K-means和DBSCAN

news2024/9/21 1:16:54

目录

一、K-means和DBSCAN之间的主要区别

二、DBSCAN聚类算法

2.1DBSCAN聚类算法实现点集数据的聚类

2.2DBSCAN聚类算法实现鸢尾花数据集的聚类

三、K-means聚类算法

3.1K-means聚类算法实现随机数据的聚类

3.2K-means聚类算法实现鸢尾花数据集的聚类


一、K-means和DBSCAN之间的主要区别

1.聚类原理:

        K-means:K-means是一种基于距离的聚类算法,它将数据点划分为K个簇,通过最小化数据点与所属簇的质心之间的平方距离来确定聚类结果。K-means假设聚类簇为凸形,并且簇的大小差异较小。

        DBSCAN:DBSCAN是一种基于密度的聚类算法,它通过确定数据点的密度来划分聚类。DBSCAN将高密度区域视为聚类,并能够识别出噪声点和孤立点。相比于K-means,DBSCAN对聚类簇的形状没有预设要求,可以发现任意形状的聚类簇。

2.聚类数量:

        K-means:K-means需要预先指定聚类的数量K。这是因为K-means是一个划分式聚类方法,需要事先确定聚类簇的数量,然后将数据点划分为K个簇。

        DBSCAN:DBSCAN不需要预先指定聚类的数量。它根据数据点的密度来决定聚类的形状和数量,可以自动发现不同大小和形状的聚类簇。

3.处理噪声和孤立点:

        K-means:K-means对噪声和孤立点敏感。它会将这些数据点分配到离它们最近的聚类簇中,即使这些数据点在实际中并不属于任何簇。

        DBSCAN:DBSCAN能够有效地处理噪声和孤立点。它将这些数据点标记为噪声或边界点,不归属于任何聚类簇。

4.参数选择:

        K-means:K-means需要事先指定聚类的数量K,这需要一定的先验知识或通过试验和评估来确定最佳的K值。

        DBSCAN:DBSCAN需要调整两个关键参数:领域半径(eps)和最小样本数(min_samples)。这些参数的选择可以影响聚类结果,需要根据数据集的特点进行调优。

二、DBSCAN聚类算法

2.1DBSCAN聚类算法实现点集数据的聚类

代码:

from sklearn import datasets
import numpy as np
import random
import matplotlib.pyplot as plt
import time
import copy


def find_neighbor(j, x, eps):
    N = list()
    for i in range(x.shape[0]):
        temp = np.sqrt(np.sum(np.square(x[j] - x[i])))  # 计算欧式距离
        if temp <= eps:
            N.append(i)
    return set(N)


def DBSCAN(X, eps, min_Pts):
    k = -1
    neighbor_list = []  # 用来保存每个数据的邻域
    omega_list = []  # 核心对象集合
    gama = set([x for x in range(len(X))])  # 初始时将所有点标记为未访问
    cluster = [-1 for _ in range(len(X))]  # 聚类
    for i in range(len(X)):
        neighbor_list.append(find_neighbor(i, X, eps))
        if len(neighbor_list[-1]) >= min_Pts:
            omega_list.append(i)  # 将样本加入核心对象集合
    omega_list = set(omega_list)  # 转化为集合便于操作
    while len(omega_list) > 0:
        gama_old = copy.deepcopy(gama)
        j = random.choice(list(omega_list))  # 随机选取一个核心对象
        k = k + 1
        Q = list()
        Q.append(j)
        gama.remove(j)
        while len(Q) > 0:
            q = Q[0]
            Q.remove(q)
            if len(neighbor_list[q]) >= min_Pts:
                delta = neighbor_list[q] & gama
                deltalist = list(delta)
                for i in range(len(delta)):
                    Q.append(deltalist[i])
                    gama = gama - delta
        Ck = gama_old - gama
        Cklist = list(Ck)
        for i in range(len(Ck)):
            cluster[Cklist[i]] = k
        omega_list = omega_list - Ck
    return cluster


X1, y1 = datasets.make_circles(n_samples=2000, factor=.6, noise=.02)
X2, y2 = datasets.make_blobs(n_samples=400, n_features=2, centers=[[1.2, 1.2]], cluster_std=[[.1]], random_state=9)
X = np.concatenate((X1, X2))
eps = 0.08
min_Pts = 10
begin = time.time()
C = DBSCAN(X, eps, min_Pts)
end = time.time()
plt.figure()
plt.scatter(X[:, 0], X[:, 1], c=C)
plt.show()

结果:

2.2DBSCAN聚类算法实现鸢尾花数据集的聚类

代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.cluster import DBSCAN
from sklearn.decomposition import PCA

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data

# 使用PCA进行数据降维
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

# 使用DBSCAN进行聚类
dbscan = DBSCAN(eps=0.4, min_samples=3)
labels = dbscan.fit_predict(X_pca)

# 绘制聚类结果
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=labels)
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('DBSCAN Clustering on Iris Dataset')
plt.show()

结果:

三、K-means聚类算法

3.1K-means聚类算法实现随机数据的聚类

代码:

import torch
import math
import matplotlib.pyplot as plt


def dis(a, b):
    return math.sqrt((a[0] - b[0]) * (a[0] - b[0]) + (a[1] - b[1]) * (a[1] - b[1]))


X = torch.randn(2000) * 100
y = torch.randn(2000) * 100
C = torch.zeros(2000)

K = 5
CentPoint = []

for i in range(K):
    CentPoint.append([torch.randint(-100, 100, (1,)).item(),
                      torch.randint(-100, 100, (1,)).item()])

print(CentPoint)
for p in range(10):
    NewPoint = [[0, 0] for i in range(K)]
    for i in range(len(X)):
        mDis = 1e9
        mC = 0
        for j in range(len(CentPoint)):
            cp = CentPoint[j]
            D = dis([X[i].item(), y[i].item()], cp)
            if mDis > D:
                mDis = D
                mC = j
        C[i] = mC
        NewPoint[mC][0] += X[i].item()
        NewPoint[mC][1] += y[i].item()

    for i in range(K):
        CentPoint[i][0] = NewPoint[i][0] / 2000
        CentPoint[i][1] = NewPoint[i][1] / 2000
    print(CentPoint)

cc = list(C)
for i in range(len(X)):
    if cc[i] == 0:
        plt.plot(X[i].item(), y[i].item(), 'r.')
    elif cc[i] == 1:
        plt.plot(X[i].item(), y[i].item(), 'g.')
    elif cc[i] == 2:
        plt.plot(X[i].item(), y[i].item(), 'b.')
    elif cc[i] == 3:
        plt.plot(X[i].item(), y[i].item(), color='pink', marker='.')
    elif cc[i] == 4:
        plt.plot(X[i].item(), y[i].item(), color='orange', marker='.')

for CP in CentPoint:
    plt.plot(CP[0], CP[1], color='black', marker='X')

plt.show()

3.2K-means聚类算法实现鸢尾花数据集的聚类

代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data

# 使用PCA进行数据降维
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

# 使用K-means进行聚类
kmeans = KMeans(n_clusters=3, random_state=0)
labels = kmeans.fit_predict(X_pca)

# 绘制聚类结果
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=labels)
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], marker='x', color='red', label='Centroids')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('K-means Clustering on Iris Dataset')
plt.legend()
plt.show()

结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1611788.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【点云语义分割】弱监督点云语义分割-双教师指导的对比学习

Weakly Supervised Learning for Point Cloud Semantic Segmentation With Dual Teacher 摘要&#xff1a; 为了增强特征学习能力&#xff0c;我们在这项工作中引入了双教师指导的对比学习框架&#xff0c;用于弱监督点云语义分割。双教师框架可以减少子网络耦合&#xff0c;促…

LeetCode - 283.移动零

题目链接&#xff1a; LeetCode - 283.移动零 题目分析&#xff1a; ​​​​​ 题解代码&#xff1a; #include<iostream> #include<vector> using namespace std;class Solution { public:void moveZeroes(vector<int>& nums) {for (int cur 0, des…

4步生成高质量图像,Stable Diffusion WebUI 1.9.0来了!

上周Stable Diffusion WebUI正式发布了1.9.0版本&#xff0c;我也第一时间把AutoDL镜像升级到了最新版本&#xff0c;有几个比较重要的更新再和大家同步下。 1、为SDXL-Lightning模型使用SGM统一调度器 SDXL-Lightning由字节跳动开源&#xff0c;是一款闪电般的快速文生图模型…

插入排序的可视化实现(Python)

插入排序的Python代码 import tkinter as tk import random import timeclass InsertionSortVisualizer:def __init__(self, root, canvas_width800, canvas_height400, num_bars10):self.root rootself.canvas_width canvas_widthself.canvas_height canvas_heightself.nu…

【从浅学到熟知Linux】基础IO第三弹=>文件系统介绍、软链接与硬链接(含磁盘结构、文件系统存储原理、软硬链接的创建、原理及应用详解)

&#x1f3e0;关于专栏&#xff1a;Linux的浅学到熟知专栏用于记录Linux系统编程、网络编程等内容。 &#x1f3af;每天努力一点点&#xff0c;技术变化看得见 文章目录 理解文件系统物理角度认识磁盘逻辑角度认识磁盘磁盘寻址磁盘中的寄存器 磁盘存储管理 软链接与硬链接软链接…

60.网络游戏逆向分析与漏洞攻防-利用数据包构建角色信息-根据数据包内容判断数据包作用

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 如果看不懂、不知道现在做的什么&#xff0c;那就跟着做完看效果 现在的代码都是依据数据包来写的&#xff0c;如果看不懂代码&#xff0c;就说明没看懂数据包…

docker (CentOS,ubuntu)安装及常用命令

Docker和虚拟机一样&#xff0c;都拥有环境隔离的能力&#xff0c;但它比虚拟机更加轻量级&#xff0c;可以使资源更大化地得到应用 Client&#xff08;Docker客户端&#xff09;&#xff1a;是Docker的用户界面&#xff0c;可以接受用户命令&#xff08;docker build&#xff…

