【机器学习】小波变换在特征提取中的实践与应用

news2024/11/25 13:24:03

小波变换在特征提取中的实践与应用

  • 一、小波变换的基本原理与数学表达
  • 二、基于小波变换的特征提取方法与实例
  • 三、小波变换在特征提取中的优势与展望

在这里插入图片描述

在信号处理与数据分析领域,小波变换作为一种强大的数学工具,其多尺度分析特性使得它在特征提取中扮演着至关重要的角色。本文将从小波变换的基本原理出发,结合实例和代码,深入探讨小波变换在特征提取中的应用,并着重分析几种常见的基于小波变换的特征提取方法。

一、小波变换的基本原理与数学表达

小波变换的核心理念是将信号分解为一系列小波函数的叠加,这些小波函数具有有限支撑集,在正负之间振荡。通过伸缩和平移运算,小波变换能够实现对信号的多尺度聚焦分析,从而精准地提取出有用信息。
数学上,小波变换的表达形式为:
(W(a, b) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} f(t) \psi \left(\frac{t-b}{a}\right) dt)
其中,(a) 和 (b) 分别代表尺度和平移量,控制着小波函数的伸缩和平移;(f(t)) 是待分析信号;(\psi) 是小波函数。尺度 (a) 与频率成反比,平移量 (b) 对应时间。

二、基于小波变换的特征提取方法与实例

基于小波变换的多尺度空间能量分布特征提取
多尺度空间能量分布特征提取方法通过分析不同尺度上信号的能量分布来提取特征。例如,在处理图像时,通过对图像进行小波变换,我们可以得到不同尺度的小波系数,这些系数反映了图像在不同频带上的能量分布。这些能量信息可以作为图像的特征,用于后续的识别或分类任务。
代码示例(使用Python和PyWavelets库):

python

import pywt
import numpy as np
import cv2

# 读取图像
img = cv2.imread('example.jpg', cv2.IMREAD_GRAYSCALE)

# 选择小波基函数和分解层次
wavelet = 'haar'
level = 1

# 对图像进行小波变换
coeffs = pywt.dwt2(img, wavelet, level=level)

# 计算各尺度空间内的能量
energies = [np.sum(np.abs(coeff)**2) for coeff in coeffs]

# 特征向量即为能量值的集合
feature_vector = np.array(energies)

基于小波变换的多尺度空间模极大值特征提取
模极大值特征提取方法利用小波变换的信号局域化分析能力,通过求解小波变换的模极大值来检测信号的局部奇异性。这种方法特别适用于检测信号中的突变点或异常值。
代码示例(模极大值提取通常需要更复杂的算法,此处仅提供小波变换的基础步骤):

python
# 使用pywt库进行一维信号的小波变换
coeffs = pywt.wavedec(signal, wavelet, level=level)

进一步分析模极大值需要自定义算法或利用专门库
…(此处省略模极大值提取的详细代码)
基于小波包变换的特征提取
小波包变换是对小波变换的扩展,能够提供更精细的频率划分。通过小波包变换,我们可以得到信号在不同频带上的最佳子空间,并提取相应的特征。
代码示例(使用PyWavelets库进行小波包变换):

python

# 进行小波包变换
coeffs = pywt.wavedec(signal, wavelet, level=level, mode='symmetric')

提取最佳子空间特征(需要自定义逻辑)
…(此处省略最佳子空间特征提取的详细代码)

三、小波变换在特征提取中的优势与展望

小波变换以其多尺度分析的能力,在特征提取中展现出独特的优势。==它能够同时捕捉信号的时域和频域信息,对于非平稳信号的处理尤为有效。==随着深度学习等技术的不断发展,小波变换与机器学习方法的结合将为特征提取带来更多的可能性。

未来,小波变换在特征提取中的应用将进一步深化和拓展,不仅局限于图像处理、信号处理等传统领域,还可能拓展到语音识别、生物信息学等新兴领域。同时,随着算法的不断优化和计算能力的提升,小波变换的效率和精度也将得到进一步提升。

