TensorRT plugins and ONNX parser编译

news2024/11/17 9:56:19

https://github.com/NVIDIA/TensorRT是TensorRT plugins and ONNX parser,并不包含TensorRT的nvinfer库(libinfer.sonvinfer.dll),此部分并未开源,只能使用官方支持的平台、环境https://developer.nvidia.com/tensorrt/download/10x。
在这里插入图片描述

编译https://github.com/NVIDIA/TensorRT只能生成libnvinfer_plugin.solibnvinfer_vc_plugin.solibnvonnxparser.so。详见编译的成果物:
在这里插入图片描述
具体说明如官方介绍:
This repository contains the Open Source Software (OSS) components of NVIDIA TensorRT. It includes the sources for TensorRT plugins and ONNX parser, as well as sample applications demonstrating usage and capabilities of the TensorRT platform. These open source software components are a subset of the TensorRT General Availability (GA) release with some extensions and bug-fixes.

1. TensorRT plugins and ONNX parser编译

​git clone --recursive https://github.com/NVIDIA/TensorRT
注意加--recursive,否则TensorRT-10.0.0\parsers\onnxTensorRT-10.0.0\parsers\onnx\third_party\onnx下都是空的,还要再手动去github下载。
假设上述代码下载时完整的,编译的方法是修改CMakeLists.txt适配自己的硬件平台即可,当前使用的版本是v10.0.0。
如下是修改后的CMakeLists.txt

#
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

cmake_minimum_required(VERSION 3.13 FATAL_ERROR)
include(cmake/modules/set_ifndef.cmake)
include(cmake/modules/find_library_create_target.cmake)

set_ifndef(TRT_LIB_DIR ${CMAKE_BINARY_DIR})
set_ifndef(TRT_OUT_DIR ${CMAKE_BINARY_DIR})

# Converts Windows paths
if(CMAKE_VERSION VERSION_LESS 3.20)
    file(TO_CMAKE_PATH "${TRT_LIB_DIR}" TRT_LIB_DIR)
    file(TO_CMAKE_PATH "${TRT_OUT_DIR}" TRT_OUT_DIR)
else()
    cmake_path(SET TRT_LIB_DIR ${TRT_LIB_DIR})
    cmake_path(SET TRT_OUT_DIR ${TRT_OUT_DIR})
endif()

# Required to export symbols to build *.libs
if(WIN32)
    add_compile_definitions(TENSORRT_BUILD_LIB 1)
endif()

# Set output paths
set(RUNTIME_OUTPUT_DIRECTORY ${TRT_OUT_DIR} CACHE PATH "Output directory for runtime target files")
set(LIBRARY_OUTPUT_DIRECTORY ${TRT_OUT_DIR} CACHE PATH "Output directory for library target files")
set(ARCHIVE_OUTPUT_DIRECTORY ${TRT_OUT_DIR} CACHE PATH "Output directory for archive target files")

if(WIN32)
    set(STATIC_LIB_EXT "lib")
else()
    set(STATIC_LIB_EXT "a")
endif()

file(STRINGS "${CMAKE_CURRENT_SOURCE_DIR}/include/NvInferVersion.h" VERSION_STRINGS REGEX "#define NV_TENSORRT_.*")

foreach(TYPE MAJOR MINOR PATCH BUILD)
    string(REGEX MATCH "NV_TENSORRT_${TYPE} [0-9]+" TRT_TYPE_STRING ${VERSION_STRINGS})
    string(REGEX MATCH "[0-9]+" TRT_${TYPE} ${TRT_TYPE_STRING})
endforeach(TYPE)

set(TRT_VERSION "${TRT_MAJOR}.${TRT_MINOR}.${TRT_PATCH}" CACHE STRING "TensorRT project version")
set(ONNX2TRT_VERSION "${TRT_MAJOR}.${TRT_MINOR}.${TRT_PATCH}" CACHE STRING "ONNX2TRT project version")
set(TRT_SOVERSION "${TRT_MAJOR}" CACHE STRING "TensorRT library so version")
message("Building for TensorRT version: ${TRT_VERSION}, library version: ${TRT_SOVERSION}")

if(NOT DEFINED CMAKE_TOOLCHAIN_FILE)
    find_program(CMAKE_CXX_COMPILER NAMES $ENV{CXX} g++)
endif()

set(CMAKE_SKIP_BUILD_RPATH True)

