Flink面试(1)

news2024/11/18 16:49:33

1.Flink 的并行度的怎么设置的?

Flink设置并行度的几种方式

1.代码中设置setParallelism()

  全局设置:

1

env.setParallelism(3); 

  算子设置(部分设置):

1

sum(1).setParallelism(3)

2.客户端CLI设置(或webui直接输入数量):

1

./bin/flink run -p 3

 3.配置文件设置:

  修改配置文件设置/conf/flink-conf.yaml的parallelism.defaul数值

 4.最大并行度设置

  全局设置:

1

env.setMaxParallelism(n) 

   算子设置(部分设置):

1

sum(1).setMaxParallelism(n)

默认的最大并行度是近似于operatorParallelism + (operatorParallelism / 2),下限是127,上线是32768. 

总结:Flink并行度配置级别 算子>全局env>客户端CLI>配置文件 。

2.介绍一下 Flink 作业中的 DataStream,Transformation?

Flink 作业中,包含两个基本的块:数据流(DataStream)和 转换(Transformation)。

DataStream 是逻辑概念,为开发者提供 API 接口,Transformation 是处理行为的抽象,包含了数据的读取、计算、写出。所以 Flink 作业中的 DataStream API 调用,实际上构建了多个由 Transformation 组成的数据处理流水线(Pipeline)。

DataStream API 和 Transformation 的转换如下图:

3. Flink 的分区策略了解吗?

数据分区 在 Flink 中叫作 Partition。本质上来说,分布式计算就是把 一个作业 切分成子任务 Task, 将不同的数据交给不同的 Task 计算。

在分布式存储中, Partition 分区的概念就是把数据集切分成块,每一块数据存储在不同的机器上。同样 ,对于分布式计算引擎,也需要将数据切分,交给位于不同物理节点上的 Task 计算。

StreamPartitioner 是 Flink 中的数据流分区抽象接口,决定了在实际运行中的数据流分发模式, 将数据切分交给 Task 计算,每个 Task 负责计算一部分数据流。所有的数据分区器都实现了ChannelSelector 接口,该接口中定义了负载均衡选择行为。

// ChannelSelector 接口定义
public interface ChannelSelector<T extends IOReadablewritable> { 
    //下游可选 Channel 的数量
    void setup (intnumberOfChannels); 
    //选路方法
    int selectChannel (T record); 
    //是否向下游广播
    boolean isBroadcast();
 }

在该接口中可以看到,每一个分区器都知道下游通道数量,该通道在一次作业运行中是固定的,除非修改作业的并行度,否则该值不会改变。

目前 Flink 支持 8 88 种分区策略的实现,数据分区体系如下图:

(1)GlobalPartitioner

数据会被分发到下游算子的第一个实例中进行处理。

(2)ForwardPartitioner

在 API 层面上 ForwardPartitioner 应用在 DataStream 上,生成一个新的 DataStream。

该 Partitioner 比较特殊,用于在同一个 OperatorChain 中上下游算子之间的数据转发,实际上数据是直接传递给下游的,要求上下游并行度一样。

(3)ShufflePartitioner

随机的将元素进行分区,可以确保下游的 Task 能够均匀地获得数据,使用代码如下:

dataStream.shuffle();

(4)RebalancePartitioner

以 Round-robin 的方式为每个元素分配分区,确保下游的 Task 可以均匀地获得数据,避免数据倾斜。使用代码如下:

dataStream.rebalance();

(5)RescalePartitioner

根据上下游 Task 的数量进行分区, 使用 Round-robin 选择下游的一个Task 进行数据分区,如上游有 2 22 个 Source.,下游有 6 66 个 Map,那么每个 Source 会分配 3 33 个固定的下游 Map,不会向未分配给自己的分区写入数据。这一点与 ShufflePartitioner 和 RebalancePartitioner 不同, 后两者会写入下游所有的分区。

运行代码如下:

dataStream.rescale();

(6)BroadcastPartitioner

将该记录广播给所有分区,即有 N NN 个分区,就把数据复制 N NN 份,每个分区 1 11 份,其使用代码如下:

dataStream.broadcast();

(7)KeyGroupStreamPartitioner

在 API 层面上,KeyGroupStreamPartitioner 应用在 KeyedStream上,生成一个新的 KeyedStream。

KeyedStream 根据 keyGroup 索引编号进行分区,会将数据按 Key 的 Hash 值输出到下游算子实例中。该分区器不是提供给用户来用的。

KeyedStream 在构造 Transformation 的时候默认使用 KeyedGroup 分区形式,从而在底层上支持作业 Rescale 功能。

(8)CustomPartitionerWrapper

用户自定义分区器。需要用户自己实现 Partitioner 接口,来定义自己的分区逻辑。

static class CustomPartitioner implements Partitioner<String> {
      @Override
      public int partition(String key, int numPartitions) {
          switch (key){
              case "1":
                  return 1;
              case "2":
                  return 2;
              case "3":
                  return 3;
              default:
                  return 4;
          }
      }
  }

