von Mises-Fisher Distribution (代码解析)

news2025/1/11 0:47:15

torch.distribution 中包含了很多概率分布的实现,本文首先通过均匀分布来说明 Distribution 的具体用法, 然后再解释 von Mises-Fisher 分布的实现, 其公式推导见 von Mises-Fisher Distribution.

1. torch.distribution.Distribution

以下是 Uniform 的源码:

class Uniform(Distribution):
	r"""
	Generates uniformly distributed random samples from the half-open interval
	``[low, high)``.

	Example::
		>>> m = Uniform(torch.tensor([0.0]), torch.tensor([5.0]))
		>>> m.sample()  # uniformly distributed in the range [0.0, 5.0)
		>>> # xdoctest: +SKIP
		tensor([ 2.3418])

	Args:
		low (float or Tensor): lower range (inclusive).
		high (float or Tensor): upper range (exclusive).
	"""
	# TODO allow (loc,scale) parameterization to allow independent constraints.
	arg_constraints = {
		"low": constraints.dependent(is_discrete=False, event_dim=0),
		"high": constraints.dependent(is_discrete=False, event_dim=0),
	}
	has_rsample = True

	@property
	def mean(self):
		return (self.high + self.low) / 2

	@property
	def mode(self):
		return nan * self.high

	@property
	def stddev(self):
		return (self.high - self.low) / 12 ** 0.5

	@property
	def variance(self):
		return (self.high - self.low).pow(2) / 12

	def __init__(self, low, high, validate_args=None):
		self.low, self.high = broadcast_all(low, high)

		if isinstance(low, Number) and isinstance(high, Number):
			batch_shape = torch.Size()
		else:
			batch_shape = self.low.size()
		super().__init__(batch_shape, validate_args=validate_args)

		if self._validate_args and not torch.lt(self.low, self.high).all():
			raise ValueError("Uniform is not defined when low>= high")

	def expand(self, batch_shape, _instance=None):
		new = self._get_checked_instance(Uniform, _instance)
		batch_shape = torch.Size(batch_shape)
		new.low = self.low.expand(batch_shape)
		new.high = self.high.expand(batch_shape)
		super(Uniform, new).__init__(batch_shape, validate_args=False)
		new._validate_args = self._validate_args
		return new

	@constraints.dependent_property(is_discrete=False, event_dim=0)
	def support(self):
		return constraints.interval(self.low, self.high)

	def rsample(self, sample_shape=torch.Size()):
		shape = self._extended_shape(sample_shape)
		rand = torch.rand(shape, dtype=self.low.dtype, device=self.low.device)
		return self.low + rand * (self.high - self.low)

	def log_prob(self, value):
		if self._validate_args:
			self._validate_sample(value)
		lb = self.low.le(value).type_as(self.low)
		ub = self.high.gt(value).type_as(self.low)
		return torch.log(lb.mul(ub)) - torch.log(self.high - self.low)

	def cdf(self, value):
		if self._validate_args:
			self._validate_sample(value)
		result = (value - self.low) / (self.high - self.low)
		return result.clamp(min=0, max=1)

	def icdf(self, value):
		result = value * (self.high - self.low) + self.low
		return result

	def entropy(self):
		return torch.log(self.high - self.low)

下面将依次从上到下进行解释:

1.1 首先是一个使用例子
import torch
from torch import distributions

m = distributions.Uniform(torch.tensor([0.0]), torch.tensor([5.0]))
s = m.sample()
print(s)  # tensor([1.7908])

实际上 Uniform(0.0, 5.0) 也是可以的, 参数说明:

Args:
	low (float or Tensor): lower range (inclusive).
	high (float or Tensor): upper range (exclusive).

