OpenCV基本图像处理操作(十)——图像特征harris角点

news2025/1/12 16:06:50

角点

角点是图像中的一个特征点,指的是两条边缘交叉的点,这样的点在图像中通常表示一个显著的几角。在计算机视觉和图像处理中,角点是重要的特征,因为它们通常是图像中信息丰富的区域,可以用于图像分析、对象识别、3D建模等多种应用。

角点的识别可以帮助在进行图像匹配和跟踪时提供稳定的参考点,这是因为角点在图像中的位置比较容易通过算法检测出来,且不易受到视角变化的影响。因此,角点检测在视觉系统中非常重要,如机器人导航、增强现实等领域中都有广泛应用。

图像特征-harris角点检测

Harris 角点检测是一种流行的角点检测算法,用于从图像中识别出角点的位置,即图像中两条边交叉的特征点。这些特征点在图像匹配、追踪、计算机视觉等领域中非常有用。

算法原理

算法的基本思想是检测图像中灰度强度的局部变化非常显著的点。具体来说,Harris 角点检测器会对图像进行窗口滑动,计算窗口内每个点移动小量后对应的灰度变化量。这些变化量通过一个数学公式进行计算,其中包括图像的梯度、梯度的协方差矩阵以及这些矩阵的迹和行列式。

最终,通过一个响应函数的计算,可以评估每个点是否为角点。如果响应函数的值超过某个阈值,则该点被认为是角点。

Harris 角点检测器的优点在于它对图像旋转保持不变性,并且对噪声有一定的抵抗力,但可能对图像尺度的变化敏感。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Harris 角点检测是一种在图像中识别角点的流行算法。其核心思想是通过测量图像窗口在各个方向上移动时产生的度变化程度来识别角点。

Harris 角点检测原理:

Harris 角点检测算法基于这样一个观察:一个窗口如果在图像中的角点上移动,窗口内像素强度的变化将会很大。算法通过构建一个结构张量(也称为二阶矩阵)来量化这种变化,该矩阵反映了图像窗口内强度的变化情况。

数学表示:
  1. 计算图像梯度:首先计算图像的梯度 I x I_x Ix, I y I_y Iy,这里 I x I_x Ix I y I_y Iy 分别是图像在 x 方向和 y 方向的一阶导数。

  2. 构建结构张量:接着计算图像在每一点的结构张量 M M M,其由以下公式定义:
      M = ∑ x , y w ( x , y ) [ I x 2 I x I y I x I y I y 2 ]   \ M = \sum_{x, y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \  M=x,yw(x,y)[Ix2IxIyIxIyIy2] 

    其中, w ( x , y ) w(x, y) w(x,y) 是窗口函数,常用的是高斯窗口。

  3. 响应函数计算:Harris 响应函数 ( R ) 由下面的公式给出:
      R = det ⁡ ( M ) − k ⋅ ( trace ( M ) ) 2   \ R = \det(M) - k \cdot (\text{trace}(M))^2 \  R=det(M)k(trace(M))2 
    其中, det ⁡ ( M ) = λ 1 λ 2 \det(M) = \lambda_1 \lambda_2 det(M)=λ1λ2 是 ( M ) 的行列式(即特征值的乘积), trace ( M ) = λ 1 + λ 2 \text{trace}(M) = \lambda_1 + \lambda_2 trace(M)=λ1+λ2 M M M 的迹(即特征值的和), k k k 是一个经验参数,通常取值在 0.04 到 0.06 之间。

  4. 角点检测:如果 R R R 的值大于某个阈值,那么该点被认为是角点。

代码实战

  • gray: 这是输入图像,应该是灰度图像,因为 Harris 角点检测通常在灰度图像上进行。
  • 2: 这是块大小(blockSize),即用于计算每个像素点的 Harris 响应值的邻域大小。这里的值 2 指的是考虑每个点周围 2x2 的窗口。
  • 3: 这是用于梯度计算的 Sobel 算子的孔径大小(apertureSize)。孔径大小为 3 意味着使用 3x3 的 Sobel 算子来计算图像的 x 方向和 y 方向的导数。
  • 0.04: 这是 Harris 角点检测算法中的自由参数 ( k )。该参数用于在响应函数 ( R ) 中平衡角点的度量,通常取值在 0.04 到 0.06 之间。

