[大模型]Qwen-7B-Chat 接入langchain搭建知识库助手

news2025/1/18 11:55:01

Qwen-7B-Chat 接入langchain搭建知识库助手

环境准备

在autodl平台中租一个3090等24G显存的显卡机器,如下图所示镜像选择PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8
在这里插入图片描述

接下来打开刚刚租用服务器的JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行demo。

pip换源和安装依赖包

# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

pip install modelscope==1.9.5
pip install "transformers>=4.32.0" accelerate tiktoken einops scipy transformers_stream_generator==0.0.4 peft deepspeed
pip install -U huggingface_hub

模型下载

在已完成Qwen-7B-chat部署的基础上,我们还需要还需要安装以下依赖包。
请在终端复制粘贴以下命令,并按回车运行:

pip install langchain==0.0.292
pip install gradio==4.4.0
pip install chromadb==0.4.15
pip install sentence-transformers==2.2.2
pip install unstructured==0.10.30
pip install markdown==3.3.7

同时,我们还需要使用到开源词向量模型 Sentence Transformer

这里使用huggingface镜像下载到本地 /root/autodl-tmp/embedding_model,你也可以选择其它的方式下载

在 /root/autodl-tmp 路径下新建 download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/autodl-tmp/download.py执行下载。

import os
# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/autodl-tmp/embedding_model')

使用 modelscope 中的snapshot_download函数下载模型,第一个参数为模型名称,参数cache_dir为模型的下载路径。

/root/autodl-tmp 路径下新建 download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/autodl-tmp/download.py执行下载,模型大小为 15 GB,下载模型大概需要 10~20 分钟

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('qwen/Qwen-7B-Chat', cache_dir='/root/autodl-tmp', revision='master')

知识库建设

我们选用以下两个开源仓库作为知识库来源

  • qwen-7B-Chat
  • QwenLM

首先我们需要将上述远程开源仓库 Clone 到本地,可以使用以下命令:

# 进入到数据库盘
cd /root/autodl-tmp
# 打开学术资源加速
source /etc/network_turbo
# clone 开源仓库
git clone https://github.com/QwenLM/Qwen.git
# 关闭学术资源加速
unset http_proxy && unset https_proxy

接着,为语料处理方便,我们将选用上述仓库中所有的 markdown、txt 文件作为示例语料库。注意,也可以选用其中的代码文件加入到知识库中,但需要针对代码文件格式进行额外处理。

我们首先将上述仓库中所有满足条件的文件路径找出来,我们定义一个函数,该函数将递归指定文件夹路径,返回其中所有满足条件(即后缀名为 .md 或者 .txt 的文件)的文件路径:

import os 
def get_files(dir_path):
    # args:dir_path,目标文件夹路径
    file_list = []
    for filepath, dirnames, filenames in os.walk(dir_path):
        # os.walk 函数将递归遍历指定文件夹
        for filename in filenames:
            # 通过后缀名判断文件类型是否满足要求
            if filename.endswith(".md"):
                # 如果满足要求,将其绝对路径加入到结果列表
                file_list.append(os.path.join(filepath, filename))
            elif filename.endswith(".txt"):
                file_list.append(os.path.join(filepath, filename))
    return file_list

得到所有目标文件路径之后,我们可以使用 LangChain 提供的 FileLoader 对象来加载目标文件,得到由目标文件解析出的纯文本内容。由于不同类型的文件需要对应不同的 FileLoader,我们判断目标文件类型,并针对性调用对应类型的 FileLoader,同时,调用 FileLoader 对象的 load 方法来得到加载之后的纯文本对象:

from tqdm import tqdm
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader

def get_text(dir_path):
    # args:dir_path,目标文件夹路径
    # 首先调用上文定义的函数得到目标文件路径列表
    file_lst = get_files(dir_path)
    # docs 存放加载之后的纯文本对象
    docs = []
    # 遍历所有目标文件
    for one_file in tqdm(file_lst):
    file_type = one_file.split('.')[-1]
        if file_type == 'md':
            loader = UnstructuredMarkdownLoader(one_file)
        elif file_type == 'txt':
            loader = UnstructuredFileLoader(one_file)
        else:
            # 如果是不符合条件的文件,直接跳过
            continue
        docs.extend(loader.load())
    return docs