你也可以创建向量的均匀分布, 如:

m = distributions.Uniform(torch.tensor([0.0, 1.0]), torch.tensor([5.0, 1.01]))
s = m.sample()
print(s)  # tensor([1.5399, 1.0046])

甚至可以 floatTensor 混合:

m = distributions.Uniform(1.0, torch.tensor([5.0, 1.01]))
s = m.sample()
print(s)  # tensor([2.4717, 1.0079])

这是因为 Uniform 中使用了 distributions.utils.broadcast_all(*values) 将参数进行了广播: 先将非 tensor 转化为 tensor, 再通过 torch.broadcast_tensors(*values) 函数进行广播. 本例相当于:

Uniform(torch.tensor([1.0, 1.0]), torch.tensor([5.0, 1.01]))
1.2 arg_constraints
arg_constraints = {
	"low": constraints.dependent(is_discrete=False, event_dim=0),
	"high": constraints.dependent(is_discrete=False, event_dim=0),
}

对参数做一些限制, 包括类型和范围等, 具体请参见 constraints.py. 这里大概是限制非离散吧, 看不太懂.

然后, class Distribution 构造函数中会对参数进行检查, 除非 validate_args=False 或者执行 Python 命令时加上 -O. 因为各种分布都继承自 class Distribution, 所以基本都会检查.

1.3 has_rsample=True

关于 Reparameterization Trick, 文心一言说:

Reparameterization Trick 的基本思想是将随机变量 Z Z Z 表达为某个确定性函数 g ( ϵ ) g(\epsilon) g(ϵ) 的形式,其中 ϵ \epsilon ϵ 是从一个简单的分布(如标准正态分布)中采样得到的。这样,我们可以将关于 Z Z Z 的梯度转化为关于 ϵ \epsilon ϵ 的梯度,而 ϵ \epsilon ϵ 的采样过程是确定的、可微分的。
例如,考虑从均值为 μ \mu μ、标准差为 σ \sigma σ 的正态分布中采样 Z Z Z 的情况。我们可以将 Z Z Z 重写为: Z = μ + σ ⋅ ϵ   ⇔   ϵ = Z − μ σ [ 标准化 ] Z = \mu + \sigma \cdot \epsilon ~ \Leftrightarrow ~ \epsilon = \frac{Z-\mu}{\sigma}[标准化] Z=μ+σϵ  ϵ=σZμ[标准化] 其中 ϵ \epsilon ϵ 是从标准正态分布中采样得到的。这样,我们就将随机采样 Z Z Z 的过程转化为了一个确定性函数 g ( ϵ ) = μ + σ ⋅ ϵ g(\epsilon) = \mu + \sigma \cdot \epsilon g(ϵ)=μ+σϵ。现在,我们可以直接计算关于 ϵ \epsilon ϵ 的梯度,从而间接地得到关于 Z Z Z 的梯度

其实这么表述有点绕, 大部分的博文也这么讲, 什么"关于 Z Z Z 的梯度"? “关于 ϵ \epsilon ϵ 的梯度”? 平时都是求关于普通变量的梯度, 咋还对随机变量求梯度了?

不过看有一些博文提到 GAN 网络求生成分布的事, 想一想大概就明白了: GAN 网络在寻求一个能生成类似训练数据的分布, 用 Z Z Z 表示服从该分布的随机变量, 想通过梯度优化完成这个求解过程, 就不恰当地表述为 “关于 Z Z Z 的梯度”[甚至有些人表述为"对采样过程的梯度"], 实际上是"分布的梯度", 因为优化过程中变化的是分布, 而不是 Z Z Z 在变化, Z Z Z 服从的分布在变化.

我的理解是, 这个待求分布本身是无法直接表示的, 你不可能从一个未知的分布中采样, 即采样本身是无法实现的, 但它却可以间接地由更简单的、能表示出来的、能采样的分布表示出来, 如上面说的 Z ∼ N ( μ , σ 2 ) Z \sim N(\mu, \sigma^2) ZN(μ,σ2), 而 μ , σ \mu, \sigma μ,σ 都是未知的, 用参数化的方式表示为 μ + σ ⋅ ϵ \mu + \sigma \cdot \epsilon μ+σϵ 后, 便能方便地从 N ( 0 , 1 ) N(0, 1) N(0,1) 采样, 并对参数 μ , σ \mu, \sigma μ,σ 求梯度以更新分布.

