【数据结构(邓俊辉)学习笔记】绪论03——递归分析

news2024/11/16 3:13:33

文章目录

  • 意图
  • 目标
  • 1. 线性递归
    • 数组求和
    • 线性递归
    • 减而治之
  • 2. 递归分析
    • 递归跟踪
    • 递推方程
    • 典型递推方程
  • 3. 递归模式
    • 多递归基
    • 多向递归
  • 4. 递归消除
    • 空间成本
    • 尾递归及其消除
  • 5. 二分递归
    • 分而治之
    • 数组求和
  • 6 . 效率
  • 7. 算法设计优化总结
    • 前n项计算算法

意图

数据结构中经常用到递归,递归分析和优化也是必要的,记录下递归分析

目标

  • 理解不同递归形式(线性递归、二分递归和多分支递归等),如何选择应用以实现(遍历、分治等)算法策略。
  • 利用递归跟踪和递推方程等方法分析递归算法的复杂度。

1. 线性递归

数组求和

//逐一取出每个元素,累加之
int sum ( int A[], int n ) { //数组求和算法(线性递归版)
	if ( 1 > n ) //平凡情况,递归基
		return 0; //直接(非递归式)计算
	else //一般情冴
		return sum ( A, n - 1 ) + A[n - 1]; //递归:前n - 1项求和,再累计第n - 1项
} //O(1)*递归深度 = O(1)*(n + 1) = O(n)
  • 无论A[]内容如何,都有
    T(n) = 1 + n*1 + 1 = n + 2 =O(n) = Ω(n) = Θ(n)

  • 递归必须得有个出口,不能无限递归

首先判断并处理n = 0之类的平凡情况,以免因无限递归而导致系统溢出。这类平凡情况统称“递归基”。平凡情况可能有多种,但至少要有一种(比如此处),且迟早必然会出现

线性递归

算法sum()可能朝着更深一层进行自我调用,且每一递归实例对自身的调用至多一次。于是,每一层次上至多只有一个实例,且它们构成一个线性的次序关系。此类递归模式因而称作“线性递归”。

减而治之

线性递归的模式,往往对应于所谓减而治之的算法策略。
在这里插入图片描述

2. 递归分析

递归跟踪与递推方程分析递归算法时间和空间复杂度。

递归跟踪

递归跟踪可用以分析递归算法的总体运行时间与空间。
分析原则:

  1. 算法的每一递归实例都表示为一个方框,其中注明了该实例调用的参数
  2. 若实例M调用实例N,则在M与N对应的方框之间添加一条有向联线
    在这里插入图片描述

递推方程

输入规模较为有限使用递归跟踪以图形化形式表现较为直观。当输入规模较大时,使用另一常用分析方法,即递推方程。

该方法无需绘出具体的调用过程,而是通过对递归模式的数学归纳,导出复杂度定界函数的递推方程(组)及其边界条件,从而将复杂度的分析,转化为递归方程(组)的求解。

书上有个求解思路,原话为:
在总体思路上,该方法与微分方程法颇为相似:很多复杂函数的显式表示通常不易直接获得,但是它们的微分形式却往往遵循某些相对简洁的规律,通过求解描述这些规律的一组微分方程,即可最终导出原函数的显式表示。微分方程的解通常并不唯一,除非给定足够多的边界条件。类似地,为使复杂度定界函数的递推方程能够给出确定的解,也需要给定某些边界条件。这类边界条件往往可以通过对递归基的分析而获得。

sum()算法递归方程求解
在这里插入图片描述
我试着从微分方程角度解释求解过程

T(n) = T(n - 1) + O(1) = T(n - 1) + c1, 其中c1为常数
T(0) = O(1) = c2, 其中c2为常数
微分方程角度看
Δ y Δ x \frac {\Delta y}{\Delta x} ΔxΔy = T ( n ) − T ( n − 1 ) n − ( n − 1 ) \frac {T(n) - T(n-1)}{n - (n- 1)} n(n1)T(n)T(n1) = c1
y ′ y' y = c1
y = c1x + c
因为 T(0) = O(1) = c2
所以 c = c2
即 y = c1x + c2
综上
T(n) = c1n + c2 = O(n)