4. 物理分区和key by的区别

顾名思义,“分区”(partitioning)操作就是要将数据进行重新分布,传递到不同的流分区去进行下一步处理。其实应该对分区操作并不陌生,前面介绍聚合算子时,已经提到了keyBy,它就是一种按照键的哈希值来进行重新分区的操作。只不过这种分区操作只能保证把数据按key“分开”,至于分得均不均匀、每个key 的数据具体会分到哪一区去,这些是完全无从控制的——所以有时也说keyBy是一种逻辑分区(logical partitioning)操作。

如果说keyBy这种逻辑分区是一种“软分区”,那真正硬核的分区就应该是所谓的“物理分区”(physical partitioning)。也就是要真正控制分区策略,精准地调配数据,告诉每个数据到底去哪里。其实这种分区方式在一些情况下已经在发生了:例如编写的程序可能对多个处理任务设置了不同的并行度,那么当数据执行的上下游任务并行度变化时,数据就不应该还在当前分区以直通(forward)方式传输了——因为如果并行度变小,当前分区可能没有下游任务了;而如果并行度变大,所有数据还在原先的分区处理就会导致资源的浪费。所以这种情况下,系统会自动地将数据均匀地发往下游所有的并行任务,保证各个分区的负载均衡。

有些时候,还需要手动控制数据分区分配策略。比如当发生数据倾斜的时候,系统无法自动调整,这时就需要重新进行负载均衡,将数据流较为平均地发送到下游任务操作分区中去。Flink 对于经过转换操作之后的DataStream,提供了一系列的底层操作接口,能够帮实现数据流的手动重分区。为了同keyBy相区别,把这些操作统称为“物理分区”操作。物理分区与keyBy另一大区别在于,keyBy之后得到的是一个KeyedStream,而物理分区之后结果仍是DataStream,且流中元素数据类型保持不变。从这一点也可以看出,分区算子并不对数据进行转换处理,只是定义了数据的传输方式。
常见的物理分区策略有随机分配(Random)、轮询分配(Round-Robin)、重缩放(Rescale)和广播(Broadcast),下边分别来做了解

1.随机分区(shuffle)
最简单的重分区方式就是直接“洗牌”。通过调用DataStream的.shuffle()方法,将数据随机地分配到下游算子的并行任务中去。
随机分区服从均匀分布(uniform distribution),所以可以把流中的数据随机打乱,均匀地传递到下游任务分区,因为是完全随机的,所以对于同样的输入数据, 每次执行得到的结果也不会相同
经过随机分区之后,得到的依然是一个DataStream
可以做个简单测试:将数据读入之后直接打印到控制台,将输出的并行度设置为4,中间经历一次shuffle。执行多次,观察结果是否相同。

package com.kunan.StreamAPI.Transform;
import com.kunan.StreamAPI.Source.Event;
import org.apache.flink.api.common.functions.Partitioner;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
public class TransformPartitionTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        //从元素中读取数据
        DataStreamSource<Event> Stream = env.fromElements(
                new Event("Mary", "./home", 1000L),
                new Event("Bob", "./cart", 1500L),
                new Event("Alice", "./prod?id=100", 1800L),
                new Event("Bob", "./prod?id=1", 2000L),
                new Event("Alice", "./prod?id=200", 3000L),
                new Event("Bob", "./home", 2500L),
                new Event("Bob", "./prod?id=120", 3600L),
                new Event("Bob", "./prod?id=130", 4000L)

        );
        //1、随机分区
        Stream.shuffle().print().setParallelism(4);
        env.execute();
    }
}

2.轮询分区(Round-Robin)

轮询也是一种常见的重分区方式。简单来说就是“发牌”,按照先后顺序将数据做依次分发。通过调用DataStream的.rebalance()方法,就可以实现轮询重分区。rebalance使用的是Round-Robin负载均衡算法,可以将输入流数据平均分配到下游的并行任务中去。
注:Round-Robin算法用在了很多地方,例如Kafka 和Nginx。

package com.kunan.StreamAPI.Transform;
import com.kunan.StreamAPI.Source.Event;
import org.apache.flink.api.common.functions.Partitioner;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
public class TransformPartitionTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        //从元素中读取数据
        DataStreamSource<Event> Stream = env.fromElements(
                new Event("Mary", "./home", 1000L),
                new Event("Bob", "./cart", 1500L),
                new Event("Alice", "./prod?id=100", 1800L),
                new Event("Bob", "./prod?id=1", 2000L),
                new Event("Alice", "./prod?id=200", 3000L),
                new Event("Bob", "./home", 2500L),
                new Event("Bob", "./prod?id=120", 3600L),
                new Event("Bob", "./prod?id=130", 4000L)
        );
        //2、轮询分区
       Stream.rebalance().print().setParallelism(4);
       Stream.print().setParallelism(4);  //输出和rebalance一致。Flink底层默认就是 rebalance 分区
        env.execute();
    }
}