该函数的输出是一个灰度图像,其中每个像素的值代表该点作为角点的可能性。角点的位置通常是响应图中值较高的区域。在实际应用中,可能还需要进一步的步骤来阈值化和局部极大值抑制,以准确确定和标记角点的位置。

import cv2 
import numpy as np

img = cv2.imread('test_1.jpg')
print ('img.shape:',img.shape)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 3, 0.04)
print ('dst.shape:',dst.shape)
img[dst>0.01*dst.max()]=[0,0,255]
cv2.imshow('dst',img) 
cv2.waitKey(0) 
cv2.destroyAllWindows()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1612055.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小而强,大不同:小模型SLM在人工智能时代的影响

小模型的优势越来越明显了 在人工智能领域的竞赛中,小型语言模型(SLM)正在崛起,挑战传统观念。虽然大型语言模型(LLM)曾占据主导地位,但SLM凭借其小巧、高效和适应性强的优势,正在推…

【php开发工程师系统性教学】——Laravel框架(验证码)的配置和使用的保姆式教程

👨‍💻个人主页:开发者-曼亿点 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 曼亿点 原创 👨‍💻 收录于专栏&#xff1a…

决策树分类任务实战(python 代码详解)

目录 一、导入库、数据集、并划分训练集和测试集 二、参数调优 (一)第一种调参方法:for循环 (1)单参数优化 ①单参数优化(无K折交叉验证) ②单参数K折交叉验证 优化 (2)多参数优化 ①多参数优化(无K折交叉验证) 参数介绍: ②多参数K折交叉验证…

博客网站/部署服务器---继上篇前端页面接入后端

目录 准备工作 创建用户类博客类与连接数据库 创建博客类 创建用户类 创建连接数据库工具类 实现对数据库数据博客的操作 实现对数据库用户的操作 创建数据库语句 登录页面 前端 后端 博客列表 前端 注销登录 写入数据 判断用户是否登录 替换页面用户昵称 后…

C语言中的控制语句(循环语句while、for)

循环语句 什么是循环 重复执行代码 为什么需要循环循环的实现方式 whiledo...whilefor while语句 语法格式&#xff1a; while (条件) {循环体…… } 需求&#xff1a;跑步5圈 示例代码&#xff1a; #include <stdio.h>int main() {// 需求跑步5圈// 1. 条件变量的…

C语言 逻辑运算符

本文 我们来说 逻辑运算符 有时做出决策需要测试多个条件&#xff0c;C语言提供了用于将简单条件组合成复杂条件的逻辑运算符。 逻辑运算符 如下图 用逻辑运算符连接操作数组成的表达式称为逻辑表达式。 逻辑运算的结果只有0和1 逻辑运算的对象可以是任意数值型&#xff0c;但…

Axure RP 9中文激活版:专业原型设计工具mac/win

Axure RP 9是一款由美国Axure Software Solution公司开发的专业原型设计工具。它凭借强大的交互功能和丰富的设计素材&#xff0c;为产品经理、UI设计师、交互设计师等用户提供了高效、便捷的原型设计体验。 Axure RP 9支持快速创建线框图、流程图、原型和规格说明文档&#xf…

过零可控硅光耦与随机可控硅光耦

无过零检测 推荐型号 MOC3021无过零检测 对应的数据手册 原理框图 工作电流 过零检测 推荐型号 MOC3061 原理框图 工作电流 注意事项 随机导通型是随时打开的。都是过零时关闭 也即是说&#xff1a;过零型打开的都是一个馒头波。 参考链接 过零可控硅光耦怎么用-电路知识干…

大屏-flex布局

<div class"container"><div class"title">标题</div><div class"content"><div class"item"></div><div class"item" style"width: calc((100% - 30) / 3 * 2)"><…