故, 表述为 “关于分布参数的梯度” 更好.

回到 Uniform, 其 has_rsample=True 应该就是指其有 Reparameterization Trick, 下面的

def rsample(self, sample_shape=torch.Size()):
	shape = self._extended_shape(sample_shape)
	rand = torch.rand(shape, dtype=self.low.dtype, device=self.low.device)
	return self.low + rand * (self.high - self.low)

就是其 Reparameterization 的过程, 通过对 U ( 0 , 1 ) U(0,1) U(0,1) 的采样 + self.low + rand * (self.high - self.low) 的可微函数, 表示了对 U ( l o w , h i g h ) U(low, high) U(low,high) 的采样, 且, 如果

self.low = torch.tensor(init_low, requires_grad=True)
self.high = torch.tensor(init_high, requires_grad=True)

就可以通过梯度优化求解想要的 U ( l o w , h i g h ) U(low, high) U(low,high) 了.

1.4 概率分布的属性

包括: m e a n mean mean, m o d e mode mode, s t d std std, v a r i a n c e variance variance, e n t r o p y entropy entropy 等基本属性, 还有一些相关的函数:

  • cumulative density/mass function cdf(value);
  • inverse cumulative density/mass function icdf(value);
    这个函数非常有用, Inverse Transform Sampling 中用其进行采样. 从 U ( 0 , 1 ) U(0,1) U(0,1) 中采样一个 u u u, 然后令 x = F − 1 ( u ) x = F^{-1}(u) x=F1(u) 就是所求随机变量 X X X 的一个采样.
  • log of the probability density/mass function log_prob(value)

2. von Mises-Fisher 分布的实现

代码来源于EBSW, 有改动.

2.1 概述
import math

import torch
from torch import distributions
from torch.distributions import constraints
from torch.distributions.kl import register_kl
from torch.nn import functional as func

from hyperspherical_uniform import HypersphericalUniform
from ive import ive  # 采样过程并没有用到 ive, 所以我扯那一拨关于 Bessel Function 的梯度问题并没有用.


class VonMisesFisher(distributions.Distribution):
	"""
	一般来说, 维度 p 固定了, 那么优化的参数就是 kappa 和 mu 了
	mu 不在 Bessel Function Ip/2-1 中, 所以梯度计算简单, PyTorch 可自己搞定
	kappa 是 Ip/2-1(k) 的参数, 不可导, 则计算梯度需要用户编写 autograd.Function
	"""
	arg_constraints = {  # 对参数的一些限制, 如果 self.xxx 没有被设置为被限制的类型, 则报错
		'loc': constraints.real,
		'scale': constraints.positive,
	}
	support = constraints.real  # 支撑集
	has_rsample = True
	_mean_carrier_measure = 0

	def __init__(self, loc, scale, validate_args=None, k=20):
		"""
		:param loc: μ 待优化
		:param scale: kappa, 集中参数
		:param validate_args: 是否检查类型限制
		:param k: 那这个 k 是啥? for sampling algorithm, 采样算法中用到的参数: 预采样个数
		"""
		self.dtype = loc.dtype
		self.loc = loc
		self.scale = scale
		self.device = loc.device
		self.__m = loc.shape[-1]  # 维度(p)
		
		# >>> 用于采样算法 >>>
		self.__e1 = torch.Tensor([1.0] + [0] * (loc.shape[-1] - 1)).to(self.device)  # [1, 0, 0, ...]
		self.k = k
		self.__normal = distributions.Normal(0, 1)
		self.__uniform = distributions.Uniform(0, 1)
		self.__beta = distributions.Beta(
			torch.tensor((self.__m - 1) / 2, dtype=torch.float64),
			torch.tensor((self.__m - 1) / 2, dtype=torch.float64)
		)
		self.__b, self.__a, self.__d = self._bad()
		# <<< 用于采样算法 <<<
		super(VonMisesFisher, self).__init__(loc.size(), validate_args=validate_args)

继承 distributions.Distribution 类, 设置了分布的一些参数, 并为 sampling algorithm 做了一些准备.