3.重缩放分区(rescale)

重缩放分区和轮询分区非常相似。当调用rescale()方法时,其实底层也是使用Round-Robin算法进行轮询,但是只会将数据轮询发送到下游并行任务的一部分中,也就是说,“发牌人”如果有多个,那么rebalance的方式是每个发牌人都面向所有人发牌;而rescale的做法是分成小团体,发牌人只给自己团体内的所有人轮流发牌。

当下游任务(数据接收方)的数量是上游任务(数据发送方)数量的整数倍时,rescale的效率明显会更高。比如当上游任务数量是2,下游任务数量是6 时,上游任务其中一个分区的数据就将会平均分配到下游任务的3 个分区中。

由于rebalance是所有分区数据的“重新平衡”,当TaskManager数据量较多时,这种跨节点的网络传输必然影响效率;而如果配置的taskslot数量合适,用rescale的方式进行“局部重缩放”,就可以让数据只在当前TaskManager的多个slot之间重新分配,从而避免了网络传输带来的损耗。
从底层实现上看,rebalance和rescale的根本区别在于任务之间的连接机制不同。rebalance将会针对所有上游任务(发送数据方)和所有下游任务(接收数据方)之间建立通信通道,这是一个笛卡尔积的关系;而 rescale 仅仅针对每一个任务和下游对应的部分任务之间建立通信通道,节省了很多资源。
可以在代码中测试如下:

package com.kunan.StreamAPI.Transform;
import com.kunan.StreamAPI.Source.Event;
import org.apache.flink.api.common.functions.Partitioner;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
public class TransformPartitionTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        //从元素中读取数据
        DataStreamSource<Event> Stream = env.fromElements(
                new Event("Mary", "./home", 1000L),
                new Event("Bob", "./cart", 1500L),
                new Event("Alice", "./prod?id=100", 1800L),
                new Event("Bob", "./prod?id=1", 2000L),
                new Event("Alice", "./prod?id=200", 3000L),
                new Event("Bob", "./home", 2500L),
                new Event("Bob", "./prod?id=120", 3600L),
                new Event("Bob", "./prod?id=130", 4000L)

        );
        //3、rescale重缩放分区
        //这里使用了并行数据源的富函数版本
        //这样可以调用getRuntimeContext方法来获取运行时上下文的一些信息 
        env.addSource(new RichParallelSourceFunction<Integer>() {
            @Override
            public void run(SourceContext<Integer> ctx) throws Exception {
                for (int i = 0; i < 8; i++) {
                    //将奇偶数发送到0号和1号并行分区
                    if(i % 2 == getRuntimeContext().getIndexOfThisSubtask())
                        ctx.collect(i);
                }
            }

            @Override
            public void cancel() {
            }
        }).setParallelism(2);
     //   .rescale().print().setParallelism(4);
        env.execute();
    }
}

4.广播(broadcast)

这种方式其实不应该叫做“重分区”,因为经过广播之后,数据会在不同的分区都保留一份,可能进行重复处理。可以通过调用DataStream的broadcast()方法,将输入数据复制并发送到下游算子的所有并行任务中去。

package com.kunan.StreamAPI.Transform;
import com.kunan.StreamAPI.Source.Event;
import org.apache.flink.api.common.functions.Partitioner;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
public class TransformPartitionTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        //从元素中读取数据
        DataStreamSource<Event> Stream = env.fromElements(
                new Event("Mary", "./home", 1000L),
                new Event("Bob", "./cart", 1500L),
                new Event("Alice", "./prod?id=100", 1800L),
                new Event("Bob", "./prod?id=1", 2000L),
                new Event("Alice", "./prod?id=200", 3000L),
                new Event("Bob", "./home", 2500L),
                new Event("Bob", "./prod?id=120", 3600L),
                new Event("Bob", "./prod?id=130", 4000L)
        );
        //4、广播
        Stream.broadcast().print().setParallelism(4);
        env.execute();
    }
}


数据被复制然后广播到了下游的所有并行任务中去了.

5.全局分区(global)
全局分区也是一种特殊的分区方式。这种做法非常极端,通过调用.global()方法,会将所有的输入流数据都发送到下游算子的第一个并行子任务中去。这就相当于强行让下游任务并行度变成了1,所以使用这个操作需要非常谨慎,可能对程序造成很大的压力。

 Stream.global().print().setParallelism(4);

6.自定义分区(Custom)

