AI大模型量化格式介绍(GPTQ,GGML,GGUF,FP16/INT8/INT4)

news2025/1/23 3:55:34

在 HuggingFace 上下载模型时,经常会看到模型的名称会带有fp16GPTQGGML等字样,对不熟悉模型量化的同学来说,这些字样可能会让人摸不着头脑,我开始也是一头雾水,后来通过查阅资料,总算有了一些了解,本文将介绍一些常见的模型量化格式,因为我也不是机器学习专家,所以本文只是对这些格式进行简单的介绍,如果有错误的地方,欢迎指正。

What 量化

量化在 AI 模型中,特别是在深度学习模型中,通常指的是将模型中的参数(例如权重和偏置)从浮点数转换为低位宽度的整数,例如从 32 位的浮点数转换为 8 位整数。通俗地说,量化就像是把一本详细的、用高级词汇写的书简化为一个简短的摘要或儿童版故事。这个摘要或儿童版故事占用的空间更小,更容易传播,但可能会丢失一些原始书中的细节。

Why 量化

量化的目的主要有以下几点:

  1. 减少存储需求:量化后的模型大小会显著减小,这使得模型更容易部署在存储资源有限的设备上,如移动设备或嵌入式系统。
  2. 加速计算:整数运算通常比浮点运算更快,尤其在没有专门的浮点硬件支持的设备上。
  3. 减少能耗:在某些硬件上,整数运算消耗的能量更少。

但是,量化也有一个缺点:它可能会导致模型的精度下降。因为你实际上是在用较低的精度来表示原始的浮点数,可能会损失一些信息,这意味着模型的能力会变差。为了平衡这种精度损失,研究者们开发了各种量化策略和技术,如动态量化、权重共享等,可以在尽量少降低模型能力的情况下,尽可能多地降低模型所需的损耗。打个比方,如果我们一个模型的完整能力是 100,模型大小和推理所需内存也是 100,我们将这个模型量化后,模型的能力可能会降低到 90,但模型大小和推理所需内存可能会降低到 50,这个就是量化的目的。

FP16/INT8/INT4

HuggingFace 上模型名称如果没有特别标识,比如Llama-2-7b-chatchatglm2-6b,那么说明这些模型一般是全精度的(FP32,但也有些是半精度 FP16),而如果模型名称中带有fp16int8int4等字样,比如Llama-2-7B-fp16chatglm-6b-int8chatglm2-6b-int4,那么说明这些模型是量化后的模型,其中fp16int8int4字样表示模型的量化精度。

量化精度从高到低排列顺序是:fp16>int8>int4,量化的精度越低,模型的大小和推理所需的显存就越小,但模型的能力也会越差。

ChatGLM2-6B为例,该模型全精度版本(FP32)的大小为 12G,推理所需用到的显存为 12~13G,而量化后的 INT4 版本模型大小为 3.7G,推理所需显存为 5G,可以看到量化后的模型大小和显存需求都大大减小了。

FP32 和 FP16 精度的模型需要在 GPU 服务器上运行,而 INT8 和 INT4 精度的模型可以在 CPU 上运行。

GPTQ

GPTQ 是一种模型量化的方法,可以将语言模型量化成 INT8、INT4、INT3 甚至 INT2 的精度而不会出现较大的性能损失,在 HuggingFace 上如果看到模型名称带有GPTQ字样的,比如Llama-2-13B-chat-GPTQ,说明这些模型是经过 GPTQ 量化的。以Llama-2-13B-chat为例,该模型全精度版本的大小为 26G,使用 GPTQ 进行量化成 INT4 精度后的模型大小为 7.26G。

如果你用的是开源模型LLama,可以使用GPTQ-for-LLaMA这个库来进行 GPTQ 量化,它可以将相关的Llama模型量化成 INT4 精度的模型。

但现在更流行的一个 GPTQ 量化工具是AutoGPTQ,它可以量化任何 Transformer 模型而不仅仅是Llama,现在 Huggingface 已经将 AutoGPTQ 集成到了 Transformers 中,具体的使用方法可以参考这里。

