使用ax.quiver绘制二维箭头图
1. matplotlib的quiver函数的调用方式
quiver函数是axes类的成员函数,其基本调用方式为:
quiver([X, Y], U, V, [C], **kwargs)
[X,Y]
是箭头的位置,U,V
是箭头的方向,C
是箭头颜色。
具体而言,C
是一个与X,Y的尺寸相同的数组,每个元素记录与箭头颜色相关的值。这些值通过norm
和cmap
参数映射到真正的颜色值。设置了C
参数之后,color
参数不生效。
color
是直接设置箭头颜色的参数,若它为一个值,则表示所有箭头都是同一种色彩;也可以是与X,Y的尺寸相同的数组,记录每个箭头的颜色。
箭头方向参数angles
可以取'uv'
(默认)或'xy'
。'uv’表示箭头指向采用屏幕坐标系中的方向,与X,Y所在坐标系的定义无关;'xy’表示箭头方向在数据坐标系中,箭头从(x,y)指向(x+u,y+v)。
箭头的尺寸参数包括:
scale_unit
箭头长度的单位,可以取'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'
。例如,(u,v)=(1,0),scale
取1.0,当scale_unit
取’width’时,箭头的长度是轴的宽度;当scale_unit
取’height’时,箭头长度是轴的高度;
长度,用scale
参数来调节。若不设置scale
参数,则matplotlib自动调整所有箭头的长度;若设置scale
的值,值越小,箭头的显示越长。scale
取1时,箭头的长度等于U,V的计算值×scale_unit
通过下面的例子认识scale_units:
import matplotlib.pyplot as plt
ax.quiver(0,25,0.5,0,scale_units='width',scale=1.0, color='red')
ax.quiver(0,50,1,0,scale_units='width',scale=1.0, color='red')
ax.quiver(0,75,1.5,0,scale_units='width',scale=1.0, color='red')
ax.quiver(25,0,0,0.5,scale_units='height',scale=1.0, color='green')
ax.quiver(50,0,0,1,scale_units='height',scale=1.0, color='green')
ax.quiver(75,0,0,1.5,scale_units='height',scale=1.0, color='green')
ax.set_xlim(0,100)
ax.set_ylim(0,200)
ax.set_aspect(1)
plt.show()
运行上面的代码,会得到三根红色的水平箭头和三根绿色的垂直箭头。他们的长度分别是axes(坐标轴)的x范围和y范围的0.5倍、1倍和1.5倍。
通过下面的例子认识angles:
ax.quiver(50,50,0.5,0,scale_units='width',scale=1.0, color='red', label='Angles=uv')
ax.quiver(50,50,0.5,0,scale_units='width',scale=1.0, color='blue', angles='xy', label='Angles=xy')
ax.quiver(50,0,0,1,scale_units='height',scale=1.0, color='green')
ax.set_xlim(0,100)
ax.set_ylim(0,200)
ax.invert_xaxis()
ax.legend()
ax.set_aspect(1)
plt.show()
运行结果如图所示,其中红色箭头、绿色箭头为默认的angles参数的绘制效果;蓝色箭头为angles='xy’时的绘制效果,即箭头方向受数据坐标系影响;
1.1循环绘制与批量绘制
当我们有大量箭头想绘制时,一般会选择在for循环中不断调用quiver完成绘制。这种方式虽然便于理解,但是效率太低。当待绘制的箭头数量太多时(1,000,000量级以上),显示绘图结果的速度极慢。
循环绘制的代码如下:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
grid_cols=80
grid_rows=100
grid_u = np.random.randn(grid_rows, grid_cols)
grid_v = np.random.randn(grid_rows, grid_cols)
grid_val = np.sqrt(grid_u**2+grid_v**2)
jet_colormap = mpl.colormaps['jet']# 0 is blue and 1 is red.
# call quiver in the loop
ax = plt.axes()
for i in range(grid_rows):
for j in range(grid_cols):
ax.quiver(i,j,grid_u[i,j],grid_v[i,j],grid_val[i,j],scale=1, scale_units='xy',cmap=jet_colormap, norm=plt.Normalize(0.0,1.0))
ax.set_aspect(1)
plt.show()
所幸,quiver函数可以仅调用一次,批量绘制所有箭头数据,这样的速度会远远快于循环绘制。使用这种方式之前,需要实现把箭头数据整理到数组中。一般使用np.meshgrid来组织X,Y数据。
批量绘制的代码如下:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
grid_cols=80
grid_rows=100
grid_u = np.random.randn(grid_rows, grid_cols)
grid_v = np.random.randn(grid_rows, grid_cols)
grid_val = np.sqrt(grid_u**2+grid_v**2)
jet_colormap = mpl.colormaps['jet']# 0 is blue and 1 is red.
