&#xff0c;运行没有问题&#xff0c;为什么过一段时间&#xff0c;删除node_modules&#xff0c;或者重新安装包依赖&#xff0c;然后项目某些地方出现莫名的错误&#xff08;依赖库的地方…

【正则表达式】正则表达式基本语法元素

目录 字符类量词边界匹配逻辑和分组转义和特殊字符验证正则表达式是否能够成功提取数据 字符类 .&#xff1a;匹配除换行符之外的任何单个字符。 [abc]&#xff1a;匹配方括号内的任何字符。 [^abc]&#xff1a;匹配不在方括号内的任何字符。 [a-z]&#xff1a;匹配任何小写字…

威纶通软件安装(一步一步,包成功)

软件安装 &#xff08;安装之前建议关闭防火墙&#xff09; 威纶通官网 1&#xff0c;点击服务支持——>下载中心 小编建议下载新版低一个版本。 2&#xff0c;文件夹进行解压 3&#xff0c;安装文件 4&#xff0c;选择文件语言 5&#xff0c;进行向导安装&#xff08;下…

春秋云镜 CVE-2023-51048

靶标介绍&#xff1a; S-CMS v5.0 被发现存在SQLI。 开启靶场 根据题目查找S-CMS v5.0漏洞&#xff0c;百度没有查询到&#xff0c;使用必应搜索S-CMS v5.0 查找到githubCVE-2023-51052的描述 S-CMS v5.0 was discovered to contain a SQL injection... CVE-2023-51052 Git…