当Flink提供的所有分区策略都不能满足用户的需求时,可以通过使用partitionCustom()方法来自定义分区策略。
在调用时,方法需要传入两个参数,第一个是自定义分区器(Partitioner)对象,第二个是应用分区器的字段,它的指定方式与keyBy指定 key 基本一样:可以通过字段名称指定,也可以通过字段位置索引来指定,还可以实现一个KeySelector。
例如,可以对一组自然数按照奇偶性进行重分区。代码如下:

package com.kunan.StreamAPI.Transform;
import com.kunan.StreamAPI.Source.Event;
import org.apache.flink.api.common.functions.Partitioner;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
public class TransformPartitionTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        //从元素中读取数据
        DataStreamSource<Event> Stream = env.fromElements(
                new Event("Mary", "./home", 1000L),
                new Event("Bob", "./cart", 1500L),
                new Event("Alice", "./prod?id=100", 1800L),
                new Event("Bob", "./prod?id=1", 2000L),
                new Event("Alice", "./prod?id=200", 3000L),
                new Event("Bob", "./home", 2500L),
                new Event("Bob", "./prod?id=120", 3600L),
                new Event("Bob", "./prod?id=130", 4000L)

        );
        //6、自定义分区
        //将自然数按照奇偶分区
        env.fromElements(1,2,3,4,5,6,7,8).partitionCustom(new Partitioner<Integer>() {
            @Override
            public int partition(Integer key, int numPartitions) {
                return key % 2;
            }
        }, new KeySelector<Integer, Integer>() {
            @Override
            public Integer getKey(Integer value) throws Exception {
                return value;
            }
        }).print().setParallelism(4);
        env.execute();
    }
}

5.说说 Flink 窗口,以及划分机制。

窗口概念:将无界流的数据,按时间区间,划分成多份数据,分别进行统计(聚合)。

Flink 支持两种划分窗口的方式(time 和 count)。第一种,按 时间驱动 进行划分、另一种按 数据驱动 进行划分。

  • 按时间驱动 Time Window 可以划分为 滚动窗口 Tumbling Window 和 滑动窗口 Sliding Window。
  • 按数据驱动 Count Window 也可以划分为 滚动窗口 Tumbling Window 和 滑动窗口 Sliding Window。
  • Flink 支持窗口的两个重要属性(窗口长度 size 和 滑动间隔 interval),通过窗口长度和滑动间隔来区分滚动窗口和滑动窗口。                                                                                       如果 size = interval,那么就会形成 tumbling-window(无重叠数据)——滚动窗口。如果 size(1min)> interval(30s),那么就会形成 sliding-window(有重叠数据)——滑动窗口

通过组合可以得出四种基本窗口:

(1)基于时间的滚动窗口time-tumbling-window 无重叠数据的时间窗口,设置方式举例:timeWindow(Time.seconds(5))

(2)基于时间的滑动窗口time-sliding-window 有重叠数据的时间窗口,设置方式举例:timeWindow(Time.seconds(10), Time.seconds(5))

注:上图中有点小错误,应该是 size > interval,所以会有重叠数据。

(3)基于数量的滚动窗口count-tumbling-window 无重叠数据的数量窗口,设置方式举例:countWindow(5)

(4)基于数量的滑动窗口count-sliding-window 有重叠数据的数量窗口,设置方式举例:countWindow(10,5)

Flink 中还支持一个特殊的窗口:会话窗口 SessionWindows。

session 窗口分配器通过 session 活动来对元素进行分组,session 窗口跟滚动窗口和滑动窗口相比,不会有重叠和固定的开始时间和结束时间的情况。

session 窗口在一个固定的时间周期内不再收到元素,即非活动间隔产生,那么这个窗口就会关闭。

一个 session 窗口通过一个 session 间隔来配置,这个 session 间隔定义了非活跃周期的长度,当这个非活跃周期产生,那么当前的 session 将关闭并且后续的元素将被分配到新的 session 窗口中去,如下图所示:

6. 怎么处理延迟数据?

大数据面试题:Flink延迟数据是怎么解决的_大数据中数据延迟-CSDN博客

7. Flink 状态包括哪些?

(1) 按照由 用户管理 还是 Flink 管理,状态可以分为 原始状态 和 托管状态
  • 原始状态Raw State):由用户自行进行管理。
  • 托管状态Managed State):由 Flink 自行进行管理的 State。

两者区别:

  • 状态管理方式来说,Managed State 由 Flink Runtime 管理,自动存储,自动恢复,在内存管理上有优化;而 Raw State 需要用户自己管理,需要自己序列化,Flink 不知道 State 中存入的数据是什么结构,只有用户自己知道,需要最终序列化为可存储的数据结构。
  • 状态数据结构来说,Managed State 支持已知的数据结构,如 Value、List、Map 等。而 Raw State 只支持字节数组,所有状态都要转换为二进制字节数组才可以。
  • 推荐使用场景来说,Managed State 大多数情况下均可使用,而 Raw State 是当 Managed State 不够用时,比如需要自定义 Operator 时,才会使用 Raw State。在实际生产过程中,只推荐使用 Managed State。

开启状态示例:

import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.configuration.Configuration;

public class MyMapper extends RichMapFunction<String, Integer> {
    private transient ValueState<Integer> state;

    @Override
    public void open(Configuration config) {
        // 初始化状态
        ValueStateDescriptor<Integer> descriptor = new ValueStateDescriptor<>("myState", Integer.class);
        state = getRuntimeContext().getState(descriptor);
    }