GGML

讲 GGML 之前要先说下llama-cpp这个项目,它是开发者 Georgi Gerganov 基于 Llama 模型手撸的纯 C/C++ 版本,它最大的优势是可以在 CPU 上快速地进行推理而不需要 GPU。然后作者将该项目中模型量化的部分提取出来做成了一个模型量化工具:GGML,项目名称中的GG其实就是作者的名字首字母。

在 HuggingFace 上,如果看到模型名称带有GGML字样的,比如Llama-2-13B-chat-GGML,说明这些模型是经过 GGML 量化的。有些 GGML 模型的名字除了带有GGML字样外,还带有q4q4_0q5等,比如Chinese-Llama-2-7b-ggml-q4,这里面的q4其实指的是 GGML 的量化方法,从q4_0开始往后扩展,有q4_0q4_1q5_0q5_1q8_0,在这里可以看到各种方法量化后的数据。

GGUF

最近在 HuggingFace 上的模型还发现了一些带有GGUF字样的模型,比如Llama-2-13B-chat-GGUFGGUF其实是 GGML 团队增加的一个新功能,GGUF 与 GGML 相比,GGUF 可以在模型中添加额外的信息,而原来的 GGML 模型是不可以的,同时 GGUF 被设计成可扩展,这样以后有新功能就可以添加到模型中,而不会破坏与旧模型的兼容性。

但这个功能是Breaking Change,也就是说 GGML 新版本以后量化出来的模型都是 GGUF 格式的,这意味着旧的 GGML 格式以后会慢慢被 GGUF 格式取代,而且也不能将老的 GGML 格式直接转成 GGUF 格式。

关于 GGUF 更多的信息可以参考这里。

GPTQ vs GGML

GPTQ 和 GGML 是现在模型量化的两种主要方式,但他们之间有什么区别呢?我们又应该选择哪种量化方式呢?

两者有以下几点异同:

  • GPTQ 在 GPU 上运行较快,而 GGML 在 CPU 上运行较快
  • 同等精度的量化模型,GGML 的模型要比 GPTQ 的稍微大一些,但是两者的推理性能基本一致
  • 两者都可以量化 HuggingFace 上的 Transformer 模型

因此,如果你的模型是在 GPU 上运行,那么建议使用 GPTQ 进行量化,如果你的模型是在 CPU 上运行,那么建议使用 GGML 进行量化。

Groupsize

在 HuggingFace 上,不管是什么格式的量化模型,模型名称中还经常出现一些32g128g字样,比如pygmalion-13b-4bit-128g,这些又是表示什么意思呢?

128g中的g其实表示的是 groupsize 的意思,在量化技术中,权重可能会被分成大小为 groupsize 的组,并对每组应用特定的量化策略,这样的策略可能有助于提高量化的效果或保持模型的性能。

groupsize 的值有:1024、128、32,GPTQ 默认的 groupsize 值是 1024。如果 groupsize 没有值,那么 groupsize 就为-1( 注意不是 0)。groupsize 会影响模型的准确性和推理显存大小,groupsize 根据同等精度模型准确性和推理显存从高到底的排列顺序是:32 > 128 > 1024 > None(-1),也就是说 None(-1) 是准确性和显存占用最低的,而 32 是最高的。

总结

本文总结了 HuggingFace 上模型的常见量化格式,量化技术是 AI 模型部署的重要技术,它可以大大减小模型的大小和推理所需的显存。想要让大语言模型真正地走进普通人的生活,在每个人的手机上能运行起来,做到真正意义上的“普及”,那么量化技术以后肯定是必不可少的,因此掌握一些量化技术是非常有必要的。

关注我,一起学习各种人工智能和 AIGC 新技术,欢迎交流,如果你有什么想问想说的,欢迎在评论区留言。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1613433.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Leetcode144_二叉树的前序遍历

1.leetcode原题链接:. - 力扣(LeetCode) 2.题目描述 给你二叉树的根节点 root ,返回它节点值的 前序 遍历。 示例 1: 输入:root [1,null,2,3] 输出:[1,2,3]示例 2: 输入&#xf…

如何在PostgreSQL中使用CTE(公共表表达式)来简化复杂的查询逻辑?