project(TensorRT
        LANGUAGES CXX CUDA
        VERSION ${TRT_VERSION}
        DESCRIPTION "TensorRT is a C++ library that facilitates high-performance inference on NVIDIA GPUs and deep learning accelerators."
        HOMEPAGE_URL "https://github.com/NVIDIA/TensorRT")

if(CMAKE_INSTALL_PREFIX_INITIALIZED_TO_DEFAULT)
  set(CMAKE_INSTALL_PREFIX ${TRT_LIB_DIR}/../ CACHE PATH "TensorRT installation" FORCE)
endif(CMAKE_INSTALL_PREFIX_INITIALIZED_TO_DEFAULT)

option(BUILD_PLUGINS "Build TensorRT plugin" ON)
option(BUILD_PARSERS "Build TensorRT parsers" ON)
option(BUILD_SAMPLES "Build TensorRT samples" ON)

# C++14
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)

if(NOT MSVC)
    set(CMAKE_CXX_FLAGS "-Wno-deprecated-declarations ${CMAKE_CXX_FLAGS} -DBUILD_SYSTEM=cmake_oss")
else()
    set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DBUILD_SYSTEM=cmake_oss")
endif()

############################################################################################
# Cross-compilation settings

set(TRT_PLATFORM_ID aarch64)        # added by garrylau,参考自己设备的架构,对于NVIDIA tegra可安装jtop之后在”7INFO“中查看
set_ifndef(TRT_PLATFORM_ID "x86_64")
message(STATUS "Targeting TRT Platform: ${TRT_PLATFORM_ID}")

############################################################################################
# Debug settings

set(TRT_DEBUG_POSTFIX _debug CACHE STRING "suffix for debug builds")

if (CMAKE_BUILD_TYPE STREQUAL "Debug")
    message("Building in debug mode ${DEBUG_POSTFIX}")
endif()

############################################################################################
# Dependencies

#set(DEFAULT_CUDA_VERSION 12.2.0)        # added by garrylau,参考自己本地CUDA的版本
#set(DEFAULT_CUDNN_VERSION 8.9)          # added by garrylau,参考自己本地cudnn的版本
set(DEFAULT_CUDA_VERSION 11.4.239)
set(DEFAULT_CUDNN_VERSION 8.4.1)
set(DEFAULT_PROTOBUF_VERSION 3.20.1)



# Dependency Version Resolution
set_ifndef(CUDA_VERSION ${DEFAULT_CUDA_VERSION})
message(STATUS "CUDA version set to ${CUDA_VERSION}")
set_ifndef(CUDNN_VERSION ${DEFAULT_CUDNN_VERSION})
message(STATUS "cuDNN version set to ${CUDNN_VERSION}")
set_ifndef(PROTOBUF_VERSION ${DEFAULT_PROTOBUF_VERSION})
message(STATUS "Protobuf version set to ${PROTOBUF_VERSION}")

set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
if (BUILD_PLUGINS OR BUILD_PARSERS)
    include(third_party/protobuf.cmake)
endif()
if(NOT CUB_ROOT_DIR)
  if (CUDA_VERSION VERSION_LESS 11.0)
    set(CUB_ROOT_DIR ${CMAKE_CURRENT_SOURCE_DIR}/third_party/cub CACHE STRING "directory of CUB installation")
  endif()
endif()

## find_package(CUDA) is broken for cross-compilation. Enable CUDA language instead.
if(NOT DEFINED CMAKE_TOOLCHAIN_FILE)
    find_package(CUDA ${CUDA_VERSION} REQUIRED)
endif()

include_directories(
    ${CUDA_INCLUDE_DIRS}
)
if(BUILD_PARSERS)
    configure_protobuf(${PROTOBUF_VERSION})
endif()

find_library_create_target(nvinfer nvinfer SHARED ${TRT_LIB_DIR})

find_library(CUDART_LIB cudart_static HINTS ${CUDA_TOOLKIT_ROOT_DIR} PATH_SUFFIXES lib lib/x64 lib64)

if (NOT MSVC)
    find_library(RT_LIB rt)
endif()

set(CUDA_LIBRARIES ${CUDART_LIB})