    @Override
    public Integer map(String value) throws Exception {
        // 读取状态
        Integer currentState = state.value();

        // 更新状态
        state.update(currentState + 1);

        // 返回结果
        return currentState;
    }
}
(2)State 按照 是否有 key 划分为 KeyedState 和 OperatorState 两种。

这里面键控不做详细介绍,较简单,主要介绍算子状态:
某种意义上说,算子状态是更底层的状态类型,因为它只针对当前算子并行任务有效,不需要考虑不同key的隔离。算子状态功能不如按键分区状态丰富,应用场景较少,它的调用方法也会有一些区别。

一、基本概念和特点

  算子状态(OperatorState)就是一个算子并行实例上定义的状态,作用范围被限定为当前算子任务。算子状态跟数据的key无关,所以不同key的数据只  要被分发到同一个并行子任务,就会访问到同一个OperatorState。
  算子状态的实际应用场景不如KeyedState多,一般用在Source或Sink等与外部系统连接的算子上,或者完全没有key定义的场景。比如Flink的Kafka连接器中,就用到了算子状态。在我们给Source算子设置并行度后,Kafka消费者的每一个并行实例,都会为对应的主题(topic)分区维护一个偏移量,作为算子状态保存起来。这在保证Flink应用“精确一次”(exactly-once)状态一致性时非常有用。关于状态一致性的内容,会在后续详细展开。
算子的并行度发生变化时,算子状态也支持在并行的算子任务实例之间做重组分配。根据状态的类型不同,重组分配的方案也会不同。

二、 状态类型

  算子状态也支持不同的结构类型,主要有三种:ListState、UnionListState和BroadcastState。

1.列表状态(ListState)

  与KeyedState中的ListState一样,将状态表示为一组数据的列表。

  与KeyedState中的列表状态的区别是:在算子状态的上下文中,不会按键(key)分别处理状态,所以每一个并行子任务上只会保留一个“列表”(list),也就是当前并行子任务上所有状态项的集合。列表中的状态项就是可以重新分配的最细粒度,彼此之间完全独立。

  当算子并行度进行缩放调整时,算子的列表状态中的所有元素项会被统一收集起来,相当于把多个分区的列表合并成了一个“大列表”,然后再均匀地分配给所有并行任务。这种“均匀分配”的具体方法就是“轮询”(round-robin),与之前介绍的rebanlance数据传输方式类似,是通过逐一“发牌”的方式将状态项平均分配的。这种方式也叫作“平均分割重组”(even-splitredistribution)。

  算子状态中不会存在“键组”(keygroup)这样的结构,所以为了方便重组分配,就把它直接定义成了“列表”(list)。这也就解释了,为什么算子状态中没有最简单的值状态(ValueState)。

2.联合列表状态(UnionListState)

  与ListState类似,联合列表状态也会将状态表示为一个列表。它与常规列表状态的区别在于,算子并行度进行缩放调整时对于状态的分配方式不同。

  UnionListState的重点就在于“联合”(union)。在并行度调整时,常规列表状态是轮询分配状态项,而联合列表状态的算子则会直接广播状态的完整列表。这样,并行度缩放之后的并行子任务就获取到了联合后完整的“大列表”,可以自行选择要使用的状态项和要丢弃的状态项。这种分配也叫作“联合重组”(unionredistribution)。如果列表中状态项数量太多,为资源和效率考虑一般不建议使用联合重组的方式。

3.广播状态(BroadcastState)

  有时我们希望算子并行子任务都保持同一份“全局”状态,用来做统一的配置和规则设定。这时所有分区的所有数据都会访问到同一个状态,状态就像被“广播”到所有分区一样,这种特殊的算子状态,就叫作广播状态(BroadcastState)。

  因为广播状态在每个并行子任务上的实例都一样,所以在并行度调整的时候就比较简单,只要复制一份到新的并行任务就可以实现扩展;而对于并行度缩小的情况,可以将多余的并行子任务连同状态直接砍掉——因为状态都是复制出来的,并不会丢失。

  在底层,广播状态是以类似映射结构(map)的键值对(key-value)来保存的,必须基于一个“广播流”(BroadcastStream)来创建。关于广播流,在“广播连接流”的讲解中已经做过介绍,稍后还会做一个总结。