使用上文函数,我们得到的 docs 为一个纯文本对象对应的列表。得到该列表之后,我们就可以将它引入到 LangChain 框架中构建向量数据库。由纯文本对象构建向量数据库,我们需要先对文本进行分块,接着对文本块进行向量化。

LangChain 提供了多种文本分块工具,此处我们使用字符串递归分割器,并选择分块大小为 500,块重叠长度为 150:

from langchain.text_splitter import RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)

接着我们选用开源词向量模型 Sentence Transformer 来进行文本向量化

LangChain 提供了直接引入 HuggingFace 开源社区中的模型进行向量化的接口:

from langchain.embeddings.huggingface import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings(model_name="/root/autodl-tmp/embedding_model")

同时,我们选择 Chroma 作为向量数据库,基于上文分块后的文档以及加载的开源向量化模型,将语料加载到指定路径下的向量数据库:

from langchain.vectorstores import Chroma

# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(
    documents=split_docs,
    embedding=embeddings,
    persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

将上述代码整合在一起为知识库搭建的脚本:

# 首先导入所需第三方库
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import os

# 获取文件路径函数
def get_files(dir_path):
    # args:dir_path,目标文件夹路径
    file_list = []
    for filepath, dirnames, filenames in os.walk(dir_path):
        # os.walk 函数将递归遍历指定文件夹
        for filename in filenames:
            # 通过后缀名判断文件类型是否满足要求
            if filename.endswith(".md"):
                # 如果满足要求,将其绝对路径加入到结果列表
                file_list.append(os.path.join(filepath, filename))
            elif filename.endswith(".txt"):
                file_list.append(os.path.join(filepath, filename))
    return file_list

# 加载文件函数
def get_text(dir_path):
    # args:dir_path,目标文件夹路径
    # 首先调用上文定义的函数得到目标文件路径列表
    file_lst = get_files(dir_path)
    # docs 存放加载之后的纯文本对象
    docs = []
    # 遍历所有目标文件
    for one_file in tqdm(file_lst):
        file_type = one_file.split('.')[-1]
        if file_type == 'md':
            loader = UnstructuredMarkdownLoader(one_file)
        elif file_type == 'txt':
            loader = UnstructuredFileLoader(one_file)
        else:
            # 如果是不符合条件的文件,直接跳过
            continue
        docs.extend(loader.load())
    return docs

# 目标文件夹
tar_dir = [
    "/root/autodl-tmp/qwen",
    "/root/autodl-tmp/Qwen",
]

# 加载目标文件
docs = []
for dir_path in tar_dir:
    docs.extend(get_text(dir_path))

# 对文本进行分块
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)

# 加载开源词向量模型
embeddings = HuggingFaceEmbeddings(model_name="/root/autodl-tmp/embedding_model")

# 构建向量数据库
# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(
    documents=split_docs,
    embedding=embeddings,
    persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

运行上述脚本,即可在本地构建已持久化的向量数据库,后续直接导入该数据库即可,无需重复构建。

QwenLM 接入LangChain

为便捷构建 LLM 应用,我们需要基于本地部署的 QwenLM,自定义一个 LLM 类,将 QwenLM 接入到 LangChain 框架中。完成自定义 LLM 类之后,可以以完全一致的方式调用 LangChain 的接口,而无需考虑底层模型调用的不一致。

基于本地部署的 QwenLM 自定义 LLM 类并不复杂,我们只需从 LangChain.llms.base.LLM 类继承一个子类,并重写构造函数与 _call 函数即可:

from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig


class QwenLM(LLM):
    # 基于本地 Qwen 自定义 LLM 类
    tokenizer : AutoTokenizer = None
    model: AutoModelForCausalLM = None

    def __init__(self, model_path :str):
        # model_path: Qwen 模型路径
        # 从本地初始化模型
        super().__init__()
        print("正在从本地加载模型...")
        model_dir = '/root/autodl-tmp/qwen/Qwen-7B-Chat'
        self.tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
        self.model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True).eval()
        # Specify hyperparameters for generation
        self.model.generation_config = GenerationConfig.from_pretrained(model_dir, trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
        print("完成本地模型的加载")

    def _call(self, prompt : str, stop: Optional[List[str]] = None,
                run_manager: Optional[CallbackManagerForLLMRun] = None,
                **kwargs: Any):
        # 重写调用函数
        response, history = self.model.chat(self.tokenizer, prompt , history=[])
        return response
        