文章目录 解决方案步骤示例代码 结论 在处理复杂的SQL查询时,我们经常会遇到需要多次引用子查询或中间结果的情况。这可能会使得查询变得冗长且难以理解。为了解决这个问题,PostgreSQL(以及其他一些SQL数据库系统)引入了公共表表达…

变频器基础原理

文章目录 0. 基本知识1.三相的电压之和为02.正弦交流相量的相量表示法(相量只是表示正弦量,而不等于正弦量 ;只有正弦量才能用相量表示)引入相量表示法目的:一种正弦量的产生方式:正弦量的相量表示,使用欧拉公式表示复数 3.用复数表示正弦量&…

使用JavaScript收集和发送用户设备信息,后端使用php将数据保存在本地json,便于后期分析数据

js代码部分 <script> // 之前提供的JavaScript代码 fetch(https://api.ipify.org?formatjson).then(response > response.json()).then(data > {const deviceInfo {userAgent: navigator.userAgent,platform: navigator.platform,language: navigator.language,…

晶圆制造之MPW(多项目晶圆)简介

01、MPW是什么&#xff1f; 在半导体行业中&#xff0c;MPW 是 "Multi Project Wafer" 的缩写&#xff0c;中文意思是多项目晶圆。MPW 的主要思想是将使用相同工艺的多个集成电路设计放在同一晶圆片上进行流片&#xff08;即制造&#xff09;。这种方法允许多个设计共…

数码摄影色彩构成,数码相机色彩管理

一、资料描述 本套摄影色彩资料&#xff0c;大小58.54M&#xff0c;共有6个文件。 二、资料目录 《抽象彩色摄影集》.阿瑟.pdf 《色彩构成》.pdf 《色彩学》.星云.扫描版.pdf 《摄影色彩构成》.pdf 《数码相机色彩管理》.pdf 数码摄影进阶之4《色彩篇》.pdf 三、资料下…

算法课程笔记——STL题目

长度为2的字符串&#xff0c;当in下标为一&#xff0c;也就是\n,当i&#xff01;n&#xff0c;就是输出空格 &&且 city从citys里面取 加速后就不能混用scanf

HANA SQL消耗内存和CPU线程的限制参数

HANA再处理大数据表相关的复杂Sql时&#xff0c;如果没有设置Memory和CPU线程上限的话&#xff0c;会将HANA的资源占用殆尽&#xff0c;造成HANA无法响应其他Sql请求&#xff0c;导致表现在应用服务器上就是系统卡顿的情况。解决上述问题的办法就是按照下图设置Memory(图1&…

Rust序列化和反序列化

Rust 编写python 模块 必备库 docker 启动 nginx 服务 NGINX 反向代理配置

使用QGIS创建Hexbin地图

Binning是一种用于显示点特征密度的制图技术。分箱涉及将均匀形状的网格覆盖到点数据集上。然后为网格中的每个单元格分配落在其中的点数。然后采用分级颜色分类来直观地显示哪些单元格包含最多数量的点。可以采用不同尺寸的形状&#xff0c;例如矩形、菱形和六边形。 什么是 …

FreeSWITCH 1.10.10 简单图形化界面19 - FreeSWITH性能测试之2核2G和4核4G

FreeSWITCH 1.10.10 简单图形化界面19 - FreeSWITH性能测试之2核心2G和4核心4G 界面预览00、先看使用手册0、先安装FreeSWITCH0、测试备注1、2核心2G内存200分机未开启录音呼叫开启录音呼叫 300分机未开启录音呼叫开启录音呼叫 400分机未开启录音呼叫开启录音呼叫 2、4核心4G内…