三、代码实现

  我们已经知道,状态从本质上来说就是算子并行子任务实例上的一个特殊本地变量。它的特殊之处就在于Flink会提供完整的管理机制,来保证它的持久化保存,以便发生故障时进行状态恢复;另外还可以针对不同的key保存独立的状态实例。按键分区状态(KeyedState)对这两个功能都要考虑;而算子状态(OperatorState)并不考虑key的影响,所以主要任务就是要让Flink了解状态的信息、将状态数据持久化后保存到外部存储空间。
  看起来算子状态的使用应该更加简单才对。不过仔细思考又会发现一个问题:我们对状态进行持久化保存的目的是为了故障恢复;在发生故障、重启应用后,数据还会被发往之前分配的分区吗?显然不是,因为并行度可能发生了调整,不论是按键(key)的哈希值分区,还是直接轮询(round-robin)分区,数据分配到的分区都会发生变化。这很好理解,当打牌的人数从3个增加到4个时,即使牌的次序不变,轮流发到每个人手里的牌也会不同。数据分区发生变化,带来的问题就是,怎么保证原先的状态跟故障恢复后数据的对应关系呢
  对于KeyedState这个问题很好解决:状态都是跟key相关的,而相同key的数据不管发往哪个分区,总是会全部进入一个分区的;于是只要将状态也按照key的哈希值计算出对应的分区,进行重组分配就可以了。恢复状态后继续处理数据,就总能按照key找到对应之前的状态,就保证了结果的一致性。所以Flink对KeyedState进行了非常完善的包装,我们不需实现任何接口就可以直接使用。

  而对于OperatorState来说就会有所不同。因为不存在key,所有数据发往哪个分区是不可预测的;也就是说,当发生故障重启之后,我们不能保证某个数据跟之前一样,进入到同一个并行子任务、访问同一个状态。所以Flink无法直接判断该怎样保存和恢复状态,而是提供了接口,让我们根据业务需求自行设计状态的快照保存(snapshot)和恢复(restore)逻辑。

1. CheckpointedFunction 接口

  在Flink中,对状态进行持久化保存的快照机制叫作“检查点”(Checkpoint)。于是使用算子状态时,就需要对检查点的相关操作进行定义,实现一个CheckpointedFunction接口。
CheckpointedFunction 接口在源码中定义如下:

public interface CheckpointedFunction {
// 保存状态快照到检查点时,调用这个方法
void snapshotState(FunctionSnapshotContext context) throws Exception
// 初始化状态时调用这个方法,也会在恢复状态时调用
 void initializeState(FunctionInitializationContext context) throws
Exception;
}

  每次应用保存检查点做快照时,都会调用.snapshotState()方法,将状态进行外部持久化。而在算子任务进行初始化时,会调用.initializeState()方法。这又有两种情况:一种是整个应用第一次运行,这时状态会被初始化为一个默认值(defaultvalue);另一种是应用重启时,从检查点(checkpoint)或者保存点(savepoint)中读取之前状态的快照,并赋给本地状态。所以,接口中的.snapshotState()方法定义了检查点的快照保存逻辑,而.initializeState()方法不仅定义了初始化逻辑,也定义了恢复逻辑。

  这里需要注意,CheckpointedFunction接口中的两个方法,分别传入了一个上下文(context)作为参数。不同的是,.snapshotState()方法拿到的是快照的上下文FunctionSnapshotContext,它可以提供检查点的相关信息,不过无法获取状态句柄;而.initializeState()方法拿到的是FunctionInitializationContext,这是函数类进行初始化时的上下文,是真正的“运行时上下文”。FunctionInitializationContext中提供了“算子状态存储”(OperatorStateStore)和“按键分区状态存储(”KeyedStateStore),在这两个存储对象中可以非常方便地获取当前任务实例中的OperatorState和KeyedState。例如:

ListStateDescriptor<String> descriptor =
        new ListStateDescriptor<>(
        "buffered-elements",
        Types.of(String));
        ListState<String> checkpointedState =
        context.getOperatorStateStore().getListState(descriptor);

  我们看到,算子状态的注册和使用跟KeyedState非常类似,也是需要先定义一个状态描述器(StateDescriptor),告诉Flink当前状态的名称和类型,然后从上下文提供的算子状态存储(OperatorStateStore)中获取对应的状态对象。如果想要从KeyedStateStore中获取KeyedState也是一样的,前提是必须基于定义了key的KeyedStream,这和富函数类中的方式并不矛盾。通过这里的描述可以发现,CheckpointedFunction是Flink中非常底层的接口,它为有状态的流处理提供了灵活且丰富的应用。

  1. 示例代码

  接下来举一个算子状态的应用案例。在下面的例子中,自定义的SinkFunction会在CheckpointedFunction中进行数据缓存,然后统一发送到下游。这个例子演示了列表状态的平均分割重组(event-splitredistribution)。

package com.kunan.StreamAPI.FlinkStat;

import com.kunan.StreamAPI.Source.ClickSource;
import com.kunan.StreamAPI.Source.Event;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.contrib.streaming.state.EmbeddedRocksDBStateBackend;
import org.apache.flink.runtime.state.FunctionInitializationContext;
import org.apache.flink.runtime.state.FunctionSnapshotContext;
import org.apache.flink.streaming.api.checkpoint.CheckpointedFunction;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.SinkFunction;
import java.time.Duration;
import java.util.ArrayList;
import java.util.List;
public class BufferingSinkExp {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
       // env.enableCheckpointing(1000L);
       // env.setStateBackend(new EmbeddedRocksDBStateBackend());
        SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource())
                .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forBoundedOutOfOrderness(Duration.ZERO)
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            @Override
                            public long extractTimestamp(Event element, long recordTimestamp) {
                                return element.timestamp;
                            }
                        }));
        stream.print("数据输入: ");