grid_x, grid_y = np.meshgrid(np.arange(grid_cols),np.arange(grid_rows))
ax.quiver(grid_x,grid_y,grid_u,grid_v,grid_val,scale=1,scale_units='xy', cmap=jet_colormap, norm=plt.Normalize(0.0,1.0))
ax.set_aspect(1)
plt.show()
分别运行它们,可以感受到绘制速度快慢。
1.2用colormap和Normalize函数来调节箭头颜色
Matplotlib库内置了一系列的颜色映射,包括亮度渐变色、冷暖过渡色、循环色等、如图所示:
如果想获得其中的'jet'
颜色映射,则:
import matplotlib as mpl
jet_colormap = mpl.colormaps['jet']
或者直接在需要颜色映射的地方调用,例如:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
grid_cols=80
grid_rows=100
grid_u = np.random.randn(grid_rows, grid_cols)*2
grid_v = np.random.randn(grid_rows, grid_cols)*2
grid_val = np.sqrt(grid_u**2+grid_v**2)
jet_colormap = mpl.colormaps['jet']
grid_x, grid_y = np.meshgrid(np.arange(grid_cols),np.arange(grid_rows))
ax = plt.axes()
ax.quiver(grid_x,grid_y,grid_u,grid_v,grid_val,scale=1,scale_units='xy', cmap='jet',#或cmap=jet_colormap,都对
norm=plt.Normalize(0.0,1.0))# 可以试试norm=plt.Normalize(0.0,4.0) norm=plt.Normalize(0.0,8.0)
plt.show()
上面的代码中,plt.Normalize(vmin, vmax,clip)函数将数据按照[vmin,vmax]线性地归化到[0,1]区间。对于超出[vmin,vmax]的数据,若clip值为False,则依然将这些数据按[vmin,vmax]->[0,1]的线性映射求得值;若clip值为True,则大于vmax的统一映射为1,小于vmin的值统一映射为0。
vmin, vmax缺省时,则根据给定数据计算最小值和最大值来初始化这两个值。代码如下:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
grid_cols=80
grid_rows=100
grid_u = np.random.randn(grid_rows, grid_cols)*2
grid_v = np.random.randn(grid_rows, grid_cols)*2
grid_val = np.sqrt(grid_u**2+grid_v**2)
jet_colormap = mpl.colormaps['jet']
grid_x, grid_y = np.meshgrid(np.arange(grid_cols),np.arange(grid_rows))
ax = plt.axes()
ax.quiver(grid_x,grid_y,grid_u,grid_v,grid_val,scale=1,scale_units='xy', cmap='jet',#或cmap=jet_colormap,都对
norm=plt.Normalize())#或norm=mpl.colors.LogNorm(1.0,10.0),对数标准化
plt.show()
了解更多可参考:
选择颜色映射
创建颜色映射
Matplotlib中的各种Normalize方法
2.用numpy的ma.masked_where过滤掉不希望绘制的箭头
有时,格网数据中存在我们不想绘制的箭头,例如值大于0.5的箭头,应该怎么做呢?第一反应写下来的代码如下所示:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
grid_cols=40
grid_rows=60
grid_u = np.random.randn(grid_rows, grid_cols)*2
grid_v = np.random.randn(grid_rows, grid_cols)*2
grid_val = np.sqrt(grid_u**2+grid_v**2)
jet_colormap = mpl.colormaps['jet']# 0 is blue and 1 is red.
# call quiver in the loop
ax = plt.axes()
for i in range(grid_rows):
for j in range(grid_cols):
if grid_val[i,j] < 0.5:# 仅绘制值小于0.5的箭头
ax.quiver(i,j,grid_u[i,j],grid_v[i,j],scale_units='xy',cmap=jet_colormap, width=0.003, headwidth = 0.003)
ax.set_aspect(1)# 设置x\y轴比例一致
plt.show()
这又回到逐个箭头调用quiver的龟速模式了!幸好,quiver函数支持输入masked_array
类型的数据,masked_array
中除了数据数组之外,还有一个标记是否mask的布尔类型数组,来标记某些数据元素。
如此一来,我们只需要在调用quiver之前,按照我们的标准调用np.ma.masked_where()
来标记不想绘制的箭头即可。
np.ma.masked_where(condition, a)
返回的是标记mask之后的数组,第一个参数condition
是条件数组,大小与a
一致,即满足这个条件的a
的元素被mask;第二个参数a
是输入的待标记数组。第三个参数copy
默认为Ture,返回a
的一个复制品,若为False,则返回a的一个视图(view)。
改进的代码如下:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
grid_cols=40
grid_rows=60
grid_u = np.random.randn(grid_rows, grid_cols)*2
grid_v = np.random.randn(grid_rows, grid_cols)*2
grid_val = np.sqrt(grid_u**2+grid_v**2)
jet_colormap = mpl.colormaps['jet']
# 过滤值大于0.5的箭头
grid_val = np.ma.masked_where(grid_val>0.5, grid_val)
# plus 0.5 to make the quiver start from center of a grid.
grid_x, grid_y = np.meshgrid(np.arange(grid_cols),np.arange(grid_rows))
# 一次性绘制所有箭头
ax = plt.axes()
ax.quiver(grid_x,grid_y,grid_u,grid_v,grid_val,scale=1,scale_units='xy', cmap=jet_colormap)
# 设置x\y轴比例一致
ax.set_aspect(1)
plt.show()
参考
使用quiver函数的其他高阶参数:
quiver绘制箭头进阶
matplotlib给出的箭头绘制示例代码:
quiver官方示例
关于使用numpy的masked_array来表达有标记的数组,可参考:
masked_where
Masked array operations