############################################################################################
# CUDA targets

set(GPU_ARCHS 72)  # added by garrylau,参考自己设备的CUDA Arch BIN,对于NVIDIA tegra可安装jtop之后在”7INFO“中查看
if (DEFINED GPU_ARCHS)
  message(STATUS "GPU_ARCHS defined as ${GPU_ARCHS}. Generating CUDA code for SM ${GPU_ARCHS}")
  separate_arguments(GPU_ARCHS)
else()
  list(APPEND GPU_ARCHS
      70
      75
    )

  string(REGEX MATCH "aarch64" IS_ARM "${TRT_PLATFORM_ID}")

  if (CUDA_VERSION VERSION_GREATER_EQUAL 11.0)
    # Ampere GPU (SM80) support is only available in CUDA versions > 11.0
    list(APPEND GPU_ARCHS 80)
  endif()
  if (CUDA_VERSION VERSION_GREATER_EQUAL 11.1)
    list(APPEND GPU_ARCHS 86)
  endif()

  message(STATUS "GPU_ARCHS is not defined. Generating CUDA code for default SMs: ${GPU_ARCHS}")
endif()
set(BERT_GENCODES)
# Generate SASS for each architecture
foreach(arch ${GPU_ARCHS})
    if (${arch} GREATER_EQUAL 70)
        set(BERT_GENCODES "${BERT_GENCODES} -gencode arch=compute_${arch},code=sm_${arch}")
    endif()
    set(GENCODES "${GENCODES} -gencode arch=compute_${arch},code=sm_${arch}")
endforeach()

# Generate PTX for the last architecture in the list.
list(GET GPU_ARCHS -1 LATEST_SM)
set(GENCODES "${GENCODES} -gencode arch=compute_${LATEST_SM},code=compute_${LATEST_SM}")
if (${LATEST_SM} GREATER_EQUAL 70)
    set(BERT_GENCODES "${BERT_GENCODES} -gencode arch=compute_${LATEST_SM},code=compute_${LATEST_SM}")
endif()

if(NOT MSVC)
    set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --expt-relaxed-constexpr -Xcompiler -Wno-deprecated-declarations")
else()
    set(CMAKE_CUDA_SEPARABLE_COMPILATION ON)
    set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --expt-relaxed-constexpr -Xcompiler")
endif()

############################################################################################
# TensorRT

if(BUILD_PLUGINS)
    add_subdirectory(plugin)
else()
    find_library_create_target(nvinfer_plugin nvinfer_plugin SHARED ${TRT_OUT_DIR} ${TRT_LIB_DIR})
endif()

if(BUILD_PARSERS)
    add_subdirectory(parsers)
else()
    find_library_create_target(nvonnxparser nvonnxparser SHARED ${TRT_OUT_DIR} ${TRT_LIB_DIR})
endif()

if(BUILD_SAMPLES)
    add_subdirectory(samples)
endif()

如下是原版的CMakeLists.txt

#
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

cmake_minimum_required(VERSION 3.13 FATAL_ERROR)
include(cmake/modules/set_ifndef.cmake)
include(cmake/modules/find_library_create_target.cmake)

set_ifndef(TRT_LIB_DIR ${CMAKE_BINARY_DIR})
set_ifndef(TRT_OUT_DIR ${CMAKE_BINARY_DIR})

# Converts Windows paths
if(CMAKE_VERSION VERSION_LESS 3.20)
    file(TO_CMAKE_PATH "${TRT_LIB_DIR}" TRT_LIB_DIR)
    file(TO_CMAKE_PATH "${TRT_OUT_DIR}" TRT_OUT_DIR)
else()
    cmake_path(SET TRT_LIB_DIR ${TRT_LIB_DIR})
    cmake_path(SET TRT_OUT_DIR ${TRT_OUT_DIR})
endif()

# Required to export symbols to build *.libs
if(WIN32)
    add_compile_definitions(TENSORRT_BUILD_LIB 1)
endif()

# Set output paths
set(RUNTIME_OUTPUT_DIRECTORY ${TRT_OUT_DIR} CACHE PATH "Output directory for runtime target files")
set(LIBRARY_OUTPUT_DIRECTORY ${TRT_OUT_DIR} CACHE PATH "Output directory for library target files")
set(ARCHIVE_OUTPUT_DIRECTORY ${TRT_OUT_DIR} CACHE PATH "Output directory for archive target files")

if(WIN32)
    set(STATIC_LIB_EXT "lib")
else()
    set(STATIC_LIB_EXT "a")
endif()

file(STRINGS "${CMAKE_CURRENT_SOURCE_DIR}/include/NvInferVersion.h" VERSION_STRINGS REGEX "#define NV_TENSORRT_.*")

foreach(TYPE MAJOR MINOR PATCH BUILD)
    string(REGEX MATCH "NV_TENSORRT_${TYPE} [0-9]+" TRT_TYPE_STRING ${VERSION_STRINGS})
    string(REGEX MATCH "[0-9]+" TRT_${TYPE} ${TRT_TYPE_STRING})
endforeach(TYPE)