    @property
    def _llm_type(self) -> str:
        return "QwenLM"

在上述类定义中,我们分别重写了构造函数和 _call 函数:对于构造函数,我们在对象实例化的一开始加载本地部署的 Qwen 模型,从而避免每一次调用都需要重新加载模型带来的时间过长;_call 函数是 LLM 类的核心函数,LangChain 会调用该函数来调用 LLM,在该函数中,我们调用已实例化模型的 chat 方法,从而实现对模型的调用并返回调用结果。

在整体项目中,我们将上述代码封装为 LLM.py,后续将直接从该文件中引入自定义的 LLM 类。

构建检索问答链

LangChain 通过提供检索问答链对象来实现对于 RAG 全流程的封装。即我们可以调用一个 LangChain 提供的 RetrievalQA 对象,通过初始化时填入已构建的数据库和自定义 LLM 作为参数,来简便地完成检索增强问答的全流程,LangChain 会自动完成基于用户提问进行检索、获取相关文档、拼接为合适的 Prompt 并交给 LLM 问答的全部流程。

首先我们需要将上文构建的向量数据库导入进来,我们可以直接通过 Chroma 以及上文定义的词向量模型来加载已构建的数据库:

from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os

# 定义 Embeddings
embeddings = HuggingFaceEmbeddings(model_name="/root/autodl-tmp/embedding_model")

# 向量数据库持久化路径
persist_directory = 'data_base/vector_db/chroma'

# 加载数据库
vectordb = Chroma(
    persist_directory=persist_directory, 
    embedding_function=embeddings
)

上述代码得到的 vectordb 对象即为我们已构建的向量数据库对象,该对象可以针对用户的 query 进行语义向量检索,得到与用户提问相关的知识片段。

接着,我们实例化一个基于 QwenLM 自定义的 LLM 对象:

from LLM import QwenLM
llm = QwenLM(model_path = "/root/autodl-tmp/qwen")
llm.predict("你是谁")

构建检索问答链,还需要构建一个 Prompt Template,该 Template 其实基于一个带变量的字符串,在检索之后,LangChain 会将检索到的相关文档片段填入到 Template 的变量中,从而实现带知识的 Prompt 构建。我们可以基于 LangChain 的 Template 基类来实例化这样一个 Template 对象:

from langchain.prompts import PromptTemplate

# 我们所构造的 Prompt 模板
template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。
{context}
问题: {question}
有用的回答:"""

# 调用 LangChain 的方法来实例化一个 Template 对象,该对象包含了 context 和 question 两个变量,在实际调用时,这两个变量会被检索到的文档片段和用户提问填充
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)

最后,可以调用 LangChain 提供的检索问答链构造函数,基于我们的自定义 LLM、Prompt Template 和向量知识库来构建一个基于 Qwen 的检索问答链:

from langchain.chains import RetrievalQA

qa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})

得到的 qa_chain 对象即可以实现我们的核心功能,即基于 QwenLM 模型的专业知识库助手。我们可以对比该检索问答链和纯 LLM 的问答效果:

question = "什么是QwenLM"
result = qa_chain({"query": question})
print("检索问答链回答 question 的结果:")
print(result["result"])

# 仅 LLM 回答效果
result_2 = llm(question)
print("大模型回答 question 的结果:")
print(result_2)

在这里插入图片描述

可以看到,使用检索问答链生成的答案更接近知识库里的内容。

部署WebDemo

在完成上述核心功能后,我们可以基于 Gradio 框架将其部署到 Web 网页,从而搭建一个小型 Demo,便于测试与使用。

我们首先将上文的代码内容封装为一个返回构建的检索问答链对象的函数,并在启动 Gradio 的第一时间调用该函数得到检索问答链对象,后续直接使用该对象进行问答对话,从而避免重复加载模型:

# 导入必要的库
import gradio as gr
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os
from LLM import QwenLM
from langchain.prompts import PromptTemplate

def load_chain():
    # 加载问答链
    # 定义 Embeddings
    embeddings = HuggingFaceEmbeddings(model_name="/root/autodl-tmp/embedding_model")

    # 向量数据库持久化路径
    persist_directory = 'data_base/vector_db/chroma'

    # 加载数据库
    vectordb = Chroma(
        persist_directory=persist_directory,  # 允许我们将persist_directory目录保存到磁盘上
        embedding_function=embeddings
    )

    llm = QwenLM(model_path = "/root/autodl-tmp/qwen")

    template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答
    案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。
    {context}
    问题: {question}
    有用的回答:"""

    QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],
                                    template=template)

    # 运行 chain
    from langchain.chains import RetrievalQA

    qa_chain = RetrievalQA.from_chain_type(llm,
                                        retriever=vectordb.as_retriever(),
                                        return_source_documents=True,
                                        chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})
    
    return qa_chain

接着我们定义一个类,该类负责加载并存储检索问答链,并响应 Web 界面里调用检索问答链进行回答的动作:

class Model_center():
    """
    存储问答 Chain 的对象 
    """
    def __init__(self):
        self.chain = load_chain()

    def qa_chain_self_answer(self, question: str, chat_history: list = []):
        """
        调用不带历史记录的问答链进行回答
        """
        if question == None or len(question) < 1:
            return "", chat_history
        try:
            chat_history.append(
                (question, self.chain({"query": question})["result"]))
            return "", chat_history
        except Exception as e:
            return e, chat_history

    def clear_history(self):
        self.chain.clear_history()

然后我们只需按照 Gradio 的框架使用方法,实例化一个 Web 界面并将点击动作绑定到上述类的回答方法即可:

import gradio as gr
model_center = Model_center()

block = gr.Blocks()
with block as demo:
    with gr.Row(equal_height=True):   
        with gr.Column(scale=15):
            gr.Markdown("""<h1><center>QwenLM</center></h1>
                <center>通义千问</center>
                """)
        # gr.Image(value=LOGO_PATH, scale=1, min_width=10,show_label=False, show_download_button=False)

    with gr.Row():
        with gr.Column(scale=4):
            chatbot = gr.Chatbot(height=450, show_copy_button=True)
            # 创建一个文本框组件,用于输入 prompt。
            msg = gr.Textbox(label="Prompt/问题")

            with gr.Row():
                # 创建提交按钮。
                db_wo_his_btn = gr.Button("Chat")
            with gr.Row():
                # 创建一个清除按钮,用于清除聊天机器人组件的内容。
                clear = gr.ClearButton(
                    components=[chatbot], value="Clear console")
                
        # 设置按钮的点击事件。当点击时,调用上面定义的 qa_chain_self_answer 函数,并传入用户的消息和聊天历史记录,然后更新文本框和聊天机器人组件。
        db_wo_his_btn.click(model_center.qa_chain_self_answer, inputs=[msg, chatbot], outputs=[msg, chatbot])
        
        # 点击后清空后端存储的聊天记录
        clear.click(model_center.clear_history)
    gr.Markdown("""提醒:<br>
    1. 初始化数据库时间可能较长,请耐心等待。
    2. 使用中如果出现异常,将会在文本输入框进行展示,请不要惊慌。 <br>
    """)
# threads to consume the request
gr.close_all()
# 启动新的 Gradio 应用,设置分享功能为 True,并使用环境变量 PORT1 指定服务器端口。
# demo.launch(share=True, server_port=int(os.environ['PORT1']))
# 直接启动
demo.launch()

通过将上述代码封装为 run_gradio.py 脚本,直接通过在终端运行命令 python run_gradio.py ,即可在本地启动知识库助手的 Web Demo,默认会在 7860 端口运行,使用类似于部署的方式将服务器端口映射到本地端口即可访问:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1608383.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Scala 03 —— Scala Puzzle 拓展