空间复杂度

设采用该算法对长度为n的数组统计总和,所需空间量为S(n)
S(1) = O(1)
S(n) = S(n - 1) + O(1)
两式联合求解即得:
S(n) = O(n)

典型递推方程

在这里插入图片描述

3. 递归模式

多递归基

为保证有穷性,递归算法都必须设置递归基,且确保总能执行到。故同一算法的递归基可能(显式或隐式地)不止一个。
无论何种实现,均由如下reverse()函数作为统一的启动入口。

void reverse ( int*, int, int ); //重载的倒置算法原型
void reverse ( int* A, int n ) //数组倒置(算法的初始入口,调用的可能是reverse()的递归版或迭代版)
{ reverse ( A, 0, n - 1 ); } //由重载的入口启动递归或迭代算法

在这里插入图片描述
为得到整个数组的倒置,可以先对换其首、末元素,然后递归地倒置除这两个元素以外的部分。按照这一思路,通过递归跟踪可以证明,其时间复杂度为O(n)。

void reverse ( int* A, int lo, int hi ) { //数组倒置(多递归基递归版)
	if ( lo < hi ) {
		swap ( A[lo], A[hi] ); //交换A[lo]和A[hi]
		reverse ( A, lo + 1, hi - 1 ); //递归倒置A(lo, hi)
	} //else隐含了两种递归基 lo == hi lo > hi
} //O(hi - lo + 1)

算法复杂度
在这里插入图片描述
每递归深入一层,入口参数lo和hi之间的差距必然缩小2,因此递归深度(亦即时间复杂度)为:
(hi - lo) / 2 = n/2 = O(n)

多向递归

不仅递归基可能有多个,递归调用也可能有多种可供选择的分支。每一递归实例虽有多个可能的递归方向,但只能从中选择其一,故各层次上的递归实例依然构成一个线性次序关系,这种情况依然属于线性递归。
在数据结构(邓俊辉)学习笔记1-2—复杂度分析中求解幂函数 2 n 2^n 2n算法,复杂度是T( r) = O( 2 r 2^r 2r),这里使用递归实现。
在这里插入图片描述
在这里插入图片描述
我理解这样没计算一次,数据长度都会缩小一半

inline __int64 sqr ( __int64 a ) { return a * a; } //平方:若是连续执行,很快就会数值溢出!
__int64 power2 ( int n ) { //幂函数2^n算法(优化递归版),n >= 0
   if ( 0 == n ) return 1; //递归基;否则,视n的奇偶分别递归
   return ( n & 1 ) ? sqr ( power2 ( n >> 1 ) ) << 1 : sqr ( power2 ( n >> 1 ) );
} //O(logn) = O(r),r为输入指数n的比特位数

在这里插入图片描述
power2()算法的递归跟踪过程,如图所示。类似地也可看出,每递归深入一层,入口参数n即缩小一半,因此递归深度(亦即时间复杂度)应为
l o g 2 n log_2n log2n = O(logn)
将参数n所对应二进制展开的宽度记作r = logn,则由图看出,每递归深入一层,r都会减一,因此递归深度(亦即时间复杂度)应为:
O( r ) = O(logn)

复杂度由O( 2 r 2^r 2r)到O( r )

4. 递归消除

空间成本

递归算法所消耗的空间量主要取决于递归深度,故较之同一算法的迭代版,递归版往往需耗费更多空间,并进而影响实际的运行速度。引入一个结论

若每个递归实例仅需使用常数规模的空间,则递归算法所需的空间总量将线性正比于最大 的递归深度。

尾递归及其消除

在线性递归算法中,若递归调用在递归实例中恰好以最后一步操作的形式出现,则称作尾递归。属于尾递归形式的算法,均可以简捷地转换为等效的迭代版本

reverse(A, lo, hi)算法为例

void reverse ( int* A, int lo, int hi ) { //数组倒置(规范整理之后的迭代版)
   while ( lo < hi ) //用while替换跳转标志和if,完全等效
      swap ( A[lo++], A[hi--] ); //交换A[lo]和A[hi],收缩待倒置区间
} //O(hi - lo + 1)