set(TRT_VERSION "${TRT_MAJOR}.${TRT_MINOR}.${TRT_PATCH}" CACHE STRING "TensorRT project version")
set(ONNX2TRT_VERSION "${TRT_MAJOR}.${TRT_MINOR}.${TRT_PATCH}" CACHE STRING "ONNX2TRT project version")
set(TRT_SOVERSION "${TRT_MAJOR}" CACHE STRING "TensorRT library so version")
message("Building for TensorRT version: ${TRT_VERSION}, library version: ${TRT_SOVERSION}")

if(NOT DEFINED CMAKE_TOOLCHAIN_FILE)
    find_program(CMAKE_CXX_COMPILER NAMES $ENV{CXX} g++)
endif()

set(CMAKE_SKIP_BUILD_RPATH True)

project(TensorRT
        LANGUAGES CXX CUDA
        VERSION ${TRT_VERSION}
        DESCRIPTION "TensorRT is a C++ library that facilitates high-performance inference on NVIDIA GPUs and deep learning accelerators."
        HOMEPAGE_URL "https://github.com/NVIDIA/TensorRT")

if(CMAKE_INSTALL_PREFIX_INITIALIZED_TO_DEFAULT)
  set(CMAKE_INSTALL_PREFIX ${TRT_LIB_DIR}/../ CACHE PATH "TensorRT installation" FORCE)
endif(CMAKE_INSTALL_PREFIX_INITIALIZED_TO_DEFAULT)

option(BUILD_PLUGINS "Build TensorRT plugin" ON)
option(BUILD_PARSERS "Build TensorRT parsers" ON)
option(BUILD_SAMPLES "Build TensorRT samples" ON)

# C++14
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)

if(NOT MSVC)
    set(CMAKE_CXX_FLAGS "-Wno-deprecated-declarations ${CMAKE_CXX_FLAGS} -DBUILD_SYSTEM=cmake_oss")
else()
    set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DBUILD_SYSTEM=cmake_oss")
endif()

############################################################################################
# Cross-compilation settings

set_ifndef(TRT_PLATFORM_ID "x86_64")
message(STATUS "Targeting TRT Platform: ${TRT_PLATFORM_ID}")

############################################################################################
# Debug settings

set(TRT_DEBUG_POSTFIX _debug CACHE STRING "suffix for debug builds")

if (CMAKE_BUILD_TYPE STREQUAL "Debug")
    message("Building in debug mode ${DEBUG_POSTFIX}")
endif()

############################################################################################
# Dependencies

set(DEFAULT_CUDA_VERSION 12.2.0)
set(DEFAULT_CUDNN_VERSION 8.9)
set(DEFAULT_PROTOBUF_VERSION 3.20.1)

# Dependency Version Resolution
set_ifndef(CUDA_VERSION ${DEFAULT_CUDA_VERSION})
message(STATUS "CUDA version set to ${CUDA_VERSION}")
set_ifndef(CUDNN_VERSION ${DEFAULT_CUDNN_VERSION})
message(STATUS "cuDNN version set to ${CUDNN_VERSION}")
set_ifndef(PROTOBUF_VERSION ${DEFAULT_PROTOBUF_VERSION})
message(STATUS "Protobuf version set to ${PROTOBUF_VERSION}")

set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
if (BUILD_PLUGINS OR BUILD_PARSERS)
    include(third_party/protobuf.cmake)
endif()
if(NOT CUB_ROOT_DIR)
  if (CUDA_VERSION VERSION_LESS 11.0)
    set(CUB_ROOT_DIR ${CMAKE_CURRENT_SOURCE_DIR}/third_party/cub CACHE STRING "directory of CUB installation")
  endif()
endif()

## find_package(CUDA) is broken for cross-compilation. Enable CUDA language instead.
if(NOT DEFINED CMAKE_TOOLCHAIN_FILE)
    find_package(CUDA ${CUDA_VERSION} REQUIRED)
endif()

include_directories(
    ${CUDA_INCLUDE_DIRS}
)
if(BUILD_PARSERS)
    configure_protobuf(${PROTOBUF_VERSION})
endif()

find_library_create_target(nvinfer nvinfer SHARED ${TRT_LIB_DIR})

find_library(CUDART_LIB cudart_static HINTS ${CUDA_TOOLKIT_ROOT_DIR} PATH_SUFFIXES lib lib/x64 lib64)

if (NOT MSVC)
    find_library(RT_LIB rt)
endif()

set(CUDA_LIBRARIES ${CUDART_LIB})