        //批量缓存输出
        stream.addSink(new BufferingSink(10));

        env.execute();
    }
    //自定义实现SinkFunction
    public static class BufferingSink implements SinkFunction<Event>, CheckpointedFunction{
        //定义当前类的属性。批量
        private final int threshold;

        public BufferingSink(int threshold) {
            this.threshold = threshold;
            this.bufferedElements = new ArrayList<>();
        }
        private List<Event> bufferedElements;

        //定义一个算子状态
        private ListState<Event> checkPointedState;
        @Override
        public void invoke(Event value, Context context) throws Exception {
            bufferedElements.add(value);//缓存到列表
            //判断如果达到阈值 就批量写入
            if (bufferedElements.size() == threshold){
                //用打印到控制台模拟写入到外部系统
                for (Event element: bufferedElements){
                    System.out.println(element);
                }
                System.out.println("=======输出完毕========");
                bufferedElements.clear();
            }

        }
        @Override
        public void snapshotState(FunctionSnapshotContext context) throws Exception {
            //清空状态
            checkPointedState.clear();

            //对状态进行持久化,复制缓存的列表到列表状态
            for (Event element:bufferedElements)
                checkPointedState.add(element);
        }

        @Override
        public void initializeState(FunctionInitializationContext context) throws Exception {
            //定义算子状态
            ListStateDescriptor<Event> eventListStateDescriptor = new ListStateDescriptor<>("buffered-elements", Event.class);
            checkPointedState = context.getOperatorStateStore().getListState(eventListStateDescriptor);
            //如果从故障恢复,需要将ListState中的所有元素复制到列表中
            if (context.isRestored()){
                for (Event element:checkPointedState.get())
                    bufferedElements.add(element);
            }
        }
    }

}

  当初始化好状态对象后,可以通过调用.isRestored()方法判断是否是从故障中恢复。在代码中BufferingSink初始化时,恢复出的ListState的所有元素会添加到一个局部变量bufferedElements中,以后进行检查点快照时就可以直接使用了。在调用.snapshotState()时,直接清空ListState,然后把当前局部变量中的所有元素写入到检查点中。

  对于不同类型的算子状态,需要调用不同的获取状态对象的接口,对应地也就会使用不同的状态分配重组算法。比如获取列表状态时,调用.getListState()会使用最简单的平均分割重组(even-splitredistribution)算法;而获取联合列表状态时,调用的是.getUnionListState(),对应就会使用联合重组(unionredistribution)算法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1614211.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

shell简单联系项目

文章目录 推荐一个vscode上的好用的神奇如何使用的方式连接主机的方式配置新主机配置信息启动连接的方式 联系shell 命令的方式读取文件信息设置本地环境变量的方式获取随机数的方式简单案例信息 推荐一个vscode上的好用的神奇 如何使用的方式 连接主机的方式 配置新主机 配置…

运维小技能:nacos部署(外接mysql)

文章目录 I 安装nacos(m1版本)1.1 镜像启动1.2 查看docker容器日志1.3 开启鉴权II 外接mysql的docker部署方式2.1 复制mysql-schema.sql2.2 导入mysql-schema.sqlIII 配置远程用户3.1 创建数据库远程用户3.2 查看远程用户是否有密码I 安装nacos(m1版本) docker search nacos:查…

集成触发器(数电笔记)

同步触发器&#xff1a; 主从触发器&#xff1a; 边沿触发器&#xff1a;

【团体程序设计天梯赛】L2-052 吉利矩阵

思路&#xff1a; 直接回溯枚举每一个位置填的数&#xff0c;二维肯定是不方便的&#xff0c;我们转成一维&#xff0c;下标x从0到n*n-1。二维数组下标从0到n-1&#xff0c;在一维中下标为x的点在二维中对应行是x/n&#xff0c;列是x%n。 每个数最小能填的是0&#xff0c;最大…

一套在线画图工具(突突图 Procviz)

突突图(Procviz)是一款面向跨平台作图平台。支持流程图、思维导图、框架图、组织架构图、ER图、网络拓扑图等。实现了多团体同时协作&#xff0c;实时同步&#xff0c;解决跨地域合作作图的问题。平台提供了丰富的模板和素材库&#xff0c;轻松完成作图&#xff0c;效率翻倍。 …

imx6ull设备树驱动--pinctl、ioctl

添加pinctl节点 进入arch/arm/boot/dts目录下dts文件 在iomuxc下添加pinctlled节点 将 GPIO1_IO03 这个 PIN 复用为 GPIO1_IO03&#xff0c;电气属性&#xff08;配置GPIO一些列寄存器&#xff09;值为 0X10B0 添加led设备节点 与上一节一样&#xff0c;在 / 下面添加设备节…