2.2 mean
@property
def mean(self):
	# mean 不应该是 loc=μ 吗? hhh!!! mean 和 mean direction 不是一回事
	value1 = ive(self.__m / 2, self.scale)
	value2 = ive(self.__m / 2 - 1, self.scale)
	Ap_kappa = value1 / value2  # 均值的长度 Ap_kappa = R = |mean(x_i)|
	mean_value = Ap_kappa * self.loc
	return mean_value

刚开始想当然地以为 μ = l o c \mu = loc μ=loc 就是 m e a n mean mean, 其实不然, 这只是平均方向, 这里 m e a n = 1 N ∑ i N x i mean=\frac{1}{N}\sum_i^N \bm{x}_i mean=N1iNxi, 叫 expected value.

其中

均值的长度, 但为何如此? 维基百科也未说明, 于是进行了推导.

代码中的第一类修正 Bessel Function iveModified Bessel Function of the First Kind.

2.3 标准差 stddev
@property
def stddev(self):
	"""
	:return: 分布的标准差, 怎么可能是 scale 呢
	"""
	return self.scale

不太懂, 按理说计算应该是按公式来: ∫ 球 ∣ x − μ ∣ f p ( x ; μ , κ ) d x \int_{球} |\bm{x}-\bm{\mu}| f_p(\bm{x};\bm{\mu},\kappa)d\bm{x} xμfp(x;μ,κ)dx 咱也不会这种积分, 但从极限看, 当 κ → + ∞ \kappa \rightarrow +\infin κ+ 时, 形成 μ \bm{\mu} μ 处的狄拉克分布, 标准差为 0 0 0, 所以代码中把 self.scale 当作标准差肯定不对, 1/self.scale 还差不多.

2.4 entropy
def entropy(self):
	apk = ive(self.__m / 2, self.scale) / ive((self.__m / 2) - 1, self.scale)
	output = -self.scale * apk
	return output.view(*(output.shape[:-1])) + self._log_normalization()


此处有详细的推导.

output = -self.scale * apk 已经计算了 − κ A p ( κ ) -\kappa A_p(\kappa) κAp(κ), 而 − l o g C p ( κ ) -log C_p(\kappa) logCp(κ) 的计算是:

def _log_normalization(self):  # -logCp(kappa)
	output = -(
			(self.__m / 2 - 1) * torch.log(self.scale)
			- (self.__m / 2) * math.log(2 * math.pi)
			- (self.scale + torch.log(ive(self.__m / 2 - 1, self.scale)))
	)
	return output.view(*(output.shape[:-1]))

l o g C p ( κ ) = l o g ( κ p / 2 − 1 ( 2 π ) p / 2 I p / 2 − 1 ( κ ) ) = ( p 2 − 1 ) l o g ( κ ) − p 2 l o g ( 2 π ) − l o g ( I p / 2 − 1 ( κ ) ) \begin{aligned} log C_p(\kappa) &= log\left( \frac{\kappa^{p/2-1}}{(2\pi)^{p/2} I_{p/2-1}(\kappa)} \right) \\ &= (\frac{p}{2}-1)log\left( \kappa \right) - \frac{p}{2}log\left( 2\pi \right) - log\left( I_{p/2-1}(\kappa) \right) \end{aligned} logCp(κ)=log((2π)p/2Ip/21(κ)κp/21)=(2p1)log(κ)2plog(2π)log(Ip/21(κ)) 而代码中用的 ive I p / 2 − 1 ( κ ) ∗ e x p ( − κ ) I_{p/2-1}(\kappa) * exp(-\kappa) Ip/21(κ)exp(κ).

2.5 log_prob
def log_prob(self, x):
	return self._log_unnormalized_prob(x) - self._log_normalization()

def _log_unnormalized_prob(self, x):  # k<μ,x>
	output = self.scale * (self.loc * x).sum(-1, keepdim=True)
	return output.view(*(output.shape[:-1]))

概率密度函数的对数.