尾递归的判断应依据对算法实际执行过程的分析,而不仅仅是算法外在的语法形式。比如,递归语句出现在代码体的最后一行,并不见得就是尾递归;严格地说,只有当该算法(除平凡递归基外)任一实例都终止于这一递归调用时,才属于尾递归。

5. 二分递归

分而治之

在这里插入图片描述
将问题分解为若干规模更小的子问题,再通过递归机制分别求解。这种分解持续进行,直到子问题规模缩减至平凡情况。这也就是所谓的分而治之策略
通常都是将原问题一分为二,故称作“二分递归”。
无论是分解为两个还是更大常数个子问题,对算法总体的渐进复杂度并无实质影响。

数组求和

新算法的思路是:
以居中的元素为界将数组一分为二;递归地对子数组分别求和;最后,子数组之和相加即为原数
组的总和。
在这里插入图片描述

int sum ( int A[], int lo, int hi ) { //数组求和算法(二分递归版,入口为sum(A, 0, n - 1))
	if ( lo == hi ) //如遇递归(区间长度已降至1),则
		return A[lo]; //直接返回该元素
	else { //否则(一般情况下lo < hi),则
		int mi = ( lo + hi ) >> 1; //以居中单元为界,将原区间一分为二
		return sum ( A, lo, mi ) + sum ( A, mi + 1, hi ); //递归对各子数组求和,然后合计
	}
} //O(hi - lo + 1),线性正比于区间的长度

在这里插入图片描述算法启动后经连续m = l o g 2 n log_2n log2n次递归调用,数组区间的长度从最初的n首次缩减至1,并到达
第一个递归基。
在这里插入图片描述
在这里插入图片描述

刚到达任一递归基时,已执行的递归调用总是比递归返回多m = log2n次。其实换句话理解,若到达递归基,则执行了参数n的二进制位数 m = l o g 2 n m = log2n m=log2n次。
如上图,区间长度为8( l n g 2 8 lng_2 8 lng28 =3)当到达递归基时,调用堆栈看sum函数已经被调用3次。

在这里插入图片描述

到达区间长度为2^k的任一递归实例之前,已执行的递归调用总是比递归返回多m-k次。
如上图到达区间长度为2平方的实例,已执行的递归调用比返回多3-2=1次。

到达区间长度为2^k的任一递归实例之前,已执行的递归调用总是比递归返回多m-k次。

空间复杂度

鉴于每个递归实例仅需常数空间,故除数组本身所占的空间,该算法只需要O(m + 1) = O(logn)的附加空间。如上图所示区间长度为8,只需压栈3次。线性递归版sum()算法共需O(n)的附加空间,就这一点而言,新的二分递归版sum()算法有很大改进。

时间复杂度

与线性递归版sum()算法一样,此处每一递归实例中的非递归计算都只需要常数时间。递归实例共计2n - 1个,故新算法的运行时间为O(2n - 1) = O(n),与线性递归版相同。

6 . 效率

当然,并非所有问题都适宜于采用分治策略。实际上除了递归,此类算法的计算消耗主要来自两个方面。首先是子问题划分,即把原问题分解为形式相同、规模更小的多个子问题
为使分治策略真正有效,不仅必须保证以上两方面的计算都能高效地实现,还必须保证子问题之间相互独立(各子问题可独立求解,而无需借助其它子问题的原始数据或中间结果)。否则,或者子问题之间必须传递数据,或者子问题之间需要相互调用,无论如何都会导致时间和空间复杂度的无谓增加。

7. 算法设计优化总结

前n项计算算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1616470.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VScode配置MySQL