【JavaSE】异常

欢迎关注个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗~ 如有错误&#xff0c;欢迎指出~ 目录 认识异常 异常分类 举例 栈溢出错误 空指针异常&#xff08;运行时异常&#xff09; 编译时异常 处理异常 抛出 异常 程序本身触发异常 手动抛出异常 举例 利用try ca…

C++修炼之路之多态--多态的条件与例外,重载+重写+重定义

目录 前言 一&#xff1a;构成多态的条件及一些特殊情况&#xff08;前提是构成父子类&#xff09; 1.多态是在不同的继承关系的类对象&#xff0c;去调用同一函数&#xff0c;产生了不同的结果 2.两个条件 3.三同的两个例外 1.协变---返回值类型可以不同&#xff0c;但必…

【简单讲解下Stylus入门使用方法】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…

从OWASP API Security TOP 10谈API安全

1.前言 应用程序编程接口&#xff08;API&#xff09;是当今应用驱动世界创新的一个基本元素。从银行、零售、运输到物联网、 自动驾驶汽车、智慧城市&#xff0c;API 是现代移动、SaaS 和 web 应用程序的重要组成部分&#xff0c;可以在面向客 户、面向合作伙伴和内部的应用程…

数据结构 -- 二叉树二叉搜索树

二叉树 二叉树是这么一种树状结构&#xff1a;每个节点最多有两个孩子&#xff0c;左孩子和右孩子 重要的二叉树结构 完全二叉树&#xff08;complete binary tree&#xff09;是一种二叉树结构&#xff0c;除最后一层以外&#xff0c;每一层都必须填满&#xff0c;填充时要遵…

【Windows游戏】大头菜小子抢银行游戏介绍

游戏介绍 今天写的是一款游戏&#xff0c;叫《大头菜小子抢银行》。 《大头菜小子抢银行》是《大头菜小子避税历险记》的续作&#xff0c;玩家需要联手泡菜团队&#xff0c;进行史上最奇怪的劫案&#xff0c;绑架人质&#xff0c;偷取珍贵财报&#xff0c;探索植物银行的黑暗…

MapReduce工作流程(Hadoop3.x)

MapReduce 是一种用于并行处理大规模数据集的——编程模型和处理框架。它通常用于分布式计算环境中&#xff0c;如Apache Hadoop。 工作流程 1. 切分阶段&#xff08;Splitting&#xff09;&#xff1a; 数据集被分成多个数据块&#xff0c;每个数据块的大小通常在64MB到12…

nginx反向代理及负载均衡

node1192.168.136.55Nginx主负载均衡器node3192.168.136.57Web01服务器node4192.168.136.58Web02服务器node5192.168.135.131客户端&#xff08;测试&#xff09; nginx反向代理 1. 安装nginx 三台机器都安装nginx yum install nginx -y 2. 配置用于测试的Web服务(以下操作…

C++进阶:搜索树

目录 1. 二叉搜索树1.1 二叉搜索树的结构1.2 二叉搜索树的接口及其优点与不足1.3 二叉搜索树自实现1.3.1 二叉树结点结构1.3.2 查找1.3.3 插入1.3.4 删除1.3.5 中序遍历 2. 二叉树进阶相关练习2.1 根据二叉树创建字符串2.2 二叉树的层序遍历I2.3 二叉树层序遍历II2.4 二叉树最近…

ChatGPT研究论文提示词集合1-【主题选择与问题研究、文献综述】

点击下方▼▼▼▼链接直达AIPaperPass &#xff01; AIPaperPass - AI论文写作指导平台 目录 1.主题选择与问题定义 2.文献综述 3.书籍介绍 AIPaperPass智能论文写作平台 近期小编按照学术论文的流程&#xff0c;精心准备一套学术研究各个流程的提示词集合。总共14个步骤…

AI翻译英语PDF文档的3种方法

短的文章&#xff0c;直接丢进kimichat、ChatGPT里面很快就可以翻译完成&#xff0c;而且效果很佳。但是&#xff0c;很长的PDF文档整篇需要翻译&#xff0c;怎么办呢&#xff1f; ●腾讯交互翻译TranSmart https://transmart.qq.com/ 软件下载后&#xff0c;点击左边的文件翻…

天才简史——Sylvain Calinon

一、研究方向 learning from demonstration&#xff08;LfD&#xff09;领域的专家&#xff0c;机器人红宝书&#xff08;Springer handbook of robotics&#xff09;Robot programming by demonstration章节的合作者。主要研究兴趣包括&#xff1a; 机器人学习、最优控制、几…

从零自制docker-11-【pivotRoot切换实现文件系统隔离】

文章目录 busyboxdocker run -d busybox topcontainerId(docker ps --filter "ancestorbusybox:latest"|grep -v IMAGE|awk {print $1})docker export -o busybox.tar $containerId or sudo docker export 09bbf421d93f > ./busybox.tar tar -xvf busybox.tar -C …