2.6 sampling
def sample(self, shape=torch.Size()):
	with torch.no_grad():  # rsample 是 reparameterized sample, 便于梯度更新以调整分布参数
		return self.rsample(shape)

reparameterized 与否采样过程都一样, 不一样的地方就在于有没有参数需要更新, 此处的 sample() 是不更新参数的.

def rsample(self, shape=torch.Size()):
	"""
	Reparameterized Sample: 从一个简单的分布通过一个参数化变换使得其满足一个更复杂的分布;
	此处, loc 是可变参数, 通过 radial-tangential decomposition 采样;
	梯度下降更新 loc, 以获得满足要求的 vMF.
	:param shape: 样本的形状
	:return: [shape|m] 的张量, shape 个 m 维方向向量
	"""
	shape = shape if isinstance(shape, torch.Size) else torch.Size(shape)
	w = (
		self._sample_w3(shape=shape)
		if self.__m == 3
		else self._sample_w_rej(shape=shape)
	)
	v = (
		self.__normal.sample(torch.Size(shape + self.loc.shape))
		.to(self.device)
		.transpose(0, -1)[1:]
	).transpose(0, -1)
	v = func.normalize(v, dim=-1)

	w_ = torch.sqrt(torch.clamp(1 - (w ** 2), 1e-10))
	x = torch.cat((w, w_ * v), -1)
	z = self._householder_rotation(x)

	return z.type(self.dtype)

rsample 的意思是 reparameterized sampling, 不光要采样, 采样过程中会有待优化参数, 上面已经说过. 这个 v M F vMF vMF 的采样不算复杂, 主要是拒绝采样, 但推导起来相当麻烦, 感兴趣的见详细过程. 大概的过程是, 根据概率密度:

(其中 ν = p 2 − 1 \nu=\frac{p}{2}-1 ν=2p1). 采样一个 t t t, 也就是代码中的 w, 然后从均匀球上采样一个 p − 1 p-1 p1 维的单位向量 v \bm{v} v, 拼接 [ t ∣ 1 − t 2 v ] [t|\sqrt{1-t^2}\bm{v}] [t1t2 v], 就是一个 v M F vMF vMF 采样.

通过查找 self.loc, 发现在采样过程中只有在最后的 Householder Transform 处出现, 可见其微分还是简单明了的, 下面会说.

p = 3 p=3 p=3 时, 可求得 f r a d i a l ( t ; κ , p ) f_{radial}(t;\kappa,p) fradial(t;κ,p) 的累积分布函数, 再通过 Inverse Transform Sampling 进行采样, 详情见 5.1 p = 3 p=3 p=3 时的 Inverse Transform Sampling. 代码如下:

def _sample_w3(self, shape: torch.Size):
	shape = torch.Size(shape + self.scale.shape)  # torch.Size 继承自 tuple, 其 + 运算就是连接操作
	# https://en.wikipedia.org/wiki/Von_Mises%E2%80%93Fisher_distribution # 3-D sphere
	u = self.__uniform.sample(shape).to(self.device)
	w = 1 + torch.stack(  # 这个公式是按 μ=(0,0,1) 计算的 w, arccosw=φ, 即 w=z
		[  # 最后的旋转可能是旋转至按真正的 μ 采样结果
			torch.log(u),
			torch.log(1 - u) - 2 * self.scale
		],
		dim=0
	).logsumexp(0) / self.scale
	return w
Householder Transform

上面还只是采样了 μ = e 1 = [ 1 , 0 , ⋯   , 0 ] \bm{\mu}=e_1=[1,0, \cdots, 0] μ=e1=[1,0,,0] 的情况, 那么一般的 μ \bm{\mu} μ 呢? 好办, 再旋转一下就好了吧?

def _householder_rotation(self, x):
	# 关于 self.loc, 也许只在 rotation 的时候用了一下, 前面的采样估计是按
	# 某个特定的 μ 进行采样, 采好之后, rotate 一下就相当于按 loc 采样了
	# 所以说, 前面那一大坨的计算, 并不涉及 loc 的优化, 它们只是旋转前的 sample, 旋转才是对 loc 梯度有影响的
	u = func.normalize(self.__e1 - self.loc, dim=-1)
	z = x - 2 * (x * u).sum(-1, keepdim=True) * u
	return z
高维情况