############################################################################################
# CUDA targets

if (DEFINED GPU_ARCHS)
  message(STATUS "GPU_ARCHS defined as ${GPU_ARCHS}. Generating CUDA code for SM ${GPU_ARCHS}")
  separate_arguments(GPU_ARCHS)
else()
  list(APPEND GPU_ARCHS
      70
      75
    )

  string(REGEX MATCH "aarch64" IS_ARM "${TRT_PLATFORM_ID}")

  if (CUDA_VERSION VERSION_GREATER_EQUAL 11.0)
    # Ampere GPU (SM80) support is only available in CUDA versions > 11.0
    list(APPEND GPU_ARCHS 80)
  endif()
  if (CUDA_VERSION VERSION_GREATER_EQUAL 11.1)
    list(APPEND GPU_ARCHS 86)
  endif()

  message(STATUS "GPU_ARCHS is not defined. Generating CUDA code for default SMs: ${GPU_ARCHS}")
endif()
set(BERT_GENCODES)
# Generate SASS for each architecture
foreach(arch ${GPU_ARCHS})
    if (${arch} GREATER_EQUAL 70)
        set(BERT_GENCODES "${BERT_GENCODES} -gencode arch=compute_${arch},code=sm_${arch}")
    endif()
    set(GENCODES "${GENCODES} -gencode arch=compute_${arch},code=sm_${arch}")
endforeach()

# Generate PTX for the last architecture in the list.
list(GET GPU_ARCHS -1 LATEST_SM)
set(GENCODES "${GENCODES} -gencode arch=compute_${LATEST_SM},code=compute_${LATEST_SM}")
if (${LATEST_SM} GREATER_EQUAL 70)
    set(BERT_GENCODES "${BERT_GENCODES} -gencode arch=compute_${LATEST_SM},code=compute_${LATEST_SM}")
endif()

if(NOT MSVC)
    set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --expt-relaxed-constexpr -Xcompiler -Wno-deprecated-declarations")
else()
    set(CMAKE_CUDA_SEPARABLE_COMPILATION ON)
    set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --expt-relaxed-constexpr -Xcompiler")
endif()

############################################################################################
# TensorRT

if(BUILD_PLUGINS)
    add_subdirectory(plugin)
else()
    find_library_create_target(nvinfer_plugin nvinfer_plugin SHARED ${TRT_OUT_DIR} ${TRT_LIB_DIR})
endif()

if(BUILD_PARSERS)
    add_subdirectory(parsers)
else()
    find_library_create_target(nvonnxparser nvonnxparser SHARED ${TRT_OUT_DIR} ${TRT_LIB_DIR})
endif()

if(BUILD_SAMPLES)
    add_subdirectory(samples)
endif()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1619870.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【打工日常】云原生之使用Docker部署开源云笔记工具Leanote

一、Leanote蚂蚁笔记介绍 1.Leanote简介 Leanote 蚂蚁笔记是一款国产开源的私有云笔记工具。它支持普通格式笔记、Markdown语法、专业数学公式编辑、和思维导图,并且支持vim&emacs等编辑模式。 2.Leanote功能 拥有Markdown 语法支持、无干扰写作模式、Vim和Ema…

值传递和地址传递

文章目录 目录值传递地址传递 目录 值传递 package com.zhang.parameter; //值传递 public class MethodDemo1 {public static void main(String[] args) {int a 10;System.out.println(a);System.out.println("~~~~~~~~~~~~~~~");change(a);//无论你传入的是什么 …

el-select下拉框远程搜索且多选时,编辑需要回显的一个简单案例

前端业务开发中不管使用vue2~3,还是react,angular各种前端技术栈,经常会遇到这种业务。一个下拉框Select中,不仅需要需要支持远程模糊搜索,还需要支持多选。并且在编辑时,还能正常把已经多选好的内容回显到…

租房管理|基于SprinBoot+vue的租房管理系统(源码+数据库+文档)

租房管理目录 基于SprinBootvue的租房管理系统 一、前言 二、系统设计 三、系统功能设计 前台 后台 管理员 订单信息管理 屋主申诉管理 屋主权限 房源信息管理 订单信息管理 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获…

微信小程序开发工具的使用,各个配置文件详解,小程序开发快速入门

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…

wfs 文件存储系统 v1.0.5

前言:wfs 是高性能海量小文件存储系统 ,支持Linux,Windows,Macos,FreeBSD等系统, 可以高效地进行文件存储和读取。wfs 支持文件压缩归档,并提供简洁的数据读取方式和文件后台管理和 以及归档文件…