《AIGC辅助数据分析与挖掘》AIGC助力数据可视化:Excel图形化思维与实施技巧

01 前言 在当今的数据分析中&#xff0c;数据可视化扮演着至关重要的角色。作为一款常用工具&#xff0c;Excel提供了丰富的图形展示功能。利用AIGC&#xff0c;我们可以快速选择合适的图形类型&#xff0c;并进行专业的配置&#xff0c;从而使得数据展示更加吸引人且具有更好…

钟薛高创始人称卖红薯也把债还上:网友,您可千万别……

网红雪糕品牌钟薛高&#xff0c;是真的网红属性强到让所有消费品牌羡慕。 纵使跌落神坛、纵使站在「破产」边缘&#xff0c;依然话题感满满&#xff0c;隔段时间&#xff0c;总能上一个热搜。 比如欠薪上热搜、产品降价上热搜、甚至官网微博微信停更&#xff0c;也得上个热搜&…

VSCode插件开发学习

一、环境准备 0、参考文档&#xff1a;VS Code插件创作中文开发文档 1、大于18版本的nodejs 2、安装Yeoman和VS Code Extension Generator&#xff1a; npm install -g yo generator-code 3、生成脚手架 yo code 选择内容&#xff1a; ? What type of extension do yo…

【1524】java投票管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java 投票管理系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysql5.0&…

ESG热潮背后

近年来&#xff0c;ESG投资在全球范围内迅速发展&#xff0c;已经成为行业新风口。越来越多的投资者和企业开始关注ESG因素&#xff0c;并将其纳入投资决策和公司运营中。 ESG指环境&#xff08;Environmental&#xff09;、社会&#xff08;Social&#xff09;、公司治理&…

揭秘!综合布线可视化管理软件如何助力集成商实现价值飞跃?

一、弱电集成商发展现状 近期小编通过与多家做弱电集成的朋友交流探讨了解到目前弱电集成商发展如同2024年国内大部分企业一样举步维艰&#xff0c;当然也有个别企业做的项目优质并且利润可观&#xff0c;但是整体不多&#xff0c;总结原因主要有以下几点&#xff1a; 工程项目…

Robbins-Monro(RM)算法【随机近似】

强化学习笔记 主要基于b站西湖大学赵世钰老师的【强化学习的数学原理】课程&#xff0c;个人觉得赵老师的课件深入浅出&#xff0c;很适合入门. 第一章 强化学习基本概念 第二章 贝尔曼方程 第三章 贝尔曼最优方程 第四章 值迭代和策略迭代 第五章 强化学习实践—GridWorld 第…

C语言枚举类型详解

下午好诶&#xff0c;今天小眼神给大家带来一篇C语言枚举类型详解的文章~ 目录 一、枚举类型的声明 二、枚举类型的优点 三、枚举类型的使用 一、枚举类型的声明 枚举顾名思义就是 一 一 列 举 。 比如&#xff1a; 一周从周一到周日共有七天&#xff0c;可以一一列举。 性…

ARM汇编伪指令AREA

ARM伪指令AREA用于定义一个代码段或数据段。其基本的语法格式如下&#xff1a; AREA 段名 属性1,属性2, ... 其中&#xff1a; 段名&#xff1a;是你为代码段或数据段指定的名称。如果段名以数字开头&#xff0c;则该段名需要用“│”括起来&#xff0c;如│1_test│。段名可…

文档在线预览,可以私有化局域网在服务器部署组件来实现在线预览

去官网查看 几行代码即可运行 https://kkfileview.keking.cn/zh-cn/index.html

引用静态方法

import java.util.Arrays; import java.util.Comparator;public class demo1 {//引用public static void main(String[] args) {Integer []arr{1,2,4,3,8,6};//匿名内部类Arrays.sort(arr, new Comparator<Integer>() {Overridepublic int compare(Integer o1, Integer o…

深度神经网络(DNN)

通过5个条件判定一件事情是否会发生&#xff0c;5个条件对这件事情是否发生的影响力不同&#xff0c;计算每个条件对这件事情发生的影响力多大&#xff0c;写一个深度神经网络&#xff08;DNN&#xff09;模型程序,最后打印5个条件分别的影响力。 示例 在深度神经网络&#xf…

葡萄书--深度学习基础

卷积神经网络 卷积神经网络具有的特性&#xff1a; 平移不变性&#xff08;translation invariance&#xff09;&#xff1a;不管检测对象出现在图像中的哪个位置&#xff0c;神经网络的前面几层应该对相同的图像区域具有相似的反应&#xff0c;即为“平移不变性”。图像的平移…

OJ:寻找独一无二的数

目录 &#x1f3dd;1.问题描述&#xff1a; &#x1f3dd;2.分析问题&#xff1a; &#x1f3dd;3.最终代码&#xff1a; &#x1f3dd;1.问题描述&#xff1a; &#x1f3dd;2.分析问题&#xff1a; 先看看下面的代码的结果是多少&#xff1f; #include<stdio.h> in…