综上所述,小波变换作为一种强大的数学工具,在特征提取中发挥着举足轻重的作用。通过深入研究和应用,我们有望发掘出更多小波变换在特征提取中的潜力,推动相关领域的发展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1607212.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

云服务器部署Springboot项目

前端项目打包 修改ip地址 在控制台输入npm run build:prod 会产生dist文件 将dist文件中的内容移动至/usr/local/nginx/html目录下 后端项目打包 修改ip地址 执行clean操作 执行install操作 将生成的target文件中的jar包移动至/usr/local/src目录下 启动 注意⚠️&#xff…

【linux】Ubuntu 修改用户名

第一次打开Ubuntu时不小心把初始用户名“siriusiot”写成“siriousiot”(多了一个o) 。作为技术人,我们要保持严谨,我们要纠正过来(其实就是单词拼错了怕被笑话)。 打开终端,输入: …

Redis key(BigKey、MoreKey)的存储策略

1. MoreKey 案例 1.1 大批量往 redis 里面 插入2000w 测试数据key (1) Linux Bash 下面执行&#xff0c;插入 100w rootspray:~# for((i1;i<100*10000;i)); do echo "set k$i v$i" >> /tmp/redisTest.txt; done; 查看 rootspray:~# more /tmp/redisTest.…

ABAP报表开发总结---采购排产表

1.动态创建内表 1.1首先维护好一个子例程 FORM frm_add_fcat USING value1 value2 value3 value4.wa_fcat-fieldname value1.wa_fcat-inttype value2.wa_fcat-reptext value3.wa_fcat-intlen value4.APPEND wa_fcat TO it_fcat.CLEAR: wa_fcat. ENDFORM. "frm_add_f…

win/mac达芬奇19下载:DaVinci Resolve Studio 19

DaVinci Resolve Studio 19 是一款功能强大的视频编辑和调色软件&#xff0c;广泛应用于电影、电视和网络节目的后期制作。这款软件不仅提供了专业的剪辑、调色和音频处理工具&#xff0c;还引入了全新的DaVinci Neural Engine AI工具&#xff0c;对100多项功能进行了大规模升级…

Mamba 学习

Vision Mamba U-Mamba 以后的趋势&#xff1a; 1.Mamba模型机机制上和transform一样&#xff0c;但是参数量上做了改进&#xff0c;可以直接替代 2.vision上可以实时处理

游戏登录界面制作

登录界面制作 1.导入模块和初始化窗口 import subprocessimport tkinter as tkimport picklefrom tkinter import messageboxwindow tk.Tk()window.title(Welcome)window.geometry(450x300) 导入必要的模块&#xff0c;并初始化了主窗口window&#xff0c;设置了窗口的标题和…

一 Mybatis简介

一 Mybatis简介 1.1 简介 MyBatis最初是Apache的一个开源项目iBatis, 2010年6月这个项目由Apache Software Foundation迁移到了Google Code。随着开发团队转投Google Code旗下&#xff0c; iBatis3.x正式更名为MyBatis。代码于2013年11月迁移到Github。 **MyBatis 是一款优秀…

JavaSE备忘录(未完)

文章目录 基本数据类型println 小知识除法( / ) 和 Infinity(无穷) 小知识除法InfinityInfinity 在除法中正负判断 求余(%) 小知识 基本数据类型 除 int、char 的包装类分别为 Integer、Character 外&#xff0c;其余基本数据类型的第一个字母大写就是它的包装类。 println 小…

微信小程序使用 Vant Weapp 中 Collapse 折叠面板 的问题!