Vue报错 Cannot read properties of undefined (reading ‘websiteDomains‘) 解决办法

浏览器控制台如下报错&#xff1a; Unchecked runtime.lastError: The message port closed before a response was received. Uncaught (in promise) TypeError: Cannot read properties of undefined (reading websiteDomains) at xl-content.js:1:100558 此问题困扰了…

Fannel和Calico

一 1、路由器下面每一个端口都是一个vlan,隔离了广播包 192.168.1.0和192.168.2.0他们属于不同的vlan,没有三层交换机或者路由器,他们通不了信 不在同一个vlan,也就是子网,包就会走向网关(也就是路由器那里,路由器有路由表。查看目的地192.168.2.0在b口,从b口出去vlan…

深度学习--CNN卷积神经网络(附图)

框架 让我们先看一下CNN的框架 卷积层中后是ReLu激活函数 &#xff0c;然后是深化池&#xff0c;之后是全连接&#xff0c;最后进行Softmax进行归一化。 所以&#xff0c;我们先逐一了解一下它们各个部分 全连接层 全连接层也称感知机&#xff0c;BP神经网络 全连接层&…

20240330-2-XGBoost面试题

XGBoost面试题 1. RF和GBDT的区别 相同点&#xff1a; 都是由多棵树组成&#xff0c;最终的结果都是由多棵树一起决定。 不同点&#xff1a; 集成学习&#xff1a; R F RF RF属于 B a g g i n g Bagging Bagging思想&#xff0c;而 G B D T GBDT GBDT是 B o o s t i n g Bo…

节点加密技术:保障数据传输安全的新利器

随着信息技术的快速发展&#xff0c;网络数据的安全传输问题日益凸显。节点加密技术作为一种新兴的加密手段&#xff0c;正逐渐成为保障数据传输安全的重要工具。本文将探讨节点加密技术的原理、应用及其优势&#xff0c;并分析其未来的发展趋势。 节点加密技术的原理 节点加密…

EI级 | Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网络多头注意力多变量时间序列预测

EI级 | Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网络多头注意力多变量时间序列预测 目录 EI级 | Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网络多头注意力多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matl…

(助力国赛)美赛O奖数学建模可视化!!!含代码2(箱型图、旭日图、直方图、三元图、平行坐标图、密度图、局部放大图)

众所周知&#xff0c;数学建模的过程中&#xff0c;将复杂的数据和模型结果通过可视化图形呈现出来&#xff0c;不仅能够帮助我们更深入地理解问题&#xff0c;还能够有效地向评委展示我们的研究成果。   今天&#xff0c;承接《可视化代码1》&#xff0c;作者将与大家分享《…

@reduxjs/toolkit进阶指南

虽然reduxjs/toolkit为Redux提供了开箱即用的最佳实践,但它也内置了一些强大的功能,可以极大简化Redux在复杂场景下的使用。本文将重点介绍以下进阶特性: 1.使用Immer简化不可变更新 Redux要求状态更新必须是不可变的,这意味着我们需要手动复制和更新数据,这种模式很容易出错…

Ubuntu 微调训练ChatGLM3大语言模型

Ubuntu 微调训练ChatGLM3大语言模型 LLaMA Factory 的 LoRA 微调提供了 3.7 倍的加速比&#xff0c;同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术&#xff0c;LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。 https://github.com/hiyouga…

天星金融(原小米金融)履行社会责任,提高社保政策知晓度

二十大报告指出“为民造福是立党为公、执政为民的本质要求“&#xff0c;人民幸福安康是推动高质量发展的最终目的。社会保障作为维护社会公平、增进人民福祉的基本制度&#xff0c;既是“安全网”也是“稳定器”&#xff0c;发挥着改善民生的重要作用。为进一步提升人民群众对…

接雨水 , 给定二维图,能容多少水

42. 接雨水 - 力扣&#xff08;LeetCode&#xff09; 看着就是非常常规的题目&#xff0c;所以非常有必要掌握。 最少也把O&#xff08;n^2&#xff09;的方法写出来吧。力扣官方题解的三种方法O&#xff08;n&#xff09;都挺好&#xff0c;不过可能有点难读&#xff0c;在此…