1、进入官网&#xff0c;下载MySQL 地址&#xff1a;dev.mysql.com/downloads/mysql/ ZIP方式下载&#xff0c;选择本地的路径进行解压。 2、配置环境变量 形如下方的路径&#xff1a; D:\software\Mysql\mysql-8.3.0-winx64\bin 即是解压位置后文件夹下的bin文件路径 3、初…

在 VSCode 中运行 C#

文章目录 1.为何选择VSCode而不是VS2.操作步骤2.1 安装.NET2.2 安装扩展插件2.2.1 C#2.2.2 Code Runner 3.新建工程HelloCsharp 1.为何选择VSCode而不是VS VS实在是太“重”了&#xff0c;如果只是写一些简单控制台程序进行调试&#xff0c;则完全没必要 2.操作步骤 2.1 安装…

【前端】vue3树形组件使用

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、树形组件简介二、树形组件使用三、总结 前言 随着开发语言及人工智能工具的普及&#xff0c;使得越来越多的人学习使用vue前端工具&#xff0c;本文主要是…

第十、十一章 折线图 + 地图 + 柱状图的绘制

第十章 折线图的绘制 官网&#xff1a;pyecharts - A Python Echarts Plotting Library built with love. 画廊官网&#xff1a;Document 懒人工具&#xff1a;懒人工具-手机APP工具下载-手机软件下载大全 - 173软件站 (ab173.com) 导学 json 定义 &#xff08;1&#xff…

Flask 数据库前后端交互案例-1

Flask 数据库前后端交互案例 目录结构templates目录base.htmlheader.htmlleft.html首页职员管理页面添加员工界面员工编辑页面员工详情界面 后台main.pyapp.pymodels.pyviews.py 数据库数据position.sqlperson.sqlpermission.sqldepartment.sql 目录结构 静态文件链接&#xff…

工装行业项目管理系统哪家好?找企智汇工程项目管理系统!

在工装行业&#xff0c;项目管理是至关重要的一环。好的项目管理系统能够提高工装企业的效率、降低成本、提升客户满意度。在这个竞争激烈的市场中&#xff0c;选择一款好的项目管理系统&#xff0c;对于企业的发展至关重要。 今天&#xff0c;我向大家介绍的是企智汇工程项目…

uniapp自定义顶部导航栏

首先uniapp获取设备信息&#xff1a;uni.getSystemInfo或uni.getSystemInfoSync&#xff0c;可用于设置顶部安全区 留一个设备安全区的位置哦 然后在pages.json文件里配置自定义导航栏 {"pages": [ //pages数组中第一项表示应用启动页&#xff0c;参考&#xff1a…

如何使用 ArcGIS Pro 快速为黑白地图配色

对于某些拍摄时间比较久远的地图&#xff0c;限于当时的技术水平只有黑白的地图&#xff0c;针对这种情况&#xff0c;我们可以通过现在的地图为该地图进行配色&#xff0c;这里为大家讲解一下操作方法&#xff0c;希望能对你有所帮助。 数据来源 教程所使用的数据是从水经微…

windows SDK编程 --- 消息(3)

前置知识 一、消息的分类 1. 鼠标消息 处理与鼠标交互相关的事件&#xff0c;比如移动、点击和滚动等。例如&#xff1a; WM_MOUSEMOVE: 当鼠标在窗口客户区内移动时发送。WM_LBUTTONDOWN: 当用户按下鼠标左键时发送。WM_LBUTTONUP: 当用户释放鼠标左键时发送。WM_RBUTTOND…

Cisco NX-OS Software Release 10.4(3)F - 网络操作系统软件

Cisco NX-OS Software Release 10.4(3)F - 网络操作系统软件 NX-OS 网络操作系统 请访问原文链接&#xff1a;Cisco NX-OS Software Release 10.4(3)F - 网络操作系统软件&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org Cisc…

K8s: Ingress对象, 创建Ingress控制器, 创建Ingress资源并暴露服务

Ingress对象 1 &#xff09;概述 Ingress 是对集群中服务的外部访问进行管理的 API 对象&#xff0c;典型的访问方式是 HTTPIngress-nginx 本质是网关&#xff0c;当你请求 abc.com/service/a, Ingress 就把对应的地址转发给你&#xff0c;底层运行了一个 nginx但 K8s 为什么不…