高维情况复杂一些. 无法求得 f r a d i a l ( t ; κ , p ) f_{radial}(t;\kappa,p) fradial(t;κ,p) 的累积分布函数, 那么只能用拒绝采样法了. 其数学推导见 5.2 p > 3 p > 3 p>3 时的 Rejection Sampling. 最终的采样算法是:

兑成代码就是:

def _sample_w_rej(self, shape: torch.Size, eps=1e-20):  # 所以这个也是求 z?
	#  matrix while loop: samples a matrix of [A, k] samples, to avoid looping all together
	b, a, d = [
		e.repeat(*shape, *([1] * len(self.scale.shape))).reshape(-1, 1)
		for e in (self.__b, self.__a, self.__d)
	]
	w, e, bool_mask = (
		torch.zeros_like(b).to(self.device),
		torch.zeros_like(b).to(self.device),
		torch.eq(torch.ones_like(b), 1).to(self.device)
	)

	sample_shape = torch.Size([b.shape[0], self.k])
	shape = shape + torch.Size(self.scale.shape)

	uniform = distributions.Uniform(0 + eps, 1 - eps)
	while bool_mask.sum() != 0:
		e_ = self.__beta.sample(sample_shape).to(self.device).type(self.dtype)
		u = uniform.sample(sample_shape).to(self.device).type(self.dtype)

		w_ = (1 - (1 + b) * e_) / (1 - (1 - b) * e_)
		t = (2 * a * b) / (1 - (1 - b) * e_)

		accept = ((self.__m - 1.0) * t.log() - t + d) > torch.log(u)
		accept_idx = self.first_nonzero(accept, dim=-1, invalid_val=-1).unsqueeze(1)
		accept_idx_clamped = accept_idx.clamp(0)
		# we use .abs(), in order to not get -1 index issues, the -1 is still used afterward
		w_ = w_.gather(1, accept_idx_clamped.view(-1, 1))
		e_ = e_.gather(1, accept_idx_clamped.view(-1, 1))

		reject = accept_idx < 0
		accept = ~reject if torch.__version__ >= '1.2.0' else 1 - reject

		w[bool_mask * accept] = w_[bool_mask * accept]
		e[bool_mask * accept] = e_[bool_mask * accept]

		bool_mask[bool_mask * accept] = reject[bool_mask * accept]

	return w.reshape(shape)

	@staticmethod
def first_nonzero(x, dim, invalid_val=-1):
	mask = x > 0
	idx = torch.where(
		mask.any(dim=dim),
		mask.float().argmax(dim=1).squeeze(),
		torch.tensor(invalid_val, device=x.device)
	)
	return idx

def _bad(self):
	c = torch.sqrt(4 * self.scale ** 2 + (self.__m - 1) ** 2)
	b_true = (-2 * self.scale + c) / (self.__m - 1)

	# using Taylor approximation with a smooth swift from 10 < scale < 11
	# to avoid numerical errors for large scale
	b_app = (self.__m - 1) / (4 * self.scale)
	s = torch.min(
		torch.max(
			torch.tensor([0.0], dtype=self.dtype, device=self.device),
			self.scale - 10,
		),
		torch.tensor([1.0], dtype=self.dtype, device=self.device)
	)
	b = b_app * s + b_true * (1 - s)
	a = (self.__m - 1 + 2 * self.scale + c) / 4
	d = (4 * a * b) / (1 + b) - (self.__m - 1) * math.log(self.__m - 1)
	return b, a, d
2.7 注册 KL 散度的计算函数
@register_kl(VonMisesFisher, HypersphericalUniform)
def _kl_vmf_uniform(vmf, hyu):
	return -vmf.entropy() + hyu.entropy()  # √

关于注册器, 见 decorator & register.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1610771.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