STM32学习和实践笔记(14):按键控制实验

消除抖动有软件和硬件两种方法 软件方法就是在首次检测到低电平时加延时,通常延时5-10ms,让抖动先过去,然后再来检测是否仍为低电平,如果仍然是,说明确实按下。 硬件方法就是加RC滤波电路,硬件方法会增加…

SystemUI GlobalActions plugin解析

com.android.systemui.action.PLUGIN_GLOBAL_ACTIONS 系统的默认实现为GlobalActionsImpl: 是谁发送了showShutdownUi指令? GlobalActionsImpl 是通过inject的方式创建的 GlobalActionsComponent是一个system UI services,配置在config.xml中&#xff…

架构师系列-Nginx、OpenResty(一)- 基本使用配置

Nginx 模块 高度模块化的设计是 Nginx 的架构基础,Nginx 服务器被分解为多个模块,每个模块就是一个功能模块,只负责自身的功能,模块之间严格遵循“高内聚,低耦合”的原则。 核心模块 核心模块是 Nginx 服务器正常运行…

vue2项目升级到vue3经历分享

依据vue官方文档,vue2在2023年12月31日终止维护。因此决定将原来的岁月云记账升级到vue3,预计工作量有点大,于是想着把过程记录下来。 原系统使用的技术栈 "dependencies": {"axios": "^0.21.1","babel-…

博士困境::博士毕业出路何在

::: block-1 “时问桫椤”是一个致力于为本科生到研究生教育阶段提供帮助的不太正式的公众号。我们旨在在大家感到困惑、痛苦或面临困难时伸出援手。通过总结广大研究生的经验,帮助大家尽早适应研究生生活,尽快了解科研的本质。祝一切顺利!—…

Windows 搭建自己的大模型-通义千问

1、安装 pytorch https://pytorch.org/get-started/locally/ 点击进入官网,如图选择自己的环境得到pip安装依赖的命令: pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu 2、拉取代码并安…

欢乐钓鱼大师一键钓鱼,解放双手!

《钓鱼欢乐大师》是一款让玩家体验钓鱼乐趣的游戏,在游戏中,玩家可以通过技巧和策略钓到各种各样的鱼。为了提高钓鱼效率,让玩家更快地钓到大鱼,下面将介绍如何利用脚本来优化游戏体验。 第一步:准备工作 创建云机&…

开源贡献代码之​探索一下Cython

探索一下Cython 本篇文章将会围绕最近给Apache提的一个feature为背景,展开讲讲Cython遇到的问题,以及尝试自己从0写一个库出来,代码也已经放星球了,感兴趣的同学可以去下载学习。 0.背景 最近在给apache arrow提的一个feature因为…

在win下,python如何调用.so库

#撰写c代码 #通过gcc命令编译成.so库 gcc -shared -o ./lib/pointlib.so point.c #python调用.so库 #运行结果

聊聊 Linux iowait

哈喽大家好,我是咸鱼。 我们在使用 top 命令来查看 Linux 系统整体 CPU 使用情况的时候,往往看的是下面这一列: %Cpu(s): 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 68.0 wa, 0.0 hi, 0.0 si, 0.0 st其中,man 手册解释 wa 表示 …

什么是大语言模型以及如何构建自己的大型语言模型?

一、关于大语言模型 LLM 对于无数的应用程序非常有用,如果我们自己从头开始构建一个,那我们可以了解底层的ML技术,并可以根据特定需求定制LLM,但是对资源的需求巨大。大型语言模型是一种 ML 模型,可以执行各种自然语言…

C语言 三目运算符

C语言 逻辑分支语句中 还有一种 三目运算符 我们编写代码如下 #include <stdio.h>int main() {const char* a 1 1 ? "表达式1" : "表达式2";printf("%s", a);return 0; }这里 我们根据逻辑 先定义一个a 然后 它的值 等于一个 三目运算…

CSS动画(css、js动画库:各种动画效果)

第一种方法&#xff1a;文字从上到下显示动画&#xff1b; <div class"text-container"><div class"text">文字从上到下显示</div></div><style scoped> /*确保 keyframes 规则在引用它的任何选择器之前定义&#xff0c;以避…

Centos之yum安装好玩的命令

1.会动的小火车 我在root下使用的 yum install sl.x86_64sl2.figlet yum install figlet.x86_64figlet 55553.cowsay会说话 yum install cowsay