Scala 03 —— Scala Puzzle 拓展 文章目录 Scala 03 —— Scala Puzzle 拓展一、占位符二、模式匹配的变量和常量模式三、继承 成员声明的位置结果初始化顺序分析BMember 类BConstructor 类 四、缺省初始值与重载五、Scala的集合操作和集合类型保持一致性第一部分代码解释第二…

探索 IntelliJ IDEA 2024.1最新变化:全面升级助力编码效率

探索 IntelliJ IDEA 2024.1最新变化&#xff1a;全面升级助力编码效率 文章目录 探索 IntelliJ IDEA 2024.1最新变化&#xff1a;全面升级助力编码效率摘要引言 IntelliJ IDEA 2024.1 最新变化关键亮点全行代码补全 Ultimate对 Java 22 功能的支持新终端 Beta编辑器中的粘性行 …

synchronized锁升级原理

锁升级过程 jdk1.6之后的优化 synchronized锁有四种状态&#xff0c;无锁&#xff0c;偏向锁&#xff0c;轻量级锁&#xff0c;重量级锁&#xff0c;这几个状态会随着竞争状态逐渐升级&#xff0c;锁可以升级但不能降级&#xff0c;但是偏向锁状态可以被重置为无锁状态。 1、偏…

severstal谢韦尔金属数据集CSV格式转YOLO格式

谢韦尔数据集 在kaggle上即可找到&#xff0c;在csdn、百度、知乎上搜索都能搜到&#xff0c;这里不附下载链接了 谢韦尔数据集的标注为CSV文件&#xff0c;格式如下&#xff1a; 谢韦尔数据集为分割数据集&#xff0c;像素编码格式 格式 谢韦尔数据集为像素编码格式&#…

机器学习:考试复习提纲

该页仅为复习资料&#xff0c;内含博客链接均通过搜索得到。 当然直接访问我的GitHub博客会更方便。 1. 线性回归 Linear Regression https://www.cnblogs.com/geo-will/p/10468253.html 要求1&#xff1a;可以按照自己的理解简述线性回归问题。 回归分析是一种预测性的建模…

【FreeRTOS】RTOS任务的同步与互斥:(二)信号量

【FreeRTOS】RTOS任务的同步与互斥&#xff1a;&#xff08;二&#xff09;信号量 信号量概念二值信号量二值信号量概念二值信号量相关API函数二值信号量的案例设计cubeMX配置软件程序设计 计数型信号量计数型信号量概念计数型信号量相关API函数二值信号量的案例设计cubeMX配置…

线程池 ThreadPoolExecutor 配置参数详解

《开发语言-Java》 线程池 ThreadPoolExecutor 参数详解 一、引言二、主要内容2.1 核心构造函数2.2 核心线程数2.3 最大线程数2.4 空闲线程存活时间2.5 keepAliveTime 的时间单位2.6 核心线程在空闲时的回收策略2.7 工作队列2.8 线程工厂2.9 拒绝策略 三、总结 一、引言 提到 …

VOJ 网页跳转 题解 STL栈

网页跳转 用例输入 10 VISIT https://www.jisuanke.com/course/476 VISIT https://www.taobao.com/ BACK BACK FORWARD FORWARD BACK VISIT https://www.jisuanke.com/course/429 FORWARD BACK用例输出 https://www.jisuanke.com/course/476 https://www.taobao.com/ https…

JavaEE进阶:基础知识

JavaEE&#xff1a;Java企业开发 Web网站的工作流程 ⽬前用户对PC端应⽤的开发结构模式主要分为C/S和B/S结构. CS即Client/Server&#xff08;客户机/服务器&#xff09;结构. 常⻅的C/S架构的应⽤⽐如QQ&#xff0c;CCTALK&#xff0c;各种⽹络游戏 等等&#xff0c;⼀般需…