黑灰产行业简介

参考&#xff1a;2021年黑灰产行业研究及趋势洞察报告 1. 有哪些场景面临大量黑灰产攻击&#xff1f; 1.营销活动场景 -- 该场景最为猖獗 1. 抹机及接码注册&#xff1a;黑灰产会使用抹机工具修改设备参数伪装成一台新设备&#xff0c;再配合联系卡商进行手机号接码&#xf…

面试(05)————Redis篇

目录 一、项目中哪些地方使用了redis 问题一&#xff1a;发生了缓存穿透该怎么解决&#xff1f; 方案一&#xff1a;缓存空数据 方案二&#xff1a;布隆过滤器 模拟面试 问题二&#xff1a; 发生了缓存击穿该怎么解决&#xff1f; 方案一&#xff1a;互斥锁 方案二&#xff…

vue3:树的默认勾选和全选、取消全选

实现的功能&#xff0c;上面有个选择框&#xff0c;当选中全部时&#xff0c;下方树被全选 代码&#xff1a; <template><div><el-select v-model"selectAll" style"margin-bottom: 10px;" change"handleSelectAllChange">&…

Vue2 —— 学习(九)

目录 一、全局事件总线 &#xff08;一&#xff09;全局总线介绍 关系图 对图中的中间商 x 的要求 1.所有组件都能看到 2.有 $on $off $emit &#xff08;二&#xff09;案例 发送方 student 接收方 二、消息订阅和发布 &#xff08;一&#xff09;介绍 &#xff08…

4.6 CORS 支持跨域

CORS (Cross-Origin Resource Sharing &#xff09;是由 W3C 制定的一种跨域资源共享技术标准&#xff0c;其目的就是为了解决前端的跨域请求。在 Java EE 开发中&#xff0c;最常见的前端跨域请求解决方案是 JSONP &#xff0c;但JSONP 只支持 GET 请求&#xff0c;这是 个很大…

数据结构之排序了如指掌(三)

目录 题外话 正题 快速排序 Hoare法 Hoare法思路 Hoare法代码详解 挖坑法 挖坑法思路 挖坑法代码 前后指针法 前后指针法思路 前后指针法代码 小结 题外话 我们接着把没有写完的排序内容完成,快速排序其实大同小异,大家好好把思路整理一下 正题 快速排序 快速排序一…

HarmonyOS 状态管理

在声明式 UI 框架中&#xff0c;数据的改变触发 UI 的重新渲染。在 ArkUI 中不是所有数据的变化都会触发 UI 重新渲染&#xff0c;只有 状态变量 才会引起 UI 重新渲染。 状态变量 状态变量&#xff1a; 指被状态装饰器装饰的变量&#xff0c;只有这种变量的改变才会引起 UI …

(2022级)成都工业学院数据库原理及应用实验七: 数据库安全

写在前面 1、基于2022级软件工程/计算机科学与技术实验指导书 2、成品仅提供参考 3、如果成品不满足你的要求&#xff0c;请寻求其他的途径 运行环境 window11家庭版 Navicat Premium 16 Mysql 8.0.36 实验要求 1、创建数据库hospital,在hospital数据库中创建科室表De…

第一个STM32F767IGT6核心板

一. 制作原因 起先是因为参加计算机设计大赛准备的板子&#xff0c;其作用是连接OV5640摄像头来识别车牌号&#xff0c;主要外设有摄像头&#xff0c;SDRAM&#xff0c;网口等。 二. 原理图和PCB 原理图 PCB 三. 测试 1. 测试SDRAM功能 按下按键我们可以在串口中看到内存…

LTspice/Simplis仿真代码使用

LTspice/Simplis仿真代码使用 HI uu们 HI uu们,关注我的uu经常看到我上面贴了很多仿真代码,但是不知道怎么用. 今天来介绍下仿真代码怎么用, 比如说,我们用OP07做了一个跟随器,如图1所示. 图1:OP07跟随器 他的仿真代码非常简单,如下所示 XU1 N002 vout N001 N003 vout LT…