通义灵码牵手阿里云函数计算 FC ,打造智能编码新体验

通义灵码自成功入职阿里云后&#xff0c;其智能编程助手的角色除了服务于阿里云内部几万开发者&#xff0c;如今进一步服务函数计算 FC 产品开发者。近日&#xff0c;通义灵码正式进驻函数计算 FC WebIDE&#xff0c;让使用函数计算产品的开发者在其熟悉的云端集成开发环境中&a…

yolov5 的几个问题,讲的比较清楚

yolov5, 几个问题 【BCELoss】pytorch中的BCELoss理解 三个损失函数原理讲解 https://zhuanlan.zhihu.com/p/458597638 yolov5源码解析–输出 YOLOv5系列(十) 解析损失部分loss(详尽) 1、输入数据是 xywh, 针对原图的, 然后,变成 0-1, x/原图w, y/原图h, w/原图w, h/原图h,…

【Java网络编程】TCP通信(Socket 与 ServerSocket)和UDP通信的三种数据传输方式

目录 1、TCP通信 1.1、Socket 和 ServerSocket 1.3、TCP通信示例 2、UDP的三种通信&#xff08;数据传输&#xff09;方式 1、TCP通信 TCP通信协议是一种可靠的网络协议&#xff0c;它在通信的两端各建立一个Socket对象 通信之前要保证连接已经建立&#xff08;注意TCP是一…

从win10升级到win11后,安全中心没有病毒防护的解决办法

从win10升级到win11后&#xff0c;安全中心没有病毒防护的解决办法 问题就是Win11的安全中心打开没有病毒和威胁防护选项&#xff08;不装其它第三方防病毒软件的情况下&#xff09;。 这可能是因为注册表出了问题。 具体操作如下&#xff1a; 点击Windows左下角搜索栏&…

使用JavaScript及HTML、CSS完成秒表计时器

案例要求 1.界面为一个显示计时面板和三个按钮分别为:开始&#xff0c;暂停&#xff0c;重置 2.点击开始&#xff0c;面板开始计时&#xff0c; 3.点击暂停&#xff0c;面板停止 4.点击重置&#xff0c;计时面板重新为0 案例源码 <!DOCTYPE html> <html lang"…

echart-better基于最新的echarts5.5标题旋转功能

使用教程以及相关的echarts-better最新的包在这里&#xff1a;https://edu.csdn.net/course/detail/24569 echarts在侧边竖向展示标题&#xff0c;以及次标题 主标题和次标题进行旋转&#xff0c;适用于移动端或其他场景。

Azure AD统一认证及用户数据同步开发指导

本文主要目的为&#xff1a;指导开发者进行自有服务与Azure AD统一认证的集成&#xff0c;以及阐述云端用户数据同步的实现方案。本文除了会介绍必要的概念、原理、流程外&#xff0c;还会包含Azure门户设置说明&#xff0c;以及使用Fiddler进行全流程的实操验证&#xff0c;同…

.net core webapi 添加日志管理看板LogDashboard

.net core webapi 添加日志管理看板LogDashboard 添加权限管理&#xff1a; 我们用的是Nlog文件来配置 <?xml version"1.0" encoding"utf-8" ?> <nlog xmlns"http://www.nlog-project.org/schemas/NLog.xsd"xmlns:xsi"http:/…

CSS基础:浮动(float)的3种方式,清除浮动3种方式的详解

你好&#xff0c;我是云桃桃。 一个希望帮助更多朋友快速入门 WEB 前端的程序媛。 云桃桃-大专生&#xff0c;一枚程序媛&#xff0c;感谢关注。回复 “前端基础题”&#xff0c;可免费获得前端基础 100 题汇总&#xff0c;回复 “前端工具”&#xff0c;可获取 Web 开发工具合…