吴恩达机器学习理论基础—逻辑回归模型

吴恩达机器学习理论基础—逻辑回归模型 说明&#xff1a;逻辑回归解决的是分类问题&#xff1a;例如常见的二分类问题。即得到的输出结果只有两个值的信息。 逻辑回归概念基础 逻辑回归用来解决数据集为0和1的二分类的问题 使用逻辑回归模型来解决对应的问题则需要使用一个函…

在 Ubuntu 12.10 安装 wxPython

安装 wxPython 可以使用 pip 工具&#xff0c;但在 Ubuntu 12.10 上需要首先安装 wxPython 的依赖项。请注意&#xff0c;Ubuntu 12.10 已于2013年终止支持&#xff0c;建议升级到更高版本的 Ubuntu。以下是在 Ubuntu 12.10 上安装 wxPython 的一般步骤&#xff1a; 一、问题背…

【创建型模式】工厂方法模式

一、简单工厂模式 1.1 简单工厂模式概述 简单工厂模式又叫做静态工厂方法模式。 目的&#xff1a;定义一个用于创建对象的接口。实质&#xff1a;由一个工厂类根据传入的参数&#xff0c;动态决定应该创建哪一个产品类(这些产品类继承自一个父类或接口)的实例。 简单工厂模式…

011、Python+fastapi,第一个后台管理项目走向第11步:建立python+fastapi项目,简单测试一下

一、说明 本文章就是记录自己的学习过程&#xff0c;如果有用您可以参考&#xff0c;没用你就略过&#xff0c;没有好与不好之分&#xff0c;今天主要是参考了gitee上的一些项目&#xff0c;一步一步的往后i建立 对于学习来说&#xff0c;如果您有java c等经验&#xff0c;py…

注意力机制基本思想(二)(自注意力机制)

​&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;《深度学习基础知识》 相关专栏&#xff1a; ⚽《机器学习基础知识》 &#x1f3d0;《机器学习项目实战》 &#x1f94e;《深度学习项目实…

河北专升本(c语言各种编程题)

目录 第一类、递归调用 第二类、特殊数字 第三类、多维数组 第四类、字符处理 第五类、数学问题 第六类、排序算法 第七类、循环问题 第八类、进制转换 第九类、实际应用 第十类、图形输出 第一类、递归调用 1.汉诺塔&#xff1a;请输入盘子数&#xff0c;输出盘子移动…

JVM 性能调优命令(jps,jinfo,jstat,jstack,jmap)

常用命令&#xff1a;jps、jinfo、jstat、jstack、jmap jps jps查看java进程及相关信息 jps -l 输出jar包路径&#xff0c;类全名 jps -m 输出main参数 jps -v 输出JVM参数jps命令示例 显示本机的Java虚拟机进程&#xff1a; # jps 15729 jar 92153 Jps 90267 Jstat显示主类…

【QT进阶】Qt Web混合编程之html、 js的简单交互

往期回顾 【QT进阶】Qt Web混合编程之VS2019 CEF的编译与使用&#xff08;图文并茂超详细介绍&#xff09;-CSDN博客【QT进阶】Qt Web混合编程之QWebEngineView基本用法-CSDN博客【QT进阶】Qt Web混合编程之CMake VS2019编译并使用QCefView&#xff08;图文并茂超详细版本&…

Mamba论文笔记

Mamba论文 结合序列建模任务通俗地解释什么是状态空间模型&#xff1f;创新点和贡献 为什么Mamba模型擅长捕获long range dependencies&#xff1f; 结合序列建模任务通俗地解释什么是状态空间模型&#xff1f; 状态空间模型&#xff08;State Space Model, SSM&#xff09;是…

css设置文字撑满盒子

效果如上&#xff1a; <div style"width: 250px;background-color:red;text-align-last:justify;word-break: keep-all;">为中国崛起而读书</div>

Git常见命令行操作和IDEA图形化界面操作

设置Git用户名和标签 在安装完Git以后需要设置用户和签名&#xff0c;至于为什么要设置用户签名可以看一下这篇文章【学了就忘】Git基础 — 11.配置Git用户签名说明 - 简书 (jianshu.com) 基本语法&#xff1a; git config --global user.name 用户名 git config --global u…