【Linux】详解进程通信中信号量的本质同步和互斥的概念临界资源和临界区的概念

一、同步和互斥的概念 1.1、同步 访问资源在安全的前提下&#xff0c;具有一定的顺序性&#xff0c;就叫做同步。在多道程序系统中&#xff0c;由于资源有限&#xff0c;进程或线程之间可能产生冲突。同步机制就是为了解决这些冲突&#xff0c;保证进程或线程之间能够按照既定…

都以为他是自杀20年后遗书曝光才明白张国荣的离世不简单

在时光的长河中&#xff0c;有些瞬间如同流星划过天际&#xff0c;短暂却又璀璨夺目。二十年前的那个春天&#xff0c;一个灵魂从这个喧嚣世界悄然离去&#xff0c;留下无尽的叹息与疑问。他就是张国荣——一位被誉为“风华绝代”的巨星。许多人曾认定他的离开是一场悲剧性的自…

计算机网络 -- 多人聊天室

一 程序介绍和核心功能 这是基于 UDP 协议实现的一个网络程序&#xff0c;主要功能是 构建一个多人聊天室&#xff0c;当某个用户发送消息时&#xff0c;其他用户可以立即收到&#xff0c;形成一个群聊。 这个程序由一台服务器和n个客户端组成&#xff0c;服务器扮演了一个接受…

element-ui合计逻辑踩坑

element-ui合计逻辑踩坑 1.快速实现一个合计 ​ Element UI所提供的el-table中提供了方便快捷的合计逻辑实现&#xff1a; ​ https://element.eleme.cn/#/zh-CN/component/table ​ 此实现方法在官方文档中介绍详细&#xff0c;此处不多赘述。 ​ 这里需要注意&#xff0c…

Don‘t fly solo! 量化之路,AI伴飞

在投资界&#xff0c;巴菲特与查理.芒格的神仙友谊&#xff0c;是他们财富神话之外的另一段传奇。巴菲特曾这样评价芒格&#xff1a;他用思想的力量拓展了我的视野&#xff0c;让我以火箭的速度&#xff0c;从猩猩进化到人类。 人生何幸能得到一知己。如果没有这样的机缘&…

每日学习笔记:C++ STL算法之容器元素变序

目录 反转元素次序 reverse(beg, end) reverse_copy(srcBeg, srcEnd, destEnd) 旋转元素 旋转&#xff1a;rotate(beg, newBeg, end) 复制同时旋转&#xff1a;rotate_copy(srcBeg, srcNewBeg, srcEnd, destBeg) 对元素做排列组合情况列举与切换 next_permutation(beg, …

国产化里程碑:明道云HAP私有部署版获信创评估证书,荣登会员单位

近期&#xff0c;明道云HAP私有部署版荣获信创产品评估证书&#xff0c;这一成就不仅标志着我们在信创领域的深入布局和持续努力获得了行业的广泛认可&#xff0c;也是对我们积极拥抱和推动国产化技术发展的肯定。更值得一提的是&#xff0c;我们还被授予“成员单位”的称号&am…

基于通达信---做T专用算法

什么是做T? 股票做T是股票市场中常见的一种投资策略,也就是股票进行T+0操作,通过当天买进的股票,在当天卖出,是股市中常见的一种超短线的操作。其中T就是指交易日,利用交易日中的股票涨跌来赚取差价。股票做T常见的类型就是正T和倒T。 1、正T 股票做正t就是指先买后卖,…

Rokid AR Lite空间计算套装发布,中国空间计算踏上差异化领先之路

动动手指、动动眼睛就可以“操控一切”&#xff0c;这种颇具科幻感、未来感的交互方式&#xff0c;令许多人感叹“未来已来”。而这令人震撼的变革背后&#xff0c;正是空间计算技术的迅猛崛起与广泛应用&#xff0c;使得这种曾经只存在于想象中的交互方式&#xff0c;如今正逐…

快速访问github

修改本地hosts文件 GitHub访问慢的原因在于域名解析&#xff0c;通过修改本地的hosts文件&#xff0c;将远程DNS解析改为本地DNS解析。 fang 步骤1&#xff1a;打开hosts文件&#xff08;没有就创建&#xff09; host所在位置&#xff1a; C:\Windows\System32\drivers\etc…