需求&#xff1a;结合Tab 标签页 和 Collapse 折叠面板 组合成显示课本和章节内容&#xff0c;并且用户体验要好点&#xff01; 如下图展示&#xff1a; 问题&#xff1a;如何使用Collapse 折叠面板 将内容循环展示出来&#xff1f; js中的数据是这样的 代码实现&#xff1…

第二证券今日投资参考:人形机器再迎催化 钙钛矿电池产业化提速

昨日&#xff0c;沪指盘中在金融等板块的带动下强势拉升&#xff0c;一举打破3100点&#xff1b;但午后涨幅逐渐收窄。截至收盘&#xff0c;沪指微涨0.09%报3074.22点&#xff0c;深证成指跌0.05%报9376.81点&#xff0c;创业板指跌0.55%报1787.49点&#xff0c;上证50指数涨0.…

“We Need Structured Output”: 以用户为中心的大模型输出

发表机构&#xff1a;Google Research 这篇论文的核心是设计了一种系统&#xff0c;可以让开发者和用户对大型语言模型的输出施加结构性约束。系统的主要部分包括&#xff1a; 1. 用户界面&#xff08;GUI&#xff09;&#xff1a;允许用户通过图形界面来定义他们希望LLM遵守…

Meta Llama3 炸裂登场:一夜刷屏AI界,基准测试中一骑绝尘,GPT-4 Turbo遭遇强劲对手

在 2024年4月19 日&#xff0c;AI界迎来了一项重大突破&#xff1a;Meta 公司宣布推出了迄今为止最强大的新一代开源大语言模型 Llama3。这一消息无疑为我国AI产业的发展带来了新的希望和机遇。 &#x1f3af; Llama3 系列语言模型&#xff08;LLM&#xff09;包括 Llama3 8B …

深度剖析Gateway在微服务治理中的关键角色

目录 一、多层网关 二、Gateway 路由规则 2.1 路由 2.2 谓词 2.3 过滤器 三、路由声明规则 3.1 谓词 寻址谓词 请求参数谓词 时间谓词 自定义谓词 一、多层网关 首先我们先了解下一个请求是如何到达服务端并得到相应的。过程如图所示&#xff1a; 首先网址解析的第一步是 DN…

2024年分享酷我音乐如何下载mp3的方法

这里教大家用酷我音乐小程序的下载方法,小程序下载资源的方法有3种 1.利用专业的抓包工具(Fiddler/Charles)进行获取,然后分析数据包,最后直接用下载器下载分析出来的链接。强烈不推荐,因为大部分人并非程序员出身 2.录屏,录屏效率太慢,所以也不推荐 3. 利用专门的下载资源的…

第49篇:简易处理器<三>

Q&#xff1a;本期我们来设计实现以上介绍的简易处理器&#xff0c;并进行仿真。 A&#xff1a;简易处理器顶层.v文件代码&#xff0c;顶层文件中例化实现处理器的子模块3-8译码器以及寄存器。 仿真示例&#xff1a;DIN (100)8在30 ns时加载到 IR中&#xff0c;而DIN (100)8对…

基于LSTM的负荷预测

长短 期 记 忆 网 络 ( long short term memory&#xff0c; LSTM) &#xff3b;11-12&#xff3d;作为一种特殊的循环神经网络( recurrent neural network&#xff0c;&#xff32;NN) &#xff0c;主要用于解决长序列训 练过程中的梯度消失和梯度爆炸问题。典型的 LSTM 结构如…

高中数学:三角函数之考点精华-对称性相关问题

一、对称性的几种情况 1、1个对称点/对称轴 此种情况&#xff0c;用整体换元法解题 参考&#xff1a;三角函数的整体换元法 2、2个对称点 画图 如果两个对称点之间的距离是a&#xff0c;则函数周期T2a 3、2个对称轴 画图 如果两个对称轴之间的距离是a&#xff0c;则函数…

[Python开发问题] Selenium ERROR: Unable to find a matching set of capabilities

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

【计算机毕业设计】点餐平台网站——后附源码

&#x1f389;**欢迎来到琛哥的技术世界&#xff01;**&#x1f389; &#x1f4d8; 博主小档案&#xff1a; 琛哥&#xff0c;一名来自世界500强的资深程序猿&#xff0c;毕业于国内知名985高校。 &#x1f527; 技术专长&#xff1a; 琛哥在深度学习任务中展现出卓越的能力&a…