《大话西游2》本人收集的十二个单机版游戏,有详细的视频架设教程,云盘下载

《大话西游2》是一款经典的大型多人在线角色扮演游戏&#xff0c;也是一款国风经典的游戏。 有能力的可以架设个外网&#xff0c;让大家一起玩。 《大话西游2》本人收集的十二个单机版游戏&#xff0c;有详细的视频架设教程&#xff0c;值得收藏 下载地址&#xff1a; 链接&…

华为开源自研AI框架昇思MindSpore应用案例:数据处理性能优化

如果你对MindSpore感兴趣&#xff0c;可以关注昇思MindSpore社区 数据是整个深度学习中最重要的一环&#xff0c;因为数据的好坏决定了最终结果的上限&#xff0c;模型的好坏只是去无限逼近这个上限&#xff0c;所以高质量的数据输入&#xff0c;会在整个深度神经网络中起到积极…

ubuntu安装QEMU

qemu虚拟机的使用&#xff08;一&#xff09;——ubuntu20.4安装QEMU_ubuntu安装qemu-CSDN博客 遇到的问题&#xff1a; (1)本来使用git clone https://github.com/qemu/qemu.git fatal: 无法访问 https://github.com/qemu/qemu.git/&#xff1a;GnuTLS recv error (-110): …

Linux-内存文件

1. 基础IO操作 1.1 c语言的IO接口 fopen&#xff1a;打开一个文件&#xff0c;按照指定方式 参数&#xff1a;filename 文件名&#xff0c;也可以是路径&#xff0c;mode&#xff1a;打开方式 返回打开的文件指针 fread&#xff1a;从指定流中读数据 参数&#xff1a;从FIL…

浏览器数据找回

网站上分享的文章应该都是个人的心血&#xff0c;对于一些操作问题导致心血丢失真的很奔溃&#xff0c;终于找到一个弥补的办法&#xff0c;csdn的文章谷歌浏览器亲测有效&#xff0c;理论上其他浏览器的其他网站应该也可以&#xff0c;适用以下场景 把博客编辑当成了编写新博…

【Linux】虚拟机与Xshell及VS Code的连接

一、基础环境 虚拟机&#xff1a;VMware Workstation Pro 虚拟机镜像&#xff1a;ubuntu-18.04.5-desktop-amd64.iso 其他&#xff1a;Xshell 6、Xftp 6、Visual Studio Code 上述软件的安装操作不再赘述&#xff0c;CSDN上有大量的优秀博文&#xff0c;可参考&#xff1a;详细…

【树莓派Linux内核开发】入门实操篇(虚拟机Ubuntu环境搭建+内核源码获取与配置+内核交叉编译+内核镜像挂载)

【树莓派Linux内核开发】入门实操篇&#xff08;虚拟机Ubuntu环境搭建内核源码获取与配置内核交叉编译内核镜像挂载&#xff09; 文章目录 【树莓派Linux内核开发】入门实操篇&#xff08;虚拟机Ubuntu环境搭建内核源码获取与配置内核交叉编译内核镜像挂载&#xff09;一、搭建…

【Hadoop】- YARN架构[7]

前言 Yarn架构是一个用于管理和调度Hadoop集群资源的系统。它是Hadoop生态系统的一部分&#xff0c;主要用于解决Hadoop中的资源管理问题。 通过使用Yarn架构&#xff0c;Hadoop集群中的不同应用程序可以共享集群资源&#xff0c;并根据需要动态分配和回收资源。这种灵活的资…

强固型工业电脑在称重系统+叉车电脑,称重量体扫码一体机,物流分拣线工作站行业应用

称重系统叉车电脑行业应用 背景介绍 在叉车上安装称重传感器&#xff0c;通过对举升压力的自动检测&#xff0c;将压力信号转换为电流或电压信号&#xff0c;经过A/D转换&#xff0c;使模拟信号变为数字信号&#xff0c;经微处理器进行数据处理后通过蓝牙、串